Motivation	Symplectic coupled flow	<i>J</i> -volume	G ₂ coupled flow	Outlook

Coupled flows and calibrated geometry

Jason D. Lotay

University College London

3 September 2014

Joint with Tommaso Pacini (SNS, Pisa)

arXiv:1404.4227

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation ●	Symplectic coupled flow	J-volume 00	G ₂ coupled flow	Outlook 0
Motivation				

Question

What is the "best" way to deform a geometric structure?

- Riemannian metric g → Ricci flow ∂_tg_t = -2 Ric(g_t)
 Critical g: Ricci-flat ⊇ (most) special holonomy
- ι : N → (M,g) → mean curvature flow ∂_tι_t = H(ι_t) Critical ι: minimal ⊇ calibrated
- A connection → Yang-Mills flow ∂_tA_t = -d^{*}_{At}F(A_t) Critical A: Yang-Mills ⊇ instantons

Idea: try to find symplectic and G₂ analogues via "coupling"

Motivation	Symplectic coupled flow	J-volume	G ₂ coupled flow	Outlook
0	●○○○	00		0
Lagrang	ians			

- (M,ω) symplectic, $\iota: L^n \hookrightarrow M^{2n}$ Lagrangian $\iota^*\omega = 0$
 - compatible almost complex structure $J \rightsquigarrow g(.,.) = \omega(.,J.)$
 - mean curvature flow does not usually preserve Lagrangians

Theorem (Smoczyk 1996)

M Kähler, L compact

- Kähler–Ricci flow $\partial_t \omega_t = -\operatorname{Ric}(\omega_t)$
- "coupled" mean curvature flow $\partial_t \iota_t = H(\iota_t)$

 $\Rightarrow \iota_t : L \hookrightarrow (M, \omega_t)$ Lagrangian for all t

M Calabi–Yau \rightsquigarrow Lagrangian mean curvature flow

• Critical points \leftrightarrow special Lagrangians

Motivation	Symplectic coupled flow	J-volume	G ₂ coupled flow	Outlook
0	○●○○	00		O
Canonica	al geometry			

 (M, ω) symplectic, J compatible \leftrightarrow almost Kähler

- \rightsquigarrow canonical (Chern) connection ∇
- $\iota: L^n \hookrightarrow M^{2n}$ totally real $\leftrightarrow J(TL) \pitchfork TL$
- K_M canonical bundle $\rightsquigarrow K_M|_L$ trivial
- \rightsquigarrow canonical unit section Ω_L of $K_M|_L$
- \rightsquigarrow connection 1-form $\nabla \Omega_L = i \mu_L \otimes \Omega_L$

Definition

- μ_L is the Maslov form of L
- Maslov flow $\partial_t \iota_t = -J\mu_L(\iota_t)$

M Kähler, L Lagrangian $\Rightarrow -J\mu_L = H$

Motivation	Symplectic coupled flow	J-volume	G ₂ coupled flow	Outlook
O	○○●○	00		0
Symplecti	c coupled flow			

Key facts

- Chern–Weil: $P(X, Y) = \operatorname{tr}_{\omega} R_{\nabla}(X, Y)$ represents $4\pi c_1(M)$
- *M* Kähler $\Rightarrow P = 2 \operatorname{Ric}(\omega)$

•
$$\mathcal{L}_{-J\mu_L}\omega = \mathrm{d}\mu_L = \frac{1}{2}\iota^*P$$

Theorem (L.-Pacini 2013)

 (M,ω) symplectic, J compatible, $\iota: L^n \hookrightarrow M^{2n}$ totally real

- (Streets–Tian 2011) symplectic curvature flow $\partial_t \omega_t = -\frac{1}{2}P_t$
- coupled Maslov flow $\partial_t \iota_t = -J\mu_L(\iota_t)$

$$\Rightarrow \iota_t : L \hookrightarrow (M, \omega_t, J_t)$$
 satisfies $\iota_t^* \omega_t = \iota^* \omega$ for all t

Corollary

Maslov flow plus symplectic curvature flow preserves Lagrangians

 $G = \left\{ \begin{pmatrix} 1 & x & z & 0 \\ 0 & 0 & 1 & y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & s \end{pmatrix} : x, y, z \in \mathbb{R}, s > 0 \right\}, \Gamma = G \cap GL(4, \mathbb{Z})$

• $M = \Gamma \setminus G$, $\omega = \mathrm{d}x \wedge \mathrm{d}z + \mathrm{d}s \wedge \mathrm{d}y \rightsquigarrow (M^4, \omega)$ symplectic

•
$$b_1(M) = 3 \Rightarrow M$$
 not Kähler

- (Pook 2012) symplectic curvature flow exists for all t with $\omega_t = \omega$ but g_t non-constant and does not converge
- \rightsquigarrow (after rescaling) collapses to flat T^2

$$L = T^2$$

- $\{\gamma \in G : x = y = 0\} \rightsquigarrow \iota : L \hookrightarrow (M, \omega)$ Lagrangian
- Maslov form $\mu_L = 0 \rightsquigarrow \iota_t = \iota$ Lagrangian for all t
- L_t collapses to a point as $t \to \infty$

Motivation O	Symplectic coupled flow	J-volume ●○	G ₂ coupled flow	Outlook O
<i>J</i> -volume				

 $\iota: L^n \hookrightarrow (M^{2n}, \omega, J)$ totally real $\rightsquigarrow \Omega_L$ canonical section of $K_M|_L$

Definition

• *J-volume form:*
$$vol_L^J = \iota^* \Omega_L$$

• J-volume functional: $\operatorname{Vol}^J = \int_L \operatorname{vol}_L^J$

Theorem (L.–Pacini 2013)

 (M, ω, J) Kähler \Rightarrow Maslov flow is negative gradient flow of Vol^J

• Critical points: $\mu_L = 0 \leftrightarrow \text{stationary for Vol}^J$

M Calabi–Yau, Ω holomorphic volume form $\Rightarrow \iota^* \operatorname{Re} \Omega \leq \operatorname{vol}_L^J$

- "calibrated" $\iota^* \operatorname{Re} \Omega = \operatorname{vol}_L^J$: "special totally real"
- special totally real \Rightarrow homologically *J*-volume-minimizing

Motivation O	Symplectic coupled flow	J-volume ○●	G ₂ coupled flow	Outlook 0
Convexity				

 \mathcal{T} totally real immersions of L modulo Diff(L)

- $\bullet\ \exists$ canonical connection on $\mathcal{T}\rightsquigarrow$ geodesics
- JX ∈ T_{ι(L)}T: geodesic given by "J-holomorphic thickening" of integral curves of X

Theorem (L.–Pacini 2014)

M Kähler Ric $\leq 0 \Rightarrow \text{Vol}^J$ convex along geodesics

M Kähler–Einstein Ric < 0

- Maslov flow = Vol^J gradient flow
- Critical points = minimal Lagrangians
- Convexity \Rightarrow minimal Lagrangians stable (Oh 1990)
- (Joyce 2014) Are minimal Lagrangians in [L] unique?

Motivation	Symplectic coupled flow	J-volume	G ₂ coupled flow	Outlook
O		00	●○○	O
Coassociati	ves			

$$(M^7, arphi)$$
 7-manifold with G_2 structure, C^4 oriented

Definition

$$\iota: \mathcal{C} \hookrightarrow \mathcal{M} \text{ coassociative} \Leftrightarrow \iota^* *_{\varphi} \varphi = \operatorname{vol}_{\mathcal{C}} \Leftrightarrow \iota^* \varphi = 0$$

- $d\varphi = 0 \Rightarrow$ no obstructions to local existence of coassociatives
- \rightsquigarrow is there a "best" way to deform φ with $d\varphi = 0$?

Lemma

- $\iota: C \hookrightarrow M$ coassociative, $\mathrm{d} \varphi = 0$
 - $H = -d*_{\varphi}\varphi(e_1, e_2, e_3, e_4, .)$ where $\{e_1, e_2, e_3, e_4\}$ orthonormal frame on C
 - $H \lrcorner \varphi = -\pi_+ \iota^* \mathrm{d}_{\varphi}^* \varphi$ where $\pi_+ : \Omega^2(\mathcal{C}) \to \Omega^2_+(\mathcal{C})$

Motivation O	Symplectic coupled flow	J-volume 00	G_2 coupled flow $\circ \bullet \circ$	Outlook O
G ₂ coupled	flow			

Key facts

•
$$\mathcal{L}_H \varphi = \mathrm{d}(H \lrcorner \varphi) = -\iota^* \mathrm{dd}_{\varphi}^* \varphi = -\iota^* \Delta_{\varphi} \varphi$$

• compact coassociative \Rightarrow moduli space of dimension b_+^2

Theorem (L.–Pacini 2014)

 $(M^7, \varphi) d\varphi = 0, \iota : C \hookrightarrow M$ compact coassociative

- (Bryant 1992) Laplacian flow $\partial_t \varphi_t = \Delta_{\varphi_t} \varphi_t$
- coupled mean curvature flow $\partial_t \iota_t = H(\iota_t)$
- $\Rightarrow \iota_t : \mathcal{C} \hookrightarrow (\mathcal{M}, \varphi_t)$ coassociative for all t

Work in progress

- Can we extend this flow to "weak coassociatives"?
- Is this extension still the gradient flow of a functional?

 Motivation
 Symplectic coupled flow
 J-volume
 G2 coupled flow
 Outlook

 0
 000
 00
 00
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Fernández closed G₂-solvmanifold

$$G = \left\{ \begin{pmatrix} 1 & 0 & x_2 & x_4 & x_6 \\ 0 & 1 & x_3 & x_5 & x_7 \\ 0 & 0 & 1 & 0 & x_1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} : x_i \in \mathbb{R} \right\}, \ \Gamma = G \cap \mathsf{GL}(5, \mathbb{Z})$$

•
$$M = \Gamma \backslash G \rightsquigarrow (M^7, \varphi)$$
 with $\mathrm{d}\varphi = 0$

• $b_1(M) = 5 \Rightarrow$ no torsion-free G₂ structure

- (Bryant 1992) Laplacian flow exists for all *t* but does not converge
- \rightsquigarrow (after rescaling) collapses to flat T^3

 $C = T^4$

• $\{\gamma \in G : x_1 = x_2 = x_3 = 0\} \rightsquigarrow \iota : C \hookrightarrow (M, \varphi)$ coassociative

• $H = 0 \rightsquigarrow \iota_t = \iota$ coassociative for all t

• C_t collapses to a point as $t \to \infty$

Motivation 0	Symplectic coupled flow	J-volume 00	G ₂ coupled flow	Outlook ●
Future d	irections			

 (M, α) contact, $\iota : L^n \hookrightarrow M^{2n+1}$ Legendrian $\iota^* \alpha = 0$

- (cf. Smoczyk 2003) M Sasakian ⇒ Sasaki-Ricci flow plus "projected" mean curvature flow preserves Legendrians
- n = 1: "projected" analogous to total length-preserving
- Is there a contact analogue of the symplectic coupled flow?
- \rightsquigarrow "best" flow of contact structures?

 (M^7, φ) 7-manifold with G₂ structure, A connection

- A G₂ instanton \Leftrightarrow $F(A) \land \varphi = -*F(A) \Leftrightarrow F(A) \land *\varphi = 0$
- $d^* \varphi = 0 \Rightarrow$ no obstructions to local existence of G₂ instantons
- Is there an instanton analogue of coassociative coupled flow?
- \rightsquigarrow "best" flow of φ with $d^*\varphi = 0$?