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Abstract

For an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the digraph
obtained by reversing the orientations of the edges of D with both endpoints in X.
The inversion number of D, inv(D), is the minimum number of inversions which can
be applied in turn to D to produce an acyclic digraph. Answering a recent question
of Bang-Jensen, da Silva, and Havet we show that, for each k ∈ N and tournament
T , the problem of deciding whether inv(T ) ≤ k is solvable in time Ok(|V (T )|2),
which is tight for all k. In particular, the problem is fixed-parameter tractable
when parameterised by k. On the other hand, we build on their work to prove
their conjecture that for k ≥ 1 the problem of deciding whether a general oriented
graph D has inv(D) ≤ k is NP-complete. We also construct oriented graphs with
inversion number equal to twice their cycle transversal number, confirming another
conjecture of Bang-Jensen, da Silva, and Havet, and we provide a counterexample to
their conjecture concerning the inversion number of so-called ‘dijoin’ digraphs while
proving that it holds in certain cases. Finally, we asymptotically solve the natural
extremal question in this setting, improving on previous bounds of Belkhechine,
Bouaziz, Boudabbous, and Pouzet to show that the maximum inversion number of
an n-vertex tournament is (1 + o(1))n.

1 Introduction

In this paper we only consider digraphs without loops, digons, or parallel edges, for
which we use the terms digraph and oriented graph interchangeably. For such a digraph
D = (V,E) and a set X ⊆ V , the inversion of X in D is the digraph obtained from D
by reversing the direction of the edges with both endpoints in X; we say that we invert
X in D. Given a family of sets X1, . . . , Xk ⊆ V , we can invert X1 in D, then X2 in the
resulting digraph, and so on, noting that the final digraph produced by these inversions
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is independent of the order in which we perform them. If inverting X1, . . . , Xk in turn
transforms D into an acyclic digraph, then we say that these sets form a decycling family
of D. We will refer to a set X ⊆ V which forms a decycling family by itself as a decycling
set. The inversion number of D, denoted inv(D), is defined to be the minimum size of a
decycling family of D, and for k ∈ N0 we say that D is k-invertible if inv(D) ≤ k.

The study of inversions began in Houmem Belkhechine’s PhD thesis [5] and continued
in [6, 7, 26], in which many foundational results were established. The present work is
inspired by a recent paper of Bang-Jensen, da Silva, and Havet [4] which studied a wide
range of questions about invertibility, with an emphasis on those of an algorithmic or
extremal nature. They also posed a host of interesting conjectures and problems, some
of which we answer in this paper.

1.1 The inversion number of k-joins

The cornerstone of many of the conjectures made by Bang-Jensen, da Silva, and Havet
in [4] is the following ‘dijoin conjecture’. For oriented graphs L and R, the dijoin L → R
from L to R is the oriented graph consisting of vertex-disjoint copies of L and R, with
an edge # »uv for all u ∈ V (L) and v ∈ V (R).

Conjecture 1 ([4]). For oriented graphs L and R we have inv(L → R) = inv(L)+inv(R).

Noting that the left-hand side is certainly at most the right-hand side for all L and R
and that the conjecture holds trivially if inv(L) = 0 or inv(R) = 0, Bang-Jensen, da Silva,
and Havet showed it to be true when inv(L)+inv(R) ≤ 3, and when inv(L) = inv(R) = 2
and L and R are both strongly connected.1 They also observed (see our Section 3) that
the conjecture is equivalent to its restriction to tournaments. We disprove Conjecture 1
by exhibiting a tournament R with inv(R) = inv(

# »

C3 → R), where
# »

C3 is the directed cycle
on three vertices.

Theorem 1. There exists a tournament R with inv(R) = inv(
# »

C3 → R) = 3.

While Theorem 1 shows that the dijoin conjecture is false in general, we prove it in
the case where inv(L) = inv(R) = 2.

Theorem 2. If L and R are digraphs with inv(L) = inv(R) = 2, then inv(L → R) = 4.

The proof of Theorem 2 relies on the strongly connected case and our next result,
which concerns the following generalisation of dijoins to arbitrarily many digraphs. For
k ∈ N the k-join of digraphs D1, . . . , Dk, written [D1, . . . , Dk], is the digraph consisting of
vertex-disjoint copies of D1, . . . , Dk with an additional edge # »uv whenever u ∈ V (Di), v ∈
V (Dj) for i < j. We write [D]k = [D, . . . , D] for the k-join of k copies of the same
oriented graph D. The following result can be viewed as a k-join analogue of the dijoin
conjecture holding under certain conditions. It generalises a theorem of Pouzet, Kaddour,
and Thatte [26] which states that inv([

# »

C3]k) = k for all k.
1The case where inv(L) = 2 and inv(R) = 1 is not explicitly mentioned in [4], but follows easily from

the case where inv(L) = 1 and inv(R) = 2 by inverting V (L → R).
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Theorem 3. Let k ∈ N and let D1, . . . , Dk be oriented graphs. Assume that inv(Di) ≤ 2
for all i, with equality for at most one i. Then

inv([D1, . . . , Dk]) =
k∑

i=1

inv(Di). (1)

We will use Theorem 3 to confirm another conjecture from [4] which was made based
on the dijoin conjecture (see Theorem 5 below). Theorem 3 and, in turn, Theorem 2
follow from a characterisation of the decycling families of size k of arbitrary k-joins of
oriented graphs with inversion number 1. We will need some further terminology to state
this result: for a digraph D, sets X1, . . . , Xk ⊆ V (D), and a vertex v ∈ V (D), we define
the characteristic vector of v in X1, . . . , Xk to be (I{v∈Xi} : i ∈ [k]) ∈ Fk

2, where I{v∈Xi} is
the indicator function of the event v ∈ Xi. For vectors u,v ∈ Fk

2 we write u · v for the
usual scalar product of u and v over F2. This is not a genuine inner product, but we say
nevertheless that a collection u1, . . . ,uℓ ∈ Fk

2 is orthonormal if ui · ui = 1 for all i and
ui ·uj = 0 for all i ̸= j. Finally, we refer to the canonical copy of Di in D = [D1, . . . , Dk]
as the ith factor of D. We are now ready to state our characterisation theorem, the case
k = 2 of which was shown by Bang-Jensen, da Silva, and Havet [4]. Its proof is based on
an approach used by Pouzet, Kaddour, and Thatte [26].

Theorem 4. Let D1, . . . , Dk be oriented graphs with inv(Di) = 1 for all i and let D̂ =

[D1, . . . , Dk] be their k-join. Then sets X1, . . . Xk ⊆ V (D̂) form a decycling family of D̂
if and only if there are orthonormal vectors u1, . . . ,uk ∈ Fk

2 and for each i a decycling
set Vi ⊆ V (Di) of the ith factor of D̂ such that, for each i, the vertices in Vi have
characteristic vector ui (in X1 . . . , Xk), and all other vertices have characteristic vector
0 (in X1 . . . , Xk).

In particular, any acyclic digraph obtained from D̂ by k inversions can also be obtained
by inverting a decycling set for each factor in turn.

1.2 Computational complexity

One focus of Bang-Jensen, da Silva, and Havet’s paper [4] was on the computational
complexity of deciding whether an oriented graph is k-invertible. More formally, they
considered, for fixed k ∈ N0, the problem of k-Inversion:

Input: an oriented graph D.
Problem: inv(D) ≤ k?

A first observation is that 0-Inversion is equivalent to checking whether a digraph D is
acyclic, which is well known to be possible in time O(|V (D)|2) (see [12, p. 612]), so we
need only consider k ≥ 1.

Bang-Jensen, da Silva, and Havet [4] showed that 1-Inversion is NP-complete using
a reduction from Monotone 3-in-1 SAT. Then, using the special cases of the dijoin
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conjecture proved in that paper, they observed that for a digraph D we have inv(D →
D) = 2 if and only if inv(D) = 1, from which it follows that 2-Inversion is also NP-
complete. They conjectured that NP-completeness extends to k-Inversion for all k ≥ 3,
noting that this would follow from a similar argument if the dijoin conjecture were true.
Of course, the full dijoin conjecture is not required, and indeed it is easy to see that
Theorem 3 is enough: it implies that inv(D) = 1 if and only if inv([D]k) = k, which
reduces 1-Inversion to k-Inversion and hence shows the following (see Section 4).

Theorem 5. k-Inversion is NP-complete for all k ∈ N.

Bang-Jensen, da Silva, and Havet also considered the computational complexity of
the same problem when the input is restricted to tournaments. For fixed k ∈ N the
problem of k-Tournament-Inversion is:

Input: a tournament T .
Problem: inv(T ) ≤ k?

One way of analysing the complexity of this problem is to use k-inversion-critical tour-
naments: we say that a tournament T is a k-inversion-critical tournament if inv(T ) = k
but inv(T − {v}) < k for all v ∈ V (T ), and denote by ICk the set of k-inversion-critical
tournaments. It is not difficult to see that a tournament has inversion number at most
k if and only if it contains no element of ICk+1 ∪ ICk+2 as a subtournament. Indeed, for
any digraph D and vertex v ∈ V (D) with out-neighbourhood A ⊆ V (D), adding A and
A ∪ {v} to a decycling family of D− {v} gives a decycling family of D. We deduce that
inv(D) ≤ inv(D − {v}) + 2. Hence, if inv(T ) > k, then by arbitrarily deleting vertices
from T one by one, we can obtain a subtournament T ′ of T with inv(T ′) ∈ {k+1, k+2}.
This T ′ contains a member of ICk+1 ∪ ICk+2 as a subtournament.

Belkhechine, Bouaziz, Boudabbous, and Pouzet [7] showed that ICk is finite for all
k ∈ N. Writing mk for the maximum number of vertices of an element of ICk, it follows
that k-Tournament-Inversion can be solved in time O(|V (T )|max(mk+1,mk+2)). Thus,
in particular, k-Tournament-Inversion can be solved in polynomial time for any
fixed k. Plainly IC1 = { # »

C3}, so m1 = 3, and IC2 was explicitly described in [26],
giving m2 = 6. However, no upper bound on mk is known for k ≥ 3, so for no k ≥ 1
does the above give a concrete polynomial bound on the complexity of k-Tournament-
Inversion. Note also that this approach does not identify a decycling family of size k
given a k-invertible tournament, it can only confirm the existence of one.

Bang-Jensen, da Silva, and Havet [4] used an alternative approach to show that
1-Tournament-Inversion can be solved in time O(|V (T )|3) while 2-Tournament-
Inversion can be solved in time O(|V (T )|6). The idea behind their algorithm for 1-
Tournament-Inversion is to check whether the tournament contains a vertex which
can be made into a source, and for 2-Tournament-Inversion they check whether it
contains a pair of vertices which can be made into a source and a sink respectively. They
went on to ask for the least real numbers rk such that k-Tournament-Inversion can
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be solved in time O(|V (T )|rk). We answer this question by showing that, perhaps sur-
prisingly, for each fixed k ∈ N there is an algorithm solving k-Tournament-Inversion
in time O(|V (T )|2). In the language of complexity theory, this means that the likely NP-
hard problem of determining whether inv(T ) ≤ k for inputs k and T (see Conjecture 2)
is fixed-parameter tractable when parameterised by k.2

Theorem 6. For fixed k ∈ N, k-Tournament-Inversion can be solved for n-vertex
tournaments in time O(n2). Moreover, if the input tournament is k-invertible, then our
algorithm finds a decycling family of size at most k.

Note that the exponent of n in this running time is optimal, since any algorithm
solving k-Tournament-Inversion needs to inspect the orientation of every edge in the
input tournament. However, the implied constant in the running time of our algorithm
is doubly exponential in k, so it is unlikely to be of practical use for large k.

1.3 Relation to other parameters

Bang-Jensen, da Silva, and Havet [4] also considered the relationship between the inver-
sion number and other digraph parameters. Two well studied parameters of particular
interest are the cycle transversal number and the cycle edge-transversal number, defined
as follows. A cycle transversal (or feedback vertex set) in a digraph D is a set of vertices
of D whose removal from D leaves an acyclic digraph and the cycle transversal number
of D, denoted τ(D), is the minimum size of a cycle transversal in D. Analogously, a cycle
edge-transversal (or feedback arc set) in D is a set of edges of D whose removal leaves an
acyclic digraph and the cycle edge-transversal number of D, τ ′(D), is the minimum size
of a cycle edge-transversal in D. Note that the inequality τ(D) ≤ 2τ ′(D) always holds,
since the endpoints of the edges in a cycle edge-transversal of D form a cycle transversal
of D.

Bang-Jensen, da Silva, and Havet [4] made the following observations concerning
the relationships between inv(D), τ(D), and τ ′(D) for a digraph D. Firstly, we have
inv(D) ≤ τ ′(D). This follows from the fact that if F ⊆ E(D) is a cycle edge-transversal
of D, then since (V (D), E(D) \ F ) is acyclic, there is a labelling v1, . . . , vn of V (D) such
that #    »vjvi ̸∈ E(D)\F if i < j. Applying the family of inversions ({vi, vj} : i < j, #    »vjvi ∈ F )
transforms D into an acyclic digraph and hence inv(D) ≤ τ ′(D) as claimed. They also
observed that this inequality is tight for all values of τ ′(D) as exhibited by [

# »

C3]k, which
clearly has cycle edge-transversal number k, and as mentioned above was shown in [26]
to have inversion number k.

Turning to τ(D), the inequality inv(D) ≤ 2τ(D) was obtained in [4] as follows. After
observing that τ(D) = 0 implies inv(D) = 0, we may assume that τ(D) ≥ 1. Let
S ⊆ V (D) be a cycle transversal in D of size τ(D) and pick v ∈ S. Then observe that
D−{v} has cycle transversal number τ(D)−1, with S\{v} a cycle transversal. Moreover,
as noted in Section 1.2 we have inv(D) ≤ inv(D − {v}) + 2, from which it follows by
induction that inv(D) ≤ 2τ(D).

2See [14] for the definition of fixed-parameter tractability and an exposition of the surrounding theory.
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Bang-Jensen, da Silva, and Havet conjectured that this inequality is tight for all values
of τ(D). Indeed, they considered the graph V5 obtained by adding a vertex v and edges
#»
v1,

#»
2v,

#»
v3,

#»
4v to the (transitive) tournament on vertex set {1, 2, 3, 4} with edges #»

ij for
i < j, which can easily be seen to have τ(V5) = 1 and inv(V5) = 2. They noted that
if the dijoin conjecture holds, then τ([V5]k) = k and inv([V5]k) = 2k for all k (in fact,
since V5 is strongly connected, the case k = 2 follows from the special cases for which
they proved the dijoin conjecture). We construct digraphs with a similar character to V5

which confirm their conjecture.

Theorem 7. For all k ∈ N there exists an oriented graph D with inv(D) = 2τ(D) = 2k.

1.4 The extremal problem

Finally, we consider inv(n), defined for each n ∈ N as the maximum inversion number of
an oriented graph (or, equivalently, a tournament) on n vertices. Belkhechine, Bouaziz,
Boudabbous, and Pouzet [7] were the first to study this parameter, obtaining bounds of
the form3

n

2
− log(n) +O(1) ≤ inv(n) ≤ n+O(1).

Their lower and upper bounds follow from counting and inductive arguments respectively
(see Section 7 for details), and they conjectured that inv(n) ≥

⌊
n−1
2

⌋
for all n. Bounds

of the form above previously remained the best known, with Bang-Jensen, da Silva, and
Havet [4] noting that the O(1) term in the upper bound can be improved very slightly.

Using a random construction, we show that inv(n) = (1 + o(1))n.

Theorem 8. For sufficiently large n we have

inv(n) ≥ n−
√

2n log(n).

Moreover, a uniformly random labelled n-vertex tournament has at least this inversion
number with probability tending to 1.

In Section 7 we also show that inv(n) ≤ n− log(n+ 1).

1.5 Outline of the paper

The remainder of the paper is organised as follows. In Section 2 we introduce some
further notation, definitions, and preliminary observations which will be useful in the
rest of the paper. In the very short Section 3 we prove Theorem 1, constructing a
counterexample to the dijoin conjecture. Our results on the inversion number of k-joins,
Theorem 2, Theorem 3, and Theorem 4, are proved in Section 4, along with Theorem 5.
Section 5 concerns the complexity of k-Tournament-Inversion and contains the proof
of Theorem 6. We give the proof of Theorem 7 in Section 6. In Section 7 we discuss
the existing bounds on inv(n) before proving Theorem 8 and giving an improved upper

3All logarithms in this paper are taken base 2.
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bound. Finally, in Section 8 we restate some conjectures and questions from previous
papers which remain open and pose some new ones of our own.
Note added. Almost simultaneously with the initial release of this paper, Aubian,
Havet, Hörsch, Klingelhoefer, Nisse, Rambaud, and Vermande announced independent
work [2] on some of the problems we address here. Specifically, they prove a stronger
version of Theorem 1 (in fact, they prove that a strong version of our Conjecture 10 holds
provided at least one of ℓ and r is odd and at least 3) and they show upper and lower
bounds on inv(n) of forms similar to those we give in Section 1.4.

2 Notation and preliminaries

In this section we detail some of the definitions, observations, and notation to be used
in the rest of the paper. As noted above, all digraphs will be oriented graphs, that
is, loopless directed graphs with at most one edge between each pair of vertices. An
acyclic digraph is a digraph with no directed cycles. In the case where the digraph is a
tournament, we use the term transitive instead of acyclic. Note that for each n ∈ N there
is a unique unlabelled transitive tournament on n vertices. To a transitive tournament
T we associate the total order < on V (T ) where u < v for all u, v ∈ V (T ) such that
# »uv ∈ E(T ). We write [n] for the set {1, 2, . . . , n}. For a digraph D and a set S ⊆ V (D)
we write D − S for the digraph produced by deleting the vertices in S from D. We now
give the following key definitions.

Definition 1. Recall that for a digraph D, sets X1, . . . , Xk ⊆ V (D), and a vertex
v ∈ V (D), the characteristic vector of v in X1, . . . , Xk is (I{v∈Xi} : i ∈ [k]) ∈ Fk

2, where
I{v∈Xi} is the indicator function of the event v ∈ Xi. Define an equivalence relation ∼
on V (D) by setting u ∼ v if u and v have the same characteristic vector in X1, . . . , Xk.
The atoms of X1, . . . , Xk in D are the equivalence classes of this relation.

Note that, equivalently, the atoms of X1, . . . , Xk in D are the atoms of the set algebra
on V (D) generated by X1, . . . , Xk, and that there are at most 2k atoms for given D and
X1, . . . , Xk. The next observation will be useful throughout the paper.

Observation 1. Let D be a digraph and suppose that u, v ∈ V (D) are joined by an edge
in D. Let X1, . . . , Xk ⊆ V (D). Write u,v ∈ Fk

2 for the characteristic vectors of u and
v in X1, . . . , Xk respectively. Then the edge between u and v undergoes a net change in
orientation when X1, . . . , Xk are inverted in D if and only if u · v = 1.

This follows from the fact that u · v is the parity of the number of X1, . . . , Xk which
contain both u and v. An obvious implication of Observation 1 is that given D and
X1, . . . , Xk, for every pair of (not necessarily distinct) atoms A and B, either all edges
{ab : a ∈ A, b ∈ B} undergo a net orientation change when X1, . . . , Xk are inverted,
or none of them do. In particular, for every vertex v and atom A, either all edges
{va : a ∈ A} change orientation or none of them do.

Finally, we note some simple observations which will be used freely in what follows.
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(i) If D′ is a subdigraph of an oriented graph D, then inv(D′) ≤ inv(D).
(ii) For every oriented graph D and every non-negative integer k ≤ inv(D), there exists

a spanning subdigraph of D with inversion number k.
(iii) If X1, . . . , Xk is a decycling family of an oriented graph D, then D can be extended

to a tournament T for which X1, . . . , Xk is still a decycling family. In particular
inv(T ) = inv(D).

For (ii), delete edges of D one by one, noting that the inversion number drops by at most
1 at each step. For (iii), invert the decycling family in D, extend the resulting acyclic
digraph to a transitive tournament, then invert the decycling family again.

3 A counterexample to the dijoin conjecture

In this short section we give a counterexample to the dijoin conjecture of Bang-Jensen,
da Silva, and Havet [4], that is, the conjecture that inv(L → R) = inv(L)+ inv(R) for all
oriented graphs L and R. As noted in the introduction, this conjecture is equivalent to
its restriction to tournaments. Indeed, suppose that L and R are digraphs with inv(L →
R) < inv(L) + inv(R). Extend L → R to a tournament of the same inversion number
and observe that this tournament is L′ → R′ for some tournaments L′ and R′ extending
L and R respectively. These clearly satisfy inv(L′) ≥ inv(L) and inv(R′) ≥ inv(R), so we
have tournaments L′ and R′ with inv(L′ → R′) < inv(L) + inv(R) ≤ inv(L′) + inv(R′).

Proof of Theorem 1. Let L be a copy of
# »

C3. Suppose that R is a tournament with
inv(R) = 3 for which there exist disjoint A,B,C ⊆ V (R) such that A ∪ B, A ∪ C and
B ∪ C form a decycling family of R. Then for distinct vertices u, v ∈ V (L) the sets
A ∪ B ∪ {u, v}, A ∪ C ∪ {u, v} and B ∪ C ∪ {u, v} form a decycling family of L → R,
demonstrating that

inv(L → R) = 3 < 4 = inv(L) + inv(R).

One way to construct such an R is as follows: let R be the tournament with vertex set
[9], let A = {1, 3}, B = {4, 6}, and C = {7, 9}, and let the edge ij be directed backwards
(that is, from j to i when i < j) if and only if i and j are both in A ∪ B ∪ C, but not
both in A, B, or C. It is clear that inverting A∪B, A∪C and B ∪C transforms R into
a transitive tournament, and a computer check shows that inv(R) = 3, as required.

4 Decycling families of k-joins

In this section we prove Theorem 4, which characterises the decycling families of size k of
k-joins of digraphs each with inversion number 1. We will then deduce Theorem 3 from
this characterisation, and use Theorem 3 to obtain Theorem 2 and Theorem 5. The bulk
of the work in our proof of Theorem 4 is put towards proving Lemma 9, which deals with
the case D̂ = [

# »

C3]k.

Lemma 9. Let k ∈ N, let D̂ = [
# »

C3]k, and let X1, . . . , Xk ⊆ V (D̂) be a decycling family
of D̂. Then there exist orthonormal vectors u1, . . . ,uk ∈ Fk

2 such that in the ith factor
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of [
# »

C3]k, one vertex has characteristic vector 0 and the other two have characteristic
vector ui.

We will use the setup that Pouzet, Kaddour, and Thatte [26] introduced in their proof
that inv(D̂) = k. The first part of our argument is essentially a reformulation of theirs,
but we include it for completeness and to build intuition.

Proof of Lemma 9. Let T be the transitive tournament obtained by inverting the sets
X1, . . . , Xk in D̂, and let < be the total order on V (D̂) associated to T . Note that for all
i, after inverting X1, . . . , Xk the ith factor has one vertex that has out-edges to the other
two vertices in the factor and exactly one of these edges has undergone a net reversal.
Thus we can label the vertices in the ith factor as ui, vi, wi where #          »uiviwi is a directed
3-cycle in D̂, and the edge between ui and wi undergoes a net reversal under X1, . . . , Xk

while the edge between ui and vi does not. In particular, we will use throughout that
ui < vi, wi and that, by Observation 1, ui · vi = 0 and ui ·wi = 1 where ui,vi,wi ∈ Fk

2

are the respective characteristic vectors of ui, vi, wi in X1, . . . , Xk. We have the following
claim, originally proved in [26].

Claim 1 ([26]). The vectors u1, . . . ,uk ∈ Fk
2 are linearly independent.

Proof. The statement is equivalent to the claim that for all non-empty I ⊆ [k] we have∑
i∈I ui ̸= 0. Fix such an I and note that it is sufficient to show that there exists some

x ∈ Fk
2 such that (

∑
i∈I ui) · x ̸= 0. Let m ∈ I be such that ui < um for all i ∈ I \ {m}.

Note that um < vm, wm, so by the transitivity of T we have ui < vm, wm for all i ∈ I.
It is straightforward to deduce from this that for all i ∈ I \ {m}, the orientations of the
edges uivm and uiwm are either both unchanged after X1, . . . , Xk are inverted, or both
reversed. By Observation 1, in other words we have ui · vm = ui ·wm for all i ∈ I \ {m}.
On the other hand we have um · vm = 0 while um ·wm = 1, so it follows by linearity of
the dot product that (

∑
i∈I ui) · vm ̸= (

∑
i∈I ui) ·wm. One of these two dot products is

thus non-zero, and we deduce that
∑

i∈I ui ̸= 0, as required.

We now build on Claim 1 as follows.

Claim 2. Let ℓ ∈ [k] and suppose that the vectors ui,vi,wi for ℓ ≤ i ≤ k all lie in a
subspace V of Fk

2 of dimension k − ℓ + 1. Then uℓ, . . . ,uk are orthonormal, and for all
ℓ ≤ i ≤ k we have ui = wi and vi = 0.

Proof. We will prove the claim by reverse induction on ℓ. In the ℓ = k case the claim
follows easily from the fact that uk ·wk = 1 while uk ·vk = 0. Thus, let ℓ ≤ k−1 and write
[ℓ, k] for {ℓ, ℓ + 1, . . . , k}. Let z be the <-minimal vertex among vℓ, . . . , vk, wℓ, . . . , wk.
Write z ∈ V ⊆ Fk

2 for the characteristic vector of z in X1, . . . , Xk and let t ∈ [ℓ, k] be
such that z ∈ {vt, wt}. By Claim 1, the vectors uℓ, . . . ,uk form a basis of V so there
exists I ⊆ [ℓ, k] such that z+

∑
i∈I ui = 0.

First suppose that I ̸∈ {∅, {t}} and let m ∈ I be such that ui < um for all i ∈ I \{m}.
If m ̸= t, then we have z < vm, wm, so z · vm = z ·wm by Observation 1. As in the proof
of Claim 1, we have ui · vm = ui · wm for all i ∈ I \ {m}, but um · vm ̸= um · wm, so
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(z +
∑

i∈I ui) · vm ̸= (z +
∑

i∈I ui) ·wm, and hence z +
∑

i∈I ui ̸= 0. If m = t, then let
j ∈ I \ {t} and note that z < vj, wj by the minimality of z. Consequently, z ·vj = z ·wj.
Moreover, since um = ut < z, we have um < vj, wj. From this it follows that ui < vj, wj

for all i ∈ I. Thus, ui · vj = ui · wj for all i ∈ I \ {j}, while uj · vj ̸= uj · wj. Hence,
similarly to above, we have (z+

∑
i∈I ui) · vj ̸= (z+

∑
i∈I ui) ·wj, so z+

∑
i∈I ui ̸= 0.

The remaining cases are I = ∅ and I = {t}, so we have z ∈ {0,ut}. Suppose that
z = ut. If z = vt, then we have vt = z = ut, so vt ·wt = ut ·wt = 1, i.e. the edge between
vt and wt undergoes a net reversal under X1, . . . , Xk. This would imply that wt < vt = z,
which contradicts the minimality of z. Similarly, if z = wt, then since the edge between
ut and vt is not inverted, neither is the edge between wt and vt, so vt < wt = z, another
contradiction. Therefore z = 0. This means no edges incident to z are reversed when
X1, . . . , Xk are inverted so by the minimality of z we have z = vℓ.

We have shown that vℓ = 0, so the only vertex among the ui, vi, wi with i ≥ ℓ which
precedes vℓ in < is uℓ. It follows that uℓ is the least element among the ui, vi, wi with
i ≥ ℓ. Hence, by Observation 1 we have uℓ · ui = uℓ · vi = uℓ ·wi = 0 for all i ≥ ℓ + 1,
so if V ′ is the subspace of V spanned by the ui,vi,wi with i ≥ ℓ+ 1, then uℓ · x = 0 for
all x ∈ V ′. We have uℓ ·wℓ = 1, so V ′ is a proper subspace of V , but uℓ+1, . . . ,uk ∈ V ′

are linearly independent, so we deduce that V ′ has dimension k − ℓ. Therefore by the
induction hypothesis uℓ+1, . . . ,uk are orthonormal, and we have ui = wi and vi = 0 for
i ≥ ℓ+ 1.

To complete the induction step it remains to show that uℓ = wℓ and uℓ ·uℓ = 1. The
latter follows from the fact that uℓ, . . . ,uk is a basis for V with uℓ ·ui = 0 for all i ≥ ℓ+1,
but wℓ ∈ V has uℓ ·wℓ = 1. For the former, note that wℓ =

∑
i∈I ui for some I ⊆ [ℓ, k]

and by the established properties of the ui this set I contains exactly those i for which
ui ·wℓ = 1. Thus, we certainly have ℓ ∈ I. Suppose that ui ·wℓ = 1 for some i ≥ ℓ+ 1.
Since wi = ui and vi = 0, by Observation 1 we find that the cycle #           »wℓviwi appears in T ,
which is a contradiction. Hence I = {ℓ} and uℓ = wℓ, as required.

The lemma now follows from the ℓ = 1 case of Claim 2.

We will now deduce Theorem 4 from the lemma. In the proof, we will use the easy
fact that every family of orthonormal vectors in Fk

2 is linearly independent.

Proof of Theorem 4. The sufficiency of the given conditions for X1, . . . , Xk to be a decy-
cling family of D̂ is straightforward to verify using Observation 1. This observation also
allows the ‘in particular’ part of the theorem statement to be easily deduced from the
preceding part. It remains to prove that the given conditions are necessary.

Given a decycling family X1, . . . , Xk of D̂, extend D̂ to a tournament T for which
X1, . . . , Xk is still a decycling family. For each i, let Ti be the subtournament of T
induced on the vertex set of the ith factor of D̂. Since Di contains a directed cycle, so
does Ti, and hence the latter contains a copy of

# »

C3. We can thus find a copy of [
# »

C3]k in
T whose ith factor is contained in Ti. It follows by Lemma 9 that there are orthonormal
vectors u1, . . . ,uk ∈ Fk

2 and for each i a triangle #          »uiviwi in Ti such that ui and wi have
characteristic vector ui and vi has characteristic vector 0 in X1, . . . , Xk.
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We next show that for all i, all vertices in Ti have characteristic vector either ui or 0
in X1, . . . , Xk. Let z ∈ V (Ti) and let z be its characteristic vector. Since u1, . . . ,uk form
a basis of Fk

2, there exists J ⊆ [k] such that z =
∑

j∈J uj. If there exists ℓ ∈ J \ {i}, then
z · uℓ = uℓ · uℓ = 1 and hence the directions of the edge between z and uℓ and the edge
between z and wℓ are reversed under X1, . . . , Xk. If ℓ < i, then the cycle #        »uℓvℓz appears
in T and if i < ℓ, then the cycle #         »zvℓwℓ appears in T . We have a contradiction in both
cases, so J = ∅ or J = {i} as desired.

We have shown that all vertices in the ith factor of D̂ have characteristic vector either
ui or 0 in X1, . . . , Xk. The effect on this copy of Di of inverting these sets in D̂ is therefore
the same as inverting the set of vertices with characteristic vector ui, which we call Vi.
The latter is therefore a decycling set for the ith factor of D̂. This completes the proof
of the theorem.

Theorem 3 now follows easily.

Proof of Theorem 3. It is clear that the left-hand side of equation (1) is at most the
right-hand side. For the reverse inequality, let D̂ = [D1, . . . , Dk] and note that we may
assume that none of the Di have inversion number 0. Indeed, if inv(Di) = 0 for some
i ≥ 2, then view D̂ as the (k− 1)-join [D1, . . . , Di−2, Di−1 → Di, Di+1, . . . , Dk] and, since
inv(Di−1 → Di) = inv(Di−1), the result follows by induction on k. The case where i = 1
can be handled similarly.

Thus, consider the case where inv(Di) = 1 for all i and suppose for a contradiction
that X1, . . . , Xk is a decycling family of D̂ with Xk = ∅. By Theorem 4 there exist k
orthonormal, and hence linearly independent, vectors in Fk

2 each of which occurs as the
characteristic vector of some vertex of D̂ in X1, . . . , Xk. This contradicts the fact that
all such vectors have a 0 in their final coordinate. Hence, in this case, inv(D̂) = k.

It remains to check the case where inv(Dj) = 2 for some j and inv(Di) = 1 for
all i ̸= j. Start by letting D′

j be a spanning subdigraph of the jth factor of D̂ with
inv(D′

j) = 1, then define D̂′ to be the digraph obtained by replacing the jth factor of D̂
by D′

j. Assume for a contradiction that X1, . . . , Xk is a decycling family of D̂, in which
case it is also a decycling family of D̂′. Theorem 4 thus yields a vector uj ∈ Fk

2 with
uj · uj = 1 such that all the vertices in the jth factor of D̂′ (and hence also the jth
factor of D̂) have characteristic vector either 0 or uj in X1, . . . , Xk. Inverting X1, . . . , Xk

in D̂ therefore has the same effect on its jth factor as inverting the set of vertices with
characteristic vector uj. It follows that this set of vertices is a decycling set for Dj,
contradicting inv(Dj) = 2.

As mentioned in the introduction, it follows from Theorem 3 that for any digraph D
we have inv(D) = 1 if and only if inv([D]k) = k, which in turn implies Theorem 5 (which
states that k-Inversion is NP-complete for all k ∈ N). Indeed, Theorem 3 directly
gives inv([D]k) = k in the case inv(D) = 1, and if inv(D) = 0 then clearly inv([D]k) = 0.
If inv(D) > 1, then there are subdigraphs D′ and D′′ of D with inv(D′) = 1 and
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inv(D′′) = 2. The k-join D′′ → [D′]k−1, which has inversion number k+1 by Theorem 3,
is a subdigraph of [D]k and thus inv([D]k) ≥ k + 1 as required.

Finally, we deduce Theorem 2 (which states that inv(L → R) = 4 for all digraphs L
and R with inversion number 2) from Theorem 3. We will use the fact, shown in [4], that if
L and R are strongly connected digraphs with inv(L), inv(R) ≥ 2, then inv(L → R) ≥ 4.

Proof of Theorem 2. Let L and R be digraphs with inv(L) = inv(R) = 2. It is immediate
that inv(L → R) ≤ 4, so it is sufficient to prove the lower bound. For this, extend L → R
to a tournament T of the same inversion number and let the tournaments to which L
and R are extended be L′ and R′ respectively. Note that inv(L′), inv(R′) ≥ 2 and T is
L′ → R′.

Every tournament can be written as the k-join of its strongly connected components,
so let L′ be [L1, . . . , Lk1 ] and R′ be [R1, . . . , Rk2 ] for some k1, k2 ∈ N and strongly con-
nected tournaments L1, . . . , Lk1 , R1, . . . , Rk2 . Since inv(L′) ≥ 2, either there is some
Li with inv(Li) ≥ 2, or there are i < j such that inv(Li) = inv(Lj) = 1. An anal-
ogous condition holds for R′. If there are i and j such that inv(Li), inv(Rj) ≥ 2,
then since T contains Li → Rj, we have inv(T ) ≥ inv(Li → Rj) ≥ 4 by the above
result of [4]. Otherwise, either there exist i < j such that inv(Li) = inv(Lj) = 1,
in which case inv(T ) ≥ inv([Li, Lj, R]) = 4 by Theorem 3, or there exist i < j with
inv(Ri) = inv(Rj) = 1, in which case it follows similarly that inv(T ) ≥ 4.

5 Complexity of k-Tournament-Inversion

In this section we prove Theorem 6 by constructing, for each fixed k ∈ N, an algorithm
solving k-Tournament-Inversion in time O(|V (T )|2). Our proof uses a technique
known as iterative compression; see [14] for a description of this method and other ap-
plications of it. The most involved part of our proof concerns the ‘compression step’ of
the algorithm. This step is handled by the following lemma, which roughly says that for
constant k, given an n-vertex tournament T0 and a decycling family of T0 of constant size,
in time linear in n we can find a decycling family of T0 of size k if one exists. Throughout
this section, we represent a total order < on a finite set S = {s1, . . . , sm} by the tuple
(s1, . . . , sm) where s1 < · · · < sm.

Lemma 10. Fix k, s ∈ N. There is an algorithm which solves the following problem for
n-vertex tournaments in time O(n):
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Inputs:
• a tournament T0;
• a decycling family X1, . . . , Xs of T0 (transforming T0 into T , say);
• the order on V (T0) associated to T .
Outputs:
Either
• that T0 is not k-invertible;
Or
• a decycling family Y1, . . . , Yk of T0 (transforming T0 into T ′, say);
• the order on V (T0) associated to T ′.

We now use iterative compression to prove Theorem 6 before returning to Lemma 10.

Proof of Theorem 6. Fix k ≥ 1. We will induct on n to define an algorithm solving the
following problem for n-vertex tournaments in time Ck · n2 for some constant Ck:

Input:
• a tournament T0.
Ouputs:
Either
• that T0 is not k-invertible;
Or
• a decycling family Y1, . . . , Yk of T0 (transforming T0 into T , say);
• the order on V (T0) associated to T .

In particular, this algorithm solves k-Tournament-Inversion.
Fix n ≥ 2 and assume that we have defined such an algorithm for all smaller tour-

naments. Let T0 be an n-vertex tournament and pick some v ∈ V (T0). Applying the
induction hypothesis, in time Ck · (n− 1)2 we either find that T0−{v} is not k-invertible
or we obtain a decycling family X1, . . . , Xk of T0 − {v} and the order on V (T0) \ {v}
associated to the transitive tournament obtained by inverting these sets in T0. In the
former case, it follows that T0 is also not k-invertible and we can output that fact. In
the latter case, let A be the out-neighbourhood of v in T0, and define Xk+1 = A ∪ {v}
and Xk+2 = A. Then X1, . . . , Xk+2 is a decycling family of T0, and we can obtain the
order associated to the resulting transitive tournament by adding v to the previous order
as the maximal element. By Lemma 10 we can now, in linear time, either find that T0 is
not k-invertible or obtain a decycling family Y1, . . . , Yk of T0 of size k and the order asso-
ciated to the transitive tournament obtained by inverting these sets in T0. As required,
this algorithm runs in time Ck · (n − 1)2 + O(n), which is at most Ck · n2 if Ck is large
enough.

It is left to prove Lemma 10. To this end, we describe an algorithm which explores
what happens if, starting from T , we invert X1, . . . , Xs and k further sets Y1, . . . , Yk to

13



obtain a tournament TY , where Y = (Y1, . . . , Yk). Since TY is the tournament obtained
by inverting Y1, . . . , Yk in T0, these k sets are a decycling family of T0 if and only if TY is
transitive. If we were to examine each possibility individually there would be too many
for this exploration process to be tractable. However, the fact that we are starting from
a transitive tournament T makes it possible to identify cycles in the final tournament
TY without fully specifying the sets Y1, . . . , Yk. This means there are far fewer cases to
consider, indeed few enough that the exploration process is linear in n for fixed k and s.

Proof of Lemma 10. Fix k, s ∈ N and let T0, X1, . . . , Xs, and T be as in the statement
of the lemma. Let n = |V (T0)| and label the vertices of T0 as u1, . . . , un in T -increasing
order. With notation as above, we wish to investigate for which Y the tournament
TY is transitive. For each Y we write ui ∈ Fs+k

2 for the characteristic vector of ui in
X1, . . . , Xs, Y1, . . . , Yk (suppressing the dependence on Y in the notation) and then let
u = (u1, . . . ,un). There is a bijective correspondence between Y and u and it will be
more convenient to work with the latter, so let Tu = TY and write U for the set of all
possible u. Our first aim is to determine in linear time whether there exists u ∈ U such
that Tu is transitive, and to identify such a u if so.

The tournament Tu is transitive exactly when it contains no cyclic triples. It is
straightforward to use Observation 1 to show that this is equivalent to the condition that
there are no a < b < c in [n] such that ua · ub = ub · uc but ua · ub ̸= ua · uc. We
describe the triple (ua,ub,uc) as bad if this occurs. Thus, Tu is transitive if and only if
B(u) = {(ua,ub,uc) : a < b < c} contains no bad triples, and T0 is k-invertible if and
only if B = {B(u) : u ∈ U} contains a set which is free of bad triples. Our algorithm will
construct this set B and check whether any of its elements are free of bad triples. If one
of these sets is free of bad triples, then we need to be able to output a corresponding
decycling family of T0, so for each B ∈ B we will also record some u ∈ U for which
B = B(u).

We will now explain how the above can be achieved in linear time. First note that we
may assume that n ≥ 4. Let U ′ be the set of all possible vectors u′ = (u1, . . . ,un−1) of
characteristic vectors of u1, . . . , un−1 in X1, . . . , Xs, Y1, . . . , Yk. For u′ ∈ U ′, let B′(u′) =
{(ua,ub,uc) : 1 ≤ a < b < c ≤ n − 1} and let B′ = {B′(u′) : u′ ∈ U ′}. We may assume
inductively that there is a constant C depending only on k and s such that in time
C · (n − 1) we can construct B′ and associate to each B′ ∈ B′ some u′ ∈ U ′ such that
B′ = B′(u′). For the induction step, we need to show that we can use this to obtain in
time C the set B and for each B ∈ B some u ∈ U such that B = B(u).

The key observation is that there are only 2s+k possible characteristic vectors for each
of u1, . . . , un, so the number of triples of characteristic vectors is at most 23(s+k) and the
sizes of B and B′ are at most 223(s+k) . In particular, there are only boundedly many pairs
(B′,un) where B′ ∈ B′ and un is a possible characteristic vector for un. For each such
pair, we can construct in bounded time the set S(B′,un) consisting of all triples in B′,
and all triples of the form (vi,vj,un) for (v1,v2,v3) ∈ B′ and 1 ≤ i < j ≤ 3. It is
not hard to see that B equals the set of all sets S(B′,un) and that each S(B′,un) can
be associated with the u ∈ U formed by appending un to the u′ ∈ U ′ associated with
B′. Indeed, given B′ and un and defining u as in the previous sentence, since n ≥ 4, we
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have S(B′,un) = B(u). For the other direction, given u = (u1, . . . ,un) ∈ U and letting
u′ = (u1, . . . ,un−1), we have B(u) = S(B′(u′),un).

We can construct this set in bounded time and then forget about all but one of the
elements of U associated to each B ∈ B. Thus, in constant time we have obtained B and
for each B ∈ B some u ∈ U such that B = B(u), and the induction continues.

Once we have constructed B in linear time, since it has bounded size we can check
whether any of its members is free of bad triples in bounded time. If not, then T0 is
not k-invertible. If so, then pick B ∈ B with no bad triples and use the u associated to
it to construct a decycling family Y1, . . . , Yk of T0. Let T ′ be the transitive tournament
obtained by inverting these sets in T0.

It remains to show that we can obtain the order on V (T0) associated to T ′ in linear
time. Inverting the sets X1, . . . , Xs, Y1, . . . , Yk transforms T into T ′, and we have the
characteristic vector of each vertex in these sets as well as the order on the vertices
associated to T . We can therefore in linear time obtain the atoms of these s+k inversions
and for each atom A the restriction to A of the order associated to T . By reversing
the order on each atom whenever the edges within it undergo a net reversal under the
inversions, we obtain the order on that atom associated to T ′. The T ′-minimal vertex is
now the minimal vertex of one of the atoms under their current orderings. There are at
most 2s+k atoms so we can identify the T ′-minimal vertex in constant time. After deleting
this vertex from its atom, the second smallest vertex according to T ′ is one of the new
minimal vertices of the atoms so can be found in constant time again. Continuing in this
way we can obtain the full ordering in linear time, as required.

Note that the implicit constant in the running time given by this proof is doubly
exponential in s+ k.

6 Cycle transversals

In this section we will prove Theorem 7, constructing for each k ∈ N a digraph D
with τ(D) = k and inv(D) = 2k. We will use the so-called Eventown theorem, proved
independently by Berlekamp [8] and Graver [17].

Theorem 11 (Eventown [8], [17]). Let n ∈ N and let F ⊆ P([n]) be a family of subsets
of [n] such that |F1 ∩ F2| is even for all F1, F2 ∈ F . Then |F| ≤ 2⌊n/2⌋.

For a digraph D and vertices u, v, w ∈ V (D), we will say that u and v differ on w if
either #  »uw, #  »wv ∈ E(D) or #  »vw, #  »wu ∈ E(D). We are now ready to prove the theorem.

Proof of Theorem 7. Fix k ∈ N and let n ∈ N be large and divisible by 2k. We will define
a digraph D on vertex set {u0, . . . , uk−1, v0, . . . , vn−1} and then show that it satisfies
the conditions of the theorem. Start by including all directed edges #    »vivj for i < j,
so that the subdigraph of D induced on {v0, . . . , vn−1} is a transitive tournament. For
i ∈ {0, . . . , k−1} and j ∈ {0, . . . , n−1}, add the edge #     »uivj if in the binary expansion of j,
the digit in the 2i place is a 0, and add the edge #     »vjui otherwise. For ease of exposition

15



we will not include any edges among the ui (though including any combination of such
edges would still give a valid construction), so this completes the definition of D. As
noted above, the removal of the vertices u0, . . . , uk−1 from D leaves an acyclic digraph,
so τ(D) ≤ k.

It remains to show that inv(D) ≥ 2k, as then inv(D) = 2τ(D) = 2k follows from
inv(D) ≤ 2τ(D). Suppose for a contradiction that X1, . . . , X2k−1 ⊆ V (D) form a decy-
cling family of D and let D′ be the acyclic digraph obtained by inverting these sets in D.
Consider the characteristic vectors of v0, . . . , vn−1 in X1, . . . , X2k−1, which we will denote
by v0, . . . ,vn−1 ∈ F2k−1

2 respectively. Let K = 2k. By the pigeonhole principle, if n is
large enough, then there exist distinct i, i′ ∈ {0, . . . , n/K − 1} such that

(viK ,viK+1, . . . ,v(i+1)K−1) = (vi′K ,vi′K+1, . . . ,v(i′+1)K−1).

We may assume that i = 0 and i′ = 1.
We will show that v0, . . . ,vK−1 are pairwise distinct and that vi · vj is constant as

i, j ∈ {0, . . . , K − 1} vary. We claim that these conditions force a contradiction. Indeed,
in the case where vi · vj = 0 for all i, j, we have that the vi are indicator vectors of
pairwise distinct subsets of [2k−1] which each have even size, and each pair of which have
even intersection. By Eventown, every such collection has at most 2(2k−1)/2 < 2k = K
members, giving the required contradiction. On the other hand, if vi · vj = 1 for all i, j,
then consider the ‘complement’ vectors w0, . . . ,wK−1, which have 1’s where the vi have
0’s and 0’s where the vi have 1’s. It is straightforward to use the fact that the vectors
have odd length to show that these wi are pairwise distinct and satisfy wi ·wj = 0 for
all i, j, from which we can derive a contradiction as above.

We continue by showing that the vectors v0, . . . ,vK−1 are pairwise distinct, which
is equivalent to showing that each of v0, . . . , vK−1 is in a different atom. Suppose for
a contradiction that vi and vj are in the same atom for some i < j in {0, . . . , K − 1},
and note that vK+i and vK+j are in this atom too by assumption. By the construction
of D there is some ℓ ∈ {0, . . . , k − 1} such that vi and vj differ on uℓ in D. Since they
are in the same atom as each other, they also differ on uℓ in D′. If #    »viuℓ,

#     »uℓvj ∈ E(D′),
then to avoid a cyclic triple in D′ we have #    »vivj ∈ E(D′). This means that the edges
within vi and vj’s atom have the same orientations in D as they do in D′, so in particular
we have #           »vjvK+i ∈ E(D′). Moreover vi and vK+i are in the same atom and are either
both in-neighbours of uℓ in D or both out-neighbours, so since #    »viuℓ ∈ E(D′) we also have
#            »vK+iuℓ ∈ E(D′). Hence, the cycle #                 »vjvK+iuℓ appears in D′. Similarly if #     »vjuℓ,

#    »uℓvi ∈ E(D′),
then we have #    »vjvi ∈ E(D′). In this case the edges within the atom of vi and vj switch
orientation between D and D′, so the cycle #                 »vjuℓvK+i appears in D′. In both cases we
have the desired contradiction, and we deduce that the vertices v0, . . . , vK−1 are all in
different atoms.

It remains to show that vi ·vj is constant as i, j ∈ {0, . . . , K− 1} vary. Suppose for a
contradiction that this is not the case, then there exists i ∈ {0, . . . , K−1} such that vi ·vj

is not constant as j ∈ {0, . . . , K − 1} varies. For such i we can pick j ∈ {0, . . . , K − 1}
such that vi · vi ̸= vi · vj. Now if vi · vi = 0, then vi · vj = 1 so by Observation 1, D′

contains the cycle #                »vK+ivjvi if i < j or the cycle #                       »vK+ivK+jvi if i > j. Similarly if vi ·vi = 1,
then D′ contains one of the cycles #                »vivjvK+i and #                       »vivK+jvK+i. We have a contradiction in
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all cases, so the value of vi · vj is constant as i, j ∈ {0, . . . , K − 1} vary, as required.

7 Bounds on inv(n)

7.1 Lower bounds

In this section we discuss the previous known lower bound on inv(n) and give the proof
of Theorem 8. As noted in the introduction, Belkhechine, Bouaziz, Boudabbous, and
Pouzet [7] used a counting argument to lower bound inv(n). They observed that since
there are n! labelled transitive tournaments on n vertices, there are at most n! · 2n(k−1)

labelled (k − 1)-invertible tournaments on n vertices. There are a total of 2n(n−1)/2

labelled n-vertex tournaments, so for any k such that 2n(n−1)/2 > n! · 2n(k−1) we have
inv(n) ≥ k. Taking logarithms base 2 and rearranging, this condition becomes k <
(n− 1)/2− log(n!)/n, so we have

inv(n) ≥
⌊
n− 1

2
− log(n!)

n

⌋
≥

⌊
n− 1

2
− log(n)

⌋
,

where for the final inequality we used n! ≤ nn. Lower bounds on inv(n) of this form were
the best known (disregarding very slight tightenings of the argument).

The proof of Theorem 8 uses the following lemma which gives a bound on the proba-
bility that a random symmetric binary matrix has at most a certain rank. In fact, these
probabilities are known exactly [23], but we will use a simpler bound which is essentially
tight for our purposes and for which we include a short proof.

Lemma 12. The probability that a uniformly random n × n symmetric matrix over F2

has rank at most n− s (over F2) is at most 2s log(n)−(
s
2).

Proof. Construct the random matrix in n steps, in the ith step choosing the first i entries
of the ith row of the matrix (and also, by symmetry, the ith column). For each i ∈ [n],
let Mi be the random symmetric i× i matrix obtained after step i.

Note that for each i the nullity increases by at most 1 between Mi and Mi+1. It follows
that if the nullity of Mn is at least s, then for all 1 ≤ j ≤ s− 1 we can define kj to be the
smallest i such that the nullity of Mi is j+1, and we have 2 ≤ k1 < k2 < · · · < ks−1 ≤ n.
For each j, the ranks of Mkj−1 and Mkj are equal, so the first kj − 1 entries of the kjth
row of Mkj lie in the (kj − 1 − j)-dimensional row space of Mkj−1, which happens with
probability 2−j. There are

(
n

s−1

)
ways to choose k1, . . . , ks−1 as above, so the probability

that Mn has rank at most n− s is at most(
n

s− 1

) s−1∏
j=1

2−j ≤ 2s log(n)−(
s
2),

as required.

We are now ready to prove Theorem 8.
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Proof of Theorem 8. Let T be a uniformly random tournament on vertex set [n] and let
MT = (mab) be the n × n matrix over F2 defined as follows. For a < b, let mab be 0

if
#»

ab is an edge of T and 1 otherwise, then define mba = mab, and finally choose each
diagonal entry uniformly at random. Note that the

(
n
2

)
entries of MT above the diagonal

determine T , and the other entries are defined such that MT is a uniformly random
symmetric binary matrix.

Let s =
⌊√

2n log(n)
⌋

and write k = n − s. Suppose that inv(T ) ≤ k and let
X1, . . . , Xk be a decycling family of T . For each Xi, let Mi be the n × n binary matrix
whose (a, b) entry is 1 if and only if a, b ∈ Xi. Observe that, working over F2, we have
rank(Mi) ≤ 1 for all i, and thus rank(

∑
i Mi) ≤ k. By construction, MT +

∑
i Mi is a

matrix whose entries above the diagonal correspond to a transitive tournament on [n] (its
diagonal entries can be anything). Let M be the set of binary matrices corresponding in
this manner to a transitive tournament on [n], and note that |M| = n!2n.

Putting all of this together, we have that if inv(T ) ≤ k, then there exists M ∈ M
such that rank(MT +M) ≤ k. For each fixed M , we have that MT +M is a uniformly
random symmetric binary matrix and hence has rank at most k with probability at most
2s log(n)−(

s
2) by Lemma 12. Taking a union bound over all M ∈ M we obtain

P(inv(T ) ≤ k) ≤ n!2n2s log(n)−(
s
2).

Since n! = O(
√
n(n/e)n), the right-hand side is O(2f(n)) where

f(n) =
log(n)

2
+ n log(n)− n log(e) + n+ s log(n)−

(
s

2

)
= −n(log(e)− 1) + o(n),

and thus P(inv(T ) ≤ k) → 0 as n → ∞ as desired.

7.2 Upper bounds

The only approach which has been used to prove upper bounds on inv(n), introduced
in [7], is to ‘solve’ one vertex at a time, as follows. Given a tournament T , pick a vertex v
and invert the set consisting of v and its out-neighbourhood. In the resulting tournament
T1, v is a sink. Using a further inv(n − 1) inversions we can transform T1 − {v} into a
transitive tournament, so inv(n) ≤ inv(n − 1) + 1 for all n ≥ 2. The authors of [7]
observed that inv(4) = 1, so inv(n) ≤ n − 3 for n ≥ 4. For n ≥ 6 this was improved
by 1 in [4] using the fact that inv(6) = 2 (which they attribute to [6] and which we have
verified by a computer check). We introduce a slightly different approach to prove the
following.

Proposition 13. For all n ∈ N,

inv(n) ≤
⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
.
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Proof. Let n ∈ N and let T be an n-vertex tournament. Pick v ∈ V (T ) and write
A and B for the in- and out-neighbourhoods of v respectively. We may assume that
|A| ≥ ⌈(n− 1)/2⌉ (the case where B is the larger of the two is similar). By ‘solving’
each vertex in B one after another, we can find at most |B| inversions which transform T
into a tournament T ′ such that the subtournament of T ′ induced on B ∪{v} is transitive
(with v as the minimal element) and every edge of T ′ between A and B ∪{v} is oriented
away from A. With a further inv(A) ≤ inv(|A|) inversions we can transform T ′ into a
transitive tournament. Thus, inv(T ) ≤ |B|+ inv(|A|).

We have inv(k) ≤ inv(k−1)+1 for all k ∈ N and we can apply this |A|−⌈(n− 1)/2⌉
times to obtain inv(|A|) ≤ inv(⌈(n− 1)/2⌉) + |A| − ⌈(n− 1)/2⌉. Using the fact that
|A|+ |B| = n− 1, this yields

inv(T ) ≤ |B|+ inv

(⌈
n− 1

2

⌉)
+ |A| −

⌈
n− 1

2

⌉
=

⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
,

and the claim follows.

We can use this result to improve (for large n) the upper bound on inv(n).

Corollary 14. For all n ∈ N0, inv(n) ≤ n− log(n+ 1).

Proof. We prove the statement by induction on n, with the case n = 0 clear. If n ≥ 1
and the claim holds for all smaller values, then we have

inv(n) ≤
⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
,

≤
⌊
n− 1

2

⌋
+

⌈
n− 1

2

⌉
− log

(⌈
n− 1

2

⌉
+ 1

)
,

≤ n− 1− log

(
n+ 1

2

)
,

= n− log(n+ 1).

8 Conclusion

In this paper we have answered several of the questions posed in [4]. We have shown
that their ‘dijoin conjecture’, that inv(L → R) = inv(L)+ inv(R), is false in general, but
have verified it in the case where inv(L) = inv(R) = 2 and have also shown that a k-join
analogue holds under certain conditions. In addition, we have confirmed their related
conjectures that k-Inversion is NP-complete for all k ≥ 1, and that the inequality
inv(D) ≤ 2τ(D) is tight. We have answered their question concerning the minimal rk such
that k-Tournament-Inversion can be solved in time O(|V (T )|rk), showing that rk = 2
for all k, and have improved the lower bound on inv(n) to show that inv(n) = (1+o(1))n.
There are, however, still many interesting open problems in this area. Before discussing
some of them, we will touch on two operations similar to inversion.

19



8.1 Similar operations

We first consider an operation on permutations which is used by molecular biologists
as a model for genetic mutations, and could loosely be seen as a vertex analogue of
inversions in tournaments. Given a permutation π = (π1 π2 . . . πn) of [n], for 1 ≤
i < j ≤ n, the reversal of the interval [i, j] is the permutation obtained by reversing
the order of πi, . . . , πj in π. The reversal distance, d(π), of a permutation π is the
minimum number of reversals required to transform π into the identity permutation. For
a survey of reversals and the reversal distance (and many other combinatorial models of
genome rearrangements) see [15]. We highlight some results of particular relevance to our
work. With regards to computational complexity, Caprara [9] showed that the problem
of Sorting by Reversals, that is, determining whether d(π) ≤ k for inputs of a
permutation π and k ∈ N, is NP-complete, while Hannenhalli and Pevzner [18, 19] showed
that it is fixed-parameter tractable when parameterised by k. The natural extremal
problem was solved by Bafna and Pevzner [3] who proved that for a permutation π of
[n], we have d(π) ≤ n− 1 with equality if and only if π ∈ {γn, γ−1

n } for an explicit γn.
Inversions in digraphs can also be thought of as generalisations of edge reversals,

i.e. the operations which reverse the orientation of a single edge. It is not difficult to
see (using an argument from Section 1.3) that the minimum number of such operations
required to transform a digraph D into an acyclic digraph is equal to τ ′(D), the cycle
edge-transversal number of D. Determining this quantity is the famous feedback arc
set problem, which has been widely studied (see [21] for an overview). In particular
the problem of determining for inputs D and k whether τ ′(D) ≤ k was one of the first
shown to be NP-complete [20] and it remains NP-complete when the input is restricted
to tournaments [1, 10]. However, Chen, Liu, Lu, O’Sullivan, and Razgon [11] showed
that this problem is again fixed-parameter tractable when parameterised by k. On the
extremal side, it was shown by Spencer [27, 28] that the maximum cycle edge-transversal
number of an n-vertex tournament is 1

2

(
n
2

)
−Θ(n3/2) and that a random labelled n-vertex

tournament has this cycle edge-transversal number with probability tending to 1. Bounds
of this form remain the best known (see also [13, 25]).

8.2 Open problems

We have shown (in Theorem 6) that the problem which takes as inputs a tournament T
and an integer k ∈ N, and asks whether inv(T ) ≤ k, is fixed-parameter tractable when
parameterised by k. In keeping with the pattern exhibited in the settings discussed in
Section 8.1, Bang-Jensen, da Silva, and Havet [4] conjectured that the full problem is
NP-complete.

Conjecture 2 ([4]). The problem of deciding whether inv(T ) ≤ k for inputs of k ∈ N
and a tournament T is NP-complete.

Note that Theorem 6 does not make any progress towards disproving this because
the implied constant in the O(n2) running time is not polynomial in k. In fact, as noted
above, the constant arising from our algorithm is doubly exponential in k. However,
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again in keeping with both settings discussed in Section 8.1 (and indeed many natural
fixed-parameter tractable problems), we conjecture that this constant can be taken to be
singly exponential in k, perhaps with a higher power of n.

Conjecture 3. There exist constants c1, c2 > 0 such that k-Tournament-Inversion
can be solved in time O(2k

c1 |V (T )|c2) for any k ∈ N.

As discussed in the introduction, the set ICk of k-inversion-critical tournaments was
shown to be finite for all k in [7]. They explicitly described IC1 and IC2, for the latter
using results of Gallai [16] (see [24] for an English translation) and Latka [22], but for
k ≥ 3 very little is known about these sets. In particular, it would be interesting to
determine mk, the maximum number of vertices in a tournament in ICk, for k ≥ 3.

Question 4 ([4]). What is the value of mk for k ≥ 3?

Finding the minimum possible size of a k-inversion-critical tournament is equivalent
to the problem of determining inv(n). The best known bounds on inv(n) for large n are
now

n−
√
2n log(n) ≤ inv(n) ≤ n− log(n+ 1),

and it would be interesting to tighten these further.

Question 5. What is the asymptotic behaviour of n− inv(n)?

In light of our improved lower bound on inv(n), the lack of an explicit construction for
a tournament of large inversion number is even more apparent: no n-vertex construction
with inversion number more than about n/3 (as given by the (n/3)-join [

# »

C3]n/3) is known.

Problem 6. Construct n-vertex tournaments with inversion number closer to inv(n).

Belkhechine, Bouaziz, Boudabbous, and Pouzet ([6]; see [4]) defined for each n ∈ N
a tournament Qn on vertex set [n] in which for i < j the edge ij is oriented towards j,
except if j = i + 1, in which case it is oriented towards i, and conjectured that these
graphs satisfy inv(Qn) =

⌊
n−1
2

⌋
.

Conjecture 7 ([6]). For all n ∈ N we have inv(Qn) =
⌊
n−1
2

⌋
.

The conjecture is known to hold for n ≤ 8 [4, 7], and it is certainly true that inv(Qn) ≤⌊
n−1
2

⌋
for all n since the sets

{2, 3}, {4, 5}, {6, 7}, . . . , {2 ⌊(n− 1)/2⌋ , 2 ⌊(n− 1)/2⌋+ 1}

form a decycling family of Qn.
Defining the inversion distance, inv(T, T ′), between two labelled tournaments T and

T ′ on the same vertex set to be the minimum number of inversions required to transform
T into T ′, we remark that the matrix rank techniques developed in Section 7.1 can be
used to show that the maximum inversion distance between two n-vertex tournaments is
exactly n− 1. Moreover, combining these ideas with Lemma 12 gives an upper bound of
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2(
n
2)+n−(s2)+s log(n) on the number of labelled tournaments within inversion distance n− s

of a given labelled tournament.
It is natural in this context to study the random walk W on the space of labelled

tournaments on [n] where each step in the walk consists of picking a uniform random
subset of [n] and inverting that set in the current tournament. In particular, we ask the
following.

Question 8. What is the mixing time of W? Does it satisfy the cutoff phenomenon?

Returning to the dijoin conjecture, Theorem 2 completes the work of Bang-Jensen, da
Silva, and Havet in showing that the conjecture holds in the cases where inv(L), inv(R) ≤
2. We have also shown (Theorem 3) a k-join analogue of the dijoin conjecture for collec-
tions of 2-invertible digraphs D1, . . . , Dk at most one of which has inversion number 2.
We conjecture that this final condition can be removed.

Conjecture 9. Let k ∈ N and let D1, . . . , Dk be oriented graphs satisfying inv(Di) ≤ 2
for all i. Then

inv([D1, . . . , Dk]) =
k∑

i=1

inv(Di).

On the other hand, Theorem 1 gives a counterexample to the dijoin conjecture where
inv(L) = 1 and inv(R) = 3. From this, we can obtain counterexamples with inv(L) = k

and inv(R) = 3 for any k ∈ N: let L = [
# »

C3]k and let R be as in the proof of Theorem 1.
The tournaments obtained from these by inverting the whole vertex set give counterex-
amples in which inv(L) = 3 and inv(R) = k. We conjecture that here 3 can be replaced
with any larger integer, or in other words that the only values of inv(L) and inv(R) for
which the dijoin conjecture always holds are those where inv(L), inv(R) ≤ 2 or where
one of inv(L) or inv(R) is 0.

Conjecture 10. For all ℓ, r ∈ N with ℓ ≥ 3 or r ≥ 3 there exist oriented graphs L and
R with inv(L) = ℓ and inv(R) = r, but inv(L → R) < ℓ+ r.

This conjecture is equivalent to the claim that for all r ≥ 3 there exists a tournament R
with inv(R) = inv(

# »

C3 → R) = r. To see that this follows from the conjecture, note that
for r ≥ 3, if inv(L) = 1 and inv(R) = inv(L → R) = r, then we can extend L → R to a
tournament T = L′ → R′ with inversion number r. Clearly inv(R′) = r and inv(L′) ≥ 1,
so L′ contains a copy of

# »

C3. Thus, r = inv(R′) ≤ inv(
# »

C3 → R′) ≤ inv(T ) = r, as
required. The converse follows from the arguments of the previous paragraph.

Finally, we noted in Section 1.2 that inv(D) ≤ inv(D − {v}) + 2 for all digraphs D
and vertices v ∈ V (D). It is certainly the case that this inequality is tight for some
D and v. Indeed, a reformulation of Theorem 7 yields the stronger statement that for
all k ∈ N there exists a digraph D and a set S ⊆ V (D) with |S| = k such that for all
T ⊆ S we have inv(D−T ) = inv(D)− 2|T |. We conjecture, however, that the inequality
inv(D) ≤ inv(D − {v}) + 2 cannot be tight for all vertices v in a given digraph D.

Conjecture 11. Let D be a digraph with at least one vertex. Then there exists v ∈ V (D)
such that inv(D − {v}) ≥ inv(D)− 1.
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