Introduction 00	Heterotic G ₂ system	$\underset{OO}{G_2-instantons}$	Generalized geometry 000	Spinors O	Coupled G ₂ -instantons	Summary O

G₂-instantons, the heterotic G₂ system and generalized geometry

Jason D. Lotay

Oxford

(Joint with A.A. da Silva Jr, M. García-Fernández and H.N. Sá Earp)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction Heterotic G₂ system G₂-instantons Generalized geometry Spinors Coupled G₂-instantons Summary Motivation

Heterotic String Theory on $\mathbf{M}^{9,1} = B^{2,1} \times M^7 \rightsquigarrow$

- G₂-structure 3-form φ on M^7 with torsion H_{φ}
- connection θ on principal bundle $P \rightarrow M^7$, curvature F_{θ}

satisfying heterotic G₂ system: coupled PDE system for (φ, θ)

$$\Rightarrow \qquad F_{\theta} \wedge *\varphi = 0 \qquad (\mathsf{G}_2\text{-instanton})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Question

What does the heterotic G_2 system mean geometrically?

Main results

Solution (φ, θ) to heterotic G₂ system \rightsquigarrow

- G₂-instanton on $TM \oplus ad P$ (cf. De La Ossa-Larfors-Svanes)
- generalized Ricci-flat metric on $E = TM \oplus ad P \oplus T^*M$
- solution to Killing spinor equations

Coupled G₂-instantons

Generalize heterotic G_2 system \rightsquigarrow

- (φ, H, θ) : G₂-structure φ , 3-form H, connection θ
- examples (cf. Fino-Martín-Merchan-Raffero, Ivanov-Ivanov)

Note: can extend beyond G_2 , e.g. SU(n) and Spin(7)

G₂-structures: torsion and connections

Recall:

Heterotic G₂ system

Introduction

• torsion forms of G_2 -structure φ on M^7

$$\mathrm{d}\varphi = \tau_0 * \varphi + 3\tau_1 \wedge \varphi + *\tau_3, \quad \mathrm{d}*\varphi = 4\tau_1 \wedge *\varphi + *\tau_2$$

Generalized geometry

Coupled G₂-instantons

Summary

- $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow$ Levi-Civita connection ∇_{φ}
- φ torsion-free \Rightarrow Hol $(g_{\varphi}) \subseteq \mathsf{G}_2 \Rightarrow \nabla_{\varphi} \mathsf{G}_2$ -instanton
- ∇ connection on $TM \rightsquigarrow$ torsion is section of $T^*M \otimes \Lambda^2 T^*M$

Lemma (Friedrich-Ivanov)

 $\begin{aligned} \tau_{2} &= 0 \Leftrightarrow \exists \ \nabla_{\varphi}^{+} \ on \ TM \ with \ \nabla_{\varphi}^{+}\varphi = 0 \ and \ totally \ skew \ torsion \\ \text{Moreover,} \ \nabla_{\varphi}^{+} \ exists \Rightarrow unique \ and \ torsion \ H_{\varphi} \\ \nabla_{\varphi}^{+} &= \nabla_{\varphi} + \frac{1}{2}g_{\varphi}^{-1}H_{\varphi}, \qquad H_{\varphi} = \frac{1}{6}\tau_{0}\varphi + *(\tau_{1} \wedge \varphi) - \tau_{3} \end{aligned}$

Heterotic G₂ system

000

Heterotic G₂ system

Introduction

• φ G₂-structure on M^7 with $\tau_2 = 0$: $d * \varphi = 4\tau_1 \wedge * \varphi$

Coupled G2-instantons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\rightsquigarrow H_{\varphi} = \frac{1}{6}\tau_0\varphi + *(\tau_1 \wedge \varphi) - \tau_3$$

- θ connection on principal K-bundle $P \rightarrow M$,
 - $\langle \cdot, \cdot \rangle_P$ non-degenerate, symmetric, bilinear form on $\mathfrak k$

Definition

 (φ, θ) solution to heterotic G₂ system \Leftrightarrow

- $7\tau_0 = 12\lambda \in \mathbb{R}, \quad 2\tau_1 = d\mu, \quad \tau_2 = 0$ (Torsion)
- $F_{\theta} \wedge *\varphi = 0$ (G₂-instanton)
- $dH_{\varphi} = \langle F_{\theta} \wedge F_{\theta} \rangle_P$ (Anomaly)

• Anomaly \Rightarrow

$$p_1(P) = \kappa[\langle F_{ heta} \wedge F_{ heta}
angle_P] = \kappa[\mathrm{d}H_{arphi}] = 0 \in H^4(M)$$

•
$$7\tau_0 = 12\lambda$$
, $\mathbf{M}^{9,1} = B^{2,1} \times M^7$
 $\Rightarrow B^{2,1}$ is AdS₃ or $\mathbb{R}^{2,1}$ with cosmological constant $-\lambda^2$

• If $TM \oplus E$ associated bundle to P can choose

$$\langle \cdot, \cdot \rangle_P = \alpha' (\operatorname{tr}_E - \operatorname{tr}_{TM})$$

for $\alpha' > 0$ "small" \rightsquigarrow usual formulation in physics literature

• "simple" solution: φ torsion-free, $\theta = (\nabla_{\varphi}, \nabla_{\varphi})$ on $TM \oplus TM$

Connections and curvature

Heterotic G₂ system

Introduction

Goal: define G₂-instanton $\mathbf{D}_{(\varphi,\theta)}$ on $TM \oplus ad P$ from (φ,θ)

 G_2 -instantons

 φ G₂-structure with $\tau_2 = 0 \rightsquigarrow$

$$abla_arphi^\pm =
abla_arphi \pm rac{1}{2} g_arphi^{-1} H_arphi$$

Coupled G₂-instantons

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

Note: $R_{\varphi}^+(X, Y, Z, W) = R_{\varphi}^-(Z, W, X, Y) + \frac{1}{2} \mathrm{d}H_{\varphi}(X, Y, Z, W)$

 θ connection \rightsquigarrow **F** 1-form with values in Hom(*TM*, ad *P*)

$$(i_X \mathbf{F})(Y) = F_{\theta}(X, Y)$$

 \mathbf{F}^{\dagger} 1-form with values in Hom(ad P, TM)

$$(i_X \mathbf{F}^{\dagger})(u) = g_{\varphi}^{-1} \langle i_X F_{\theta}, u \rangle_P$$

Coupled G₂-instantons

Heterotic G₂ system

Introduction

Recap: $(\varphi, \theta) \rightsquigarrow \nabla_{\varphi}^{\pm}$ on *TM* and **F**, **F**[†] Hom-valued 1-forms

Define connection $\mathbf{D}_{(\varphi,\theta)}$ on $TM \oplus ad P$ by:

G₂-instantons

$$\mathsf{D}_{(arphi, heta)} = \left(egin{array}{cc}
abla^-_arphi & \mathsf{F}^\dagger \ -\mathsf{F} & d_ heta \end{array}
ight)$$

Generalized geometry

Theorem (cf. De La Ossa–Larfors–Svanes)

 (φ, θ) solves heterotic G₂ system \Rightarrow

$$F_{\mathbf{D}_{(\varphi,\theta)}} \wedge *\varphi = 0$$
 (G₂-instanton)

Question

Where does this connection on $TM \oplus ad P$ come from?

Coupled G2-instantons

Key object: $E = TM \oplus T^*M$ with non-degenerate pairing

$$\langle X+\xi,X+\xi\rangle_E=\xi(X)$$

and bracket

$$[X + \xi, Y + \eta]_E = [X, Y] + \mathcal{L}_X \eta - i_Y d\xi$$

Note: closed 3-form $H \rightarrow$ can add H(X, Y, .) to $[X + \xi, Y + \eta]_E$

Observation: $E = TM \oplus ad P \oplus T^*M$

 \rightsquigarrow modify pairing using $\langle \cdot, \cdot \rangle_P$ and bracket using F_{θ} and 3-form H satisfying

$$\mathrm{d} H = \langle F_{\theta} \wedge F_{\theta} \rangle_{P}$$

 \rightsquigarrow string algebroid (E, H, θ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$$(E = TM \oplus ad P \oplus T^*M, H, \theta) \text{ string algebroid}$$

$$\varphi \rightsquigarrow g_{\varphi} \rightsquigarrow \text{ splitting } E = V_+ \oplus V_-$$

$$V_+ = \{X + g_{\varphi}(X, \cdot) : X \in TM\} \cong TM$$

$$V_- = \{X + u - g_{\varphi}(X, \cdot) : X \in TM, u \in ad P\} \cong TM \oplus ad P$$
Note: $\langle \cdot, \cdot \rangle_E|_{V_+}$ positive definite $\rightsquigarrow D_+^- : \Gamma(V_-) \rightarrow \Gamma(V_+^* \otimes V_-)$

$$\langle v_+, D_+^- v_- \rangle_E = \pi_{V_-}[v_+, v_-]_E$$

Lemma

Identify $V_+ \cong TM$, $V_- \cong TM \oplus$ ad P and choose $H = H_{\varphi} \Rightarrow$

$$D^-_+ = \mathbf{D}_{(\varphi,\theta)}$$

Generalized metrics

Introduction

Recap: string algebroid (E, H_{φ}, θ) and $\varphi \rightsquigarrow$ splitting $E = V_+ \oplus V_-$ with $V_+ \cong TM$, $\langle \cdot, \cdot \rangle_E|_{V_+}$ positive definite

000

Generalized geometry

 \rightsquigarrow generalized metric **G**:

- **G** : $E \to E$ orthogonal for $\langle \cdot, \cdot \rangle_E$
- $\mathbf{G}^2 = \mathsf{id}$
- $V_{\pm} \pm 1$ -eigenspace

 \rightsquigarrow generalized Ricci curvature $\operatorname{Ric}^+_{\mathbf{G}} \in \Gamma(V_- \otimes V_+)$

Theorem

$$(\varphi, \theta)$$
 satisfies heterotic G_2 system \Rightarrow

$$\mathsf{Ric}^+_{\mathbf{G}} = 0$$

Coupled G2-instantons

Recall: φ G₂-structure \leftrightarrow nowhere vanishing spinor η

$$\varphi(X,Y,Z) = (X \cdot Y \cdot Z \cdot \eta,\eta)$$

3-form $H \rightsquigarrow$

$$\nabla_{H}^{t} = \nabla_{\varphi} + \frac{t}{2}g_{\varphi}^{-1}H$$

$$\rightsquigarrow
abla^\pm_H$$
 for $t=\pm 1$ and $ot\!\!/_H^{1/3}$ Dirac operator associated to $t=1/3$

Theorem

 (φ, θ) solution to heterotic G_2 system $\Rightarrow \eta$ satisfies for $H = H_{\varphi}$:

$$abla^+_arphi\eta=0, \quad F_ heta\cdot\eta=0, \quad ({
ot\!\!/}^{1/3}_arphi-\mathrm{d}\mu)\cdot\eta=\lambda\eta$$

(Killing spinor equations with parameter λ)

Note: there is a converse result, where we do not assume $H = H_{\varphi}$

Introduction Heterotic G₂ system G₂-instantons Generalized geometry Spinors Coupled G₂-instantons Summary

 φ G₂-structure on *M*, *H* 3-form on *M*, θ connection on *P* \rightarrow *M* such that

$$\mathrm{d}H = \langle F_{\theta} \wedge F_{\theta} \rangle_P$$

 \rightsquigarrow connection $\mathbf{D}_{(\varphi,H,\theta)}$ on $TM \oplus ad P$:

$$\mathsf{D}_{(arphi, \mathcal{H}, heta)} = \left(egin{array}{cc}
abla_{H}^{-} & \mathsf{F}^{\dagger} \ -\mathsf{F} & d_{ heta} \end{array}
ight)$$

Definition

 (φ, H, θ) coupled G₂-instanton if

$$F_{\mathbf{D}_{(\varphi,H,\theta)}} \wedge *\varphi = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: Hopf surface

Heterotic G₂ system

Introduction

•
$$\kappa \in \mathbb{R}^+ \setminus \{1\} \rightsquigarrow \mathbb{Z}$$
 acts on $(\mathbb{C}^2)^*$: $n \cdot (z_1, z_2) = \kappa^n(z_1, z_2)$

• $N^4 = (\mathbb{C}^2)^*/\mathbb{Z} \cong S^1 imes S^3$ diagonal Hopf surface

• SU(2)-structure
$$(\omega, \Psi)$$
:

$$d\omega = \tau_1 \wedge \omega, \quad d\Psi = \tau_1 \wedge \Psi, \quad dd^c \omega = 0,$$

Generalized geometry Spinors

Coupled G2-instantons

Summary

 $\tau_1 \neq 0$ but $d\tau_1 = 0 \rightsquigarrow$ twisted Calabi–Yau

• G₂-structure φ on $M^7 = T^3 \times N^4$ with

 $au_0 = 0, \quad \mathrm{d} au_1 = 0, \quad [au_1] \neq 0, \quad au_2 = 0, \quad H_{\varphi} = \mathrm{d}^c \omega \neq 0$

• $dH_{\varphi} = 0 \rightsquigarrow \text{coupled G}_2\text{-instanton} (\varphi, H_{\varphi}, 0)$

Example: Calabi–Eckmann $S^3 \times S^3$

•
$$N^6 = ((\mathbb{C}^2)^* \times (\mathbb{C}^2)^*)/\mathbb{C}^* \cong S^3 \times S^3$$

• Calabi–Eckmann SU(3)-structure (ω, Ψ)

$$\mathrm{d}\omega^2 = \tau_1 \wedge \omega^2, \quad \mathrm{d}\Psi = \tau_1 \wedge \Psi, \quad \mathrm{d}\mathrm{d}^c \omega = 0$$

Generalized geometry

Coupled G2-instantons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0000

but $d\tau_1 \neq 0$

Heterotic G₂ system

Introduction

• G₂-structure φ on $M^7 = S^1 \times N^6$ with

$$au_0 = 0, \quad \mathrm{d} au_1 \neq 0, \quad au_2 = 0, \quad H_{\varphi} = \mathrm{d}^c \omega \neq 0$$

• $dH_{\varphi} = 0 \rightsquigarrow \text{ coupled G}_2\text{-instanton } (\varphi, H_{\varphi}, 0)$

• S^7 round \rightsquigarrow nearly parallel G₂-structure φ :

$$d\varphi = 4 * \varphi$$

• $\tau_0 = 4$, $\tau_1 = 0$, $\tau_2 = 0$, $H_{\varphi} = \frac{2}{3}\varphi$ \rightsquigarrow $\mathrm{d}H_{\varphi} \neq 0$

• $\theta = \nabla_{\varphi}^+$ G2-instanton and

$$\mathrm{d}H_{\varphi} = -lpha' \operatorname{tr} F_{\theta} \wedge F_{\theta}$$

for $\alpha' > 0$

(φ, ∇⁺_φ) solves heterotic G₂ system
 → coupled G₂-instanton (φ, H_φ, ∇⁺_φ)

Solutions to heterotic G_2 system:

 $\mathsf{G}_2 ext{-structure } arphi$ on M^7 & connection heta on $P o M \rightsquigarrow$

- G_2 -instanton on $TM \oplus ad P$
- generalized Ricci-flat metric on string algebroid $(TM \oplus \operatorname{ad} P \oplus T^*M, H_{\varphi}, \theta)$
- \bullet solution to Killing spinor equations with parameter λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduced coupled G_2 instantons $(\varphi, H, \theta) \rightsquigarrow$ examples

- diagonal Hopf surface $S^1 imes S^3$ times T^3
- Calabi–Eckmann $S^3 imes S^3$ times S^1
- round S^7