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Calabi–Yau and G2 geometry: circle bundles

6D: Calabi–Yau ! 7D: G2 geometry

(Z 6, h, ω,Υ) S1
ε

// (M7, g , η, ϕ)

��
Z

metric h metric g = ε2η2 + h
Kähler form ω connection 1-form η
holomorphic G2-structure
volume form Υ ϕ = εη ∧ ω + Re Υ

Limit ε→ 0

Geometry: collapsing/“nearly collapsed”

Analysis: series expansion in ε

Physics: String Theory ! M-theory
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Contact Calabi–Yau 7-manifolds

Example: M7 = {(z0, z1, z2, z3, z4) ∈ C5 :
∑4

k=0 z
5
k = 0} ∩ S9

Z = {[z0, z1, z2, z3, z4] ∈ CP4 :
∑4

k=0 z
5
k = 0} Fermat quintic

connection 1-form η such that dη = ω

Definition

(M7, g , η,Υ) contact Calabi–Yau 7-manifold:

(M7, g) Sasakian with contact form η

E = ker η with transverse Calabi–Yau structure (h, ω = dη,Υ)

 G2-structure ϕ = εη ∧ ω + Re Υ with g = ε2η2 + h

 ∗ϕ = 1
2ω

2 − εη ∧ Im Υ ⇒ d ∗ ϕ = 0

 ϕ coclosed with dϕ = εω2



Introduction Main results Geometric flows Heterotic G2 system Conclusion

Geometric flows

Laplacian flow Laplacian coflow
∂ϕt

∂t
= ∆tϕt

∂ ∗t ϕt

∂t
= ∆t ∗t ϕt

= (dd∗t + d∗td)ϕt = dd∗t ∗t ϕt

Critical pt: torsion-free ϕ  Ricci-flat g with Hol(g) ⊆ G2

Laplacian (co)flow restricted to (co)closed G2-structures =
gradient flow of Hitchin volume functional on [ϕt ] ([∗tϕt ])

Theorem (L.–Sá Earp–Saavedra)

(M7, g , η,Υ) contact Calabi–Yau (with ω = dη)

ϕ0 = εη ∧ ω + Re Υ and ∗0 ϕ0 = 1
2ω

2 − εη ∧ Im Υ

Laplacian flow has finite-time singularity at t = 1
8ε2

Laplacian coflow exists ∀t > 0 and has infinite-time singularity

M compact ⇒ Vol(M, gt)→∞
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Heterotic G2 system (or G2-Hull–Strominger system)

G2-instanton: connection A on (M7, ϕ) ⇔ FA ∧ ϕ = − ∗ FA
⇔ FA ∧ ∗ϕ = 0

Definition

ϕ G2-structure, A connection on E , B connection on TM, α′ > 0

 (ϕ, (A,E ),B, α′) solution to heterotic G2 system:

ϕ coclosed  dϕ = 7
3λ ∗ ϕ− ∗H (H ∧ ϕ = 0, H ∧ ∗ϕ = 0)

A G2-instanton and B G2-instanton (up to O(α′)2)

anomaly-free condition: dH = α′

4 (tr F 2
A − tr F 2

B) (H flux)

Theorem (L.–Sá Earp)

∀α′ > 0 (M7, g , η,Υ) contact Calabi–Yau admits solution
(ϕ, (A, ker η),B, α′) to heterotic G2 system where

ϕ = εη ∧ ω + Re Υ, dH 6= 0 and ε→ 0 as α′ → 0
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Flow ansatz

Laplacian flow Laplacian coflow

∂ϕt

∂t
= ∆tϕt

∂ ∗t ϕt

∂t
= ∆t ∗t ϕt

(M7, g , η,Υ) contact Calabi–Yau, ω = dη  consider

ϕt = fth
2
t η ∧ ω + h3

t Re Υ and ∗t ϕt =
1

2
h4
tω

2 − fth
3
t η ∧ Im Υ

∆tϕt =
4f 3

t

h2
t

η ∧ ω and ∆t ∗t ϕt = 2f 2
t ω

2

 ansatz preserved, d ∗t ϕt = 0 ∀t and flows ↔ ODE systems

Laplacian coflow: (ft , ht) = (ε(1 + 10ε2t)−3/10, (1 + 10ε2t)1/10)

[∗tϕt ] = [∗0ϕ0] ∀t
Laplacian flow: (ft , ht) = (ε(1− 8ε2t)−1/2, 1)

(in general) [∗tϕt ] 6= [∗0ϕ0] and detects singular time
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Singularity analysis 1

Recall:

g0 = ε2η2 + h on M7

∇tϕt encoded by torsion 2-tensor Tt

Singularities:

Laplacian flow for t ∈ (−∞, 1
8ε2 ) (ancient solution)  

finite-time singularity

Laplacian coflow for t ∈ (− 1
10ε2 ,∞) (immortal solution)  

does not converge

M compact  (L.–Wei, G. Chen) suggest singularity formation
controlled by

Λ(t) = sup
M

(|Rmt |2t + |Tt |4t + |∇tTt |2t )1/2



Introduction Main results Geometric flows Heterotic G2 system Conclusion

Singularity analysis 2

Λ(t) = sup
M

(|Rmt |2t + |Tt |4t + |∇tTt |2t )1/2

Laplacian flow:

Λ(t)→∞ as t → 1
8ε2 but limt→ 1

8ε2
( 1

8ε2 − t)Λ(t) <∞
(“Type I”/rapidly forming)

volume normalized flow  converges to R as t → 1
8ε2 and to

C3 as t → −∞

Laplacian coflow (with non-flat h):

Λ(t)→ 0 as t →∞ but limt→∞ tΛ(t) =∞
(“Type IIb”/slowly forming)

volume normalized flow  converges to C3 as t →∞ and to
R as t → − 1

10ε2
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Hitchin flow

Hitchin flow for coclosed G2 structures on M7:

∂ ∗t ϕt

∂t
= dϕt

 torsion-free Spin(7)-structure on It ×M7 for It ⊆ R:

Φ = dt ∧ ϕt + ∗tϕt

 Ricci-flat g with Hol(g) ⊆ Spin(7)

Theorem (L.–Sá Earp–Saavedra)

(M7, g , η,Υ) contact Calabi–Yau (with ω = dη)

ϕ0 = εη ∧ ω + Re Υ and ∗0 ϕ0 =
1

2
ω2 − εη ∧ Im Υ

Hitchin flow coincides with Laplacian coflow (up to
reparametrization of time) and defines Calabi–Yau structure on
It ×M7  (incomplete) Ricci-flat Kähler metric on It ×M7
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Solving the heterotic G2 system 1

(M7, g , η,Υ) contact Calabi–Yau

Want: (ϕ, (A,E ),B, α′)

α′ > 0 arbitrary X

ε = ε(α′) > 0  

ϕε = εη ∧ ω + Re Υ and ∗ ϕε =
1

2
ω2 − εη ∧ Im Υ

 d ∗ ϕε = 0 X

flux Hε = −ε2η ∧ ω + εRe Υ  dHε = −ε2ω2 6= 0 X

E = ker η, A transverse connection  

FA ∧ ω2 = 0, FA ∧Υ = 0  FA ∧ ∗ϕε = 0 X

need B on TM so that

FB ∧ ∗ϕε = O(α′)2 and dHε = −ε2ω2 =
α′

4
(tr F 2

A − tr F 2
B)
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Solving the heterotic G2 system 2

Recall: “Bismut connection” B+
ε for ϕε  

∇B+
ε
gε = 0 ∇B+

ε
ϕε = 0 totally skew torsion Hε

(Metric connection B−ε with torsion −Hε is “Hull connection”)

Idea: let κ = κ(α′) > 0 and B = B+
κε: Bismut connection for ϕκε

Take κ2 = (α′)−3 and ε2 = 2(α′)5  

FB ∧ ∗ϕε = O(α′)2 X

dHε = α′

4 (tr F 2
A − tr F 2

B) X

Note: we can also

modify Hull and Levi-Civita connections for ϕκε

make B approximate G2-instanton to order O(α′)k for any
k ≥ 2



Introduction Main results Geometric flows Heterotic G2 system Conclusion

Summary and questions

Summary: M7 contact Calabi–Yau  coclosed G2-structures

Laplacian flow  rapidly forming finite-time singularity,
collapsing to R
Laplacian coflow  slowly forming infinite-time singularity,
collapsing to C3

solution to heterotic G2 system for any α′ > 0

Questions

gauge theory on contact Calabi–Yau 7-manifolds?
(cf. Sá Earp et. al., Y. Wang)

other S1-bundles/S1-symmetry? (cf. Apostolov–Salamon,
Foscolo–Haskins–Nordström, Fowdar)

coclosed G2-structures and geometric flows?

conditions for (exact) solutions/numerical approximations to
heterotic G2 system?
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