Distant digraph domination
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Abstract

A k-kernel in a digraph G is a stable set X of vertices such that every vertex of G can be joined
from X by a directed path of length at most k. We prove three results about k-kernels.

First, it was conjectured by Erdés and Székely in 1976 that every digraph G with no source has
a 2-kernel | K| with |K| < |G|/2. We prove this conjecture when G is a “split digraph” (that is, its
vertex set can be partitioned into a tournament and a stable set), improving a result of Langlois et
al., who proved that every split digraph G with no source has a 2-kernel of size at most 2|G|/3.

Second, the Erdds-Székely conjecture implies that in every digraph G there is a 2-kernel K such
that the union of K and its out-neighbours has size at least |G|/2. We prove that this is true if V(G)
can be partitioned into a tournament and an acyclic set.

Third, in a recent paper, Spiro asked whether, for all k¥ > 3, every strongly-connected digraph G
has a k-kernel of size at most about |G|/(k + 1). This remains open, but we prove that there is one
of size at most about |G|/(k — 1).



1 Introduction

A digraph is a finite directed graph with no loops or parallel edges (it may have directed cycles of
length two). If G is a digraph, X C V(G) is stable if there is no edge with both ends in X. In a
digraph G, if X, Y C V(G), we say X k-covers Y if for each y € Y, there exists € X and a directed
path of length at most k from x to y. (If X is a singleton {z} we write x for {z} here, and the same
for Y.) A k-kernel in a digraph G is a stable set X of vertices that k-covers V(G). 1

There are many interesting open questions about k-kernels; for instance, not every digraph has a
1-kernel, but every digraph has a 2-kernel [2], and the following was conjectured by P. L. Erdés and
L. A. Székely [4] in 1976 (and remains open):

1.1 The small quasi-kernel conjecture: Fuvery digraph G with no source has a 2-kernel of size
at most |G| /2.

(A source is a vertex with in-degree zero.) There is a survey on this conjecture in [3], and the best
bound on this seems to be a result of Spiro [7], that every digraph G with no source has a 2-kernel
of size at most |G| — X(|G|log |G])'/2, which is of course very far from the conjecture.

It is enough to prove 1.1 for oriented graphs, that is, digraphs with no directed cycle of length
two; because deleting an edge from such a cycle makes the problem harder. (Unless this deletion
makes a source; but if neither edge will work, delete both vertices and all their out-neighbours.) If
G is a counterexample to 1.1, then, since it has a 2-kernel S say, it follows that |S| > |G|/2; and a
natural special case is when G\ S is a tournament. Let us say G is a split digraph if G is an oriented
graph and its vertex set admits a partition into a stable set and a tournament. Ai, Gerke, Gutin, Yeo
and Zhou [1] proved that 1.1 holds for split graphs in which all edges between the tournament and
the stable set are directed towards the stable set. Langlois, Meunier, Rizzi, Vialette and Zhou [5]
proved that every split digraph with no sources admits a 2-kernel of size at most 2|G|/3. In section
2, we strengthen this:

1.2 Every split digraph G with no sources admits a 2-kernel K with |K| < |G|/2.
Our second result concerns a problem of Spiro [7], who observed that 1.1 implies:

1.3 Conjecture: In every digraph G, there is a 2-kernel K such that at least half the vertices of
G belong to K or have an in-neighbour in K.

We discuss this in section 3, and prove that it holds for split digraphs, and indeed for digraphs with
a vertex set that can be partitioned into a tournament and an acyclic subgraph.
Our third result concerns a different problem of Spiro [7], who asked whether:

1.4 Conjecture: For all integers k > 3, every strongly-connected digraph G has a k-kernel of size
at most |G|/(k+ 1) + Ox(1).

It seems that the best known bound in this case is due to Spiro, in the same paper, who proved that
under the hypotheses of 1.4, there is a k-kernel of size at most about |G|/logk. Our third result is
that there is one of size at most |G|/(k — 1) + O(1). This as a consequence of 1.5 below.

Let T be a subdigraph with underlying graph a tree, such that for some vertex r of T', every edge
of T is directed away from r in the natural sense. We call T an arborescence, and r is its root. Every

'In some papers a k-kernel is defined with edges reversed: every vertex of G is joined to X by a short directed path.



strongly-connected digraph has a subdigraph that is a spanning arborescence (spanning means that
the arborescence contains all vertices of the digraph). In section 4 we will prove:

1.5 For all integers k > 2, every digraph G with |G| > 1 and with a spanning arborescence has a
k-kernel of size at most 1 + (|G| —2)/(k — 1).

This follows easily from a result about acyclic digraphs (acyclic means there is no directed cycle):

1.6 For every integer k > 1, if G is an acyclic digraph with |G| > 2 and with only one source, then
G has a k-kernel of size at most 1 + (|G| — 2)/k.

This result is tight, as can be seen from the digraph shown in figure 1.

Figure 1: All 3-kernels have size > 1+ (|G| — 2)/3. For k > 3 make the vertical paths longer.

2 Split digraphs

If G is a digraph, we use G[X] to denote the subdigraph induced on X C V(G). We say “u is adjacent
to v” to mean that u is an in-neighbour of v, and “adjacent from” to mean it is an out-neighbour. A
neighbour of v means a vertex that is either an in-neighbour or an out-neighbour of v. We sometimes
use “G-in-neighbour” to mean “in-neighbour in the digraph G”, and so on (this is helpful because we
sometimes work with different digraphs that have the same vertex set.) For a vertex v of a digraph
G, N/ (v) denotes the set of all out-neighbours of v, and N, (v) is its set of in-neighbours. A split in
an oriented graph G is a pair (5,7), where SUT =V(G), SNT = (), S is a stable set, and G[T] is
a tournament. (We will often write 1" for G[T].)

In this section we prove 1.2, but it is convenient to prove a slightly stronger statement, that the
same conclusion holds just assuming that no vertex in .S is a source. Now there is a difficulty, because
this is false for the 1-vertex digraph with S = (), but this is the only exception. We will prove:

2.1 Let (S,T) be a split of an oriented graph G, such that S # (O and no vertex in S is a source.
Then there is a 2-kernel K with |K| < |G|/2.

For the proof, we begin with some lemmas. A 2-kernel K is strong if for every vertex v € T,
either there is a vertex in K that 1-covers v, or a vertex in K NT that 2-covers v. (We do not know
whether 1.2 remains true if we ask for a strong 2-kernel of size at most |G|/2.) If v € T', we say s € S
is a problem for v if v is adjacent from s, and v does not 2-cover s, and no non-neighbour of v in S
2-covers s. If v has a problem, then v is contained in no 2-kernel.



2.2 Let G, T,S be as above, and let v € V(T). If v is contained in no strong 2-kernel, then there
ezists w € V(T) \ {v}, adjacent to v, such that N;(w) C Ng(v); and either w € S and w is a
problem for v, or w € T.

Proof. Since the set consisting of v and all non-neighbours of v in S is not a strong 2-kernel, there
exists w € V(G) \ {v} such that v does not 2-cover w, and either w € T" and no non-neighbour of
v in S l-covers w, or w € S and no non-neighbour of v in S 2-covers w. In the first case, since v
does not 2-cover w, N (w) NT € N;(v). If s € N (w) NS, then since no non-neighbour of v in
S 1-covers w, it follows that s € N (v) U N (v); and since v does not 2-cover w, s ¢ N (v), and
so s € N (v). This proves that N (w) C N (v) as required. In the second case, w is a problem
for v. Moreover, every in-neighbour of w is an in-neighbour of v: because if u € T is adjacent to w,
then u is not adjacent from v since v does not 2-cover w, and so u is adjacent to v. Hence, again,
N¢ (w) € N (v). This proves 2.2. |

2.3 LetG,T, S be as above, and suppose that G, S, T form a smallest counterexample to 2.1. Suppose
also that v € V(T) is contained in no strong 2-kernel, and let w be as in 2.2. If w € T, then there
s no problem for w.

Proof. Suppose that w € T, and s € S is a problem for w. Let A = N/, (v). Since N (w) C Ng (v),
no vertex in A is adjacent to w, and in particular s ¢ A. Make a digraph G’ from G by deleting v
and making w complete to A. So G’ has no sources.

(1) Ng (w) € NG (v).
Let u € N, (w). Sou ¢ A, and so u € N (w) € Ng (v). This proves (1).

Let K be a 2-kernel of G’. We will show that K is also a 2-kernel of G. Certainly it is stable in G.
(2) w¢ K.

Suppose that w € K. Then s ¢ K, so there is a directed path P of G', of length one or two,
from some xz € K to s. Since s is a problem for w in G, some edge of P is not an edge of G, which
is impossible since s ¢ A. This proves (2).

Sow ¢ K. Since K 2-covers w in G, (1) implies that K 2-covers v in G, and 1-covers v in G if
it 1-covers w in G’. Let a € A. We must show that K 2-covers a in G. If a € K this is true, so we
assume there is a directed path P of G’ of length one or two, from some z € K to a. If P is a path
of G then K 2-covers a in GG, so we may assume that the last edge of P is an edge of G’ not in G.
But w ¢ K and x € K, so w # z, and therefore P has length two with middle vertex w. By (1),
z-v-a is a path of G, so K 2-covers a in G.

This proves that every 2-kernel of G’ is a 2-kernel of G. Since G, S, T form a smallest counterex-
ample to 2.1, and G’ has fewer vertices than G, and (S,T \ {v}) is a split for G, with S # 0, and
no vertex in S is a source in G, it follows that G’ has a 2-kernel of size at most |G’|/2; but this is
also a 2-kernel for GG, which is impossible. This proves that there is no problem for v, and so proves
2.3. |



Now we prove the main theorem, which we restate:

2.4 Let (S,T) be a split of an oriented graph G, such that S # 0 and no vertex in S is a source.
Then there is a 2-kernel K with |K| < |G|/2.

Proof. We may assume that G, .S, T form a smallest counterexample. Let B be the set of all vertices
in T with problems. For each b € B, select a problem z;, for b, and let Z be the set {2, : b € B}. Let
Q be the set of all ¢ € S\ Z with N (¢q) € B. For each ¢ € Q, it has an in-neighbour in B, since
it is not a source; select one such in-neighbour b,. Similarly, for each s € S\ (Q U Z), choose some
ts € T'\ B adjacent to s.

For each z € Z, let ®(z) be the set of ¢ € Q such that z = 2. For each t € T'\ B, let ®(t) be
the union of {t} and the set of s € S\ (Q U Z) such that ¢t = t5. Thus, the sets ®(v) (v € V(H)) are
pairwise disjoint and have union V(G) \ (B U Z). Some of the sets ®(z) (2 € Z) may be empty.
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Figure 2: Definitions of ®(z) and ®(¢).

Let H be the oriented graph obtained from G[(T'\ B)UZ] by adding all possible edges from 7'\ B
to Z; that is, if t € T'\ B and z € Z are nonadjacent in G then we add an edge tz.

For each v € V(H), let N%(v) be the set of vertices that are neither out- nor in-neighbours
of v (including v itself). Thus N%(v) = Z if v € Z, and N%(v) = {v} if v € V(T) \ B. Define
ot (v) = ZueNE(v) |®(u)| and define ¢~ (v), #°(v) similarly. We call ¢~ (v) + ¢°(v)/2 the score of v.
If V(H) =0, then T\ B = () and B = () (since Z = 0); so T'= (), which implies that S = ) (since
there are no sources), a contradiction. So V(H) # (). We have

Yo R@let) = Y [R@lw)= Y [B(w)é(w),

ueV (H) uweFE(H) weV (H)

and therefore
Y 29 (w) — ¢7 () =0
ueV(H)

We claim that there exists v € V(H) such that ¢ (v) > ¢~ (v). If |®(u)|(¢ (u) — ¢ T (u)) # 0 for
some u € V(H), then |®(u)|(¢~ (u) — ¢*(u)) > 0 for some u € V(H) and the claim is true. If not,
then either |[®(u)| = 0 for each u € V(H), or ¢~ (u) — ¢ (u) = 0 for some u € V(H), and in either
case the claim is true. This proves that there exists v € V(H) such that ¢ (v) > ¢~ (v).

Since

¢*(v) + ¢~ () +6°(v) = |G| = |Z] - |B| < |G| - 2|2,

it follows that ¢~ (v) + ¢°(v)/2 < |G|/2 — |Z|. Choose v € V(H) with score as small as possible (and
consequently with score at most |G|/2 — |Z]).



A vertex in T is pure-up if it has no in-neighbour in S. The case when v has score exactly
|G|/2 — |Z] is troublesome, so let us first handle that.

(1) We may assume that either v has score strictly less than |G|/2 — |Z|, or v € Z and ®(v) # 0, or
B(0)] > 2.

We assume that v has score exactly |G|/2—|Z|. It follows that |B| = |Z|, and every vertex u € V(H)
has score at least |G|/2 — |Z|, and so satisfies ¢ (u) < ¢~ (u). But

> je@)(¢ (u) — ¢ () = 0.

ueV(H)

It follows that for every u € V(H), |®(u)|(¢~ (u) — ¢ (u)) = 0, so either ®(u) = () (and hence u € Z)
or ¢1(u) = ¢~ (u) (and hence u has the same score as v). In particular, if ®(u) # @ for some u € Z,
then we may replace v by w and the claim holds. Similarly, if some v € T'\ B satisfies |®(u)| > 2,
we can replace v by u. So we may assume that ®(u) = () for all u € Z (and hence @ = (), and
®(u) = {u} for each v € T'\ B (and hence S\ (QU Z) = (). Consequently, S = Z. Since |Z| < |G|/2
(because |Z| = |B|), we may assume that there exists py € T not 2-covered by Z. Thus pg is pure-up,
and so P # (), where P is the set of pure-up vertices. Choose p € P that 2-covers P. (Any vertex
of maximum out-degree in T'[P] has this property.) Let Z’ be the set of vertices in Z that are not
adjacent from p; so Z' U {p} is stable. We claim it is a 2-kernel. Certainly Z' U {p} 2-covers Z; each
vertex in T' 1-covered by Z’ is 2-covered by p; every other vertex of T' 1-covered by Z is 2-covered
by Z \ Z'; and each vertex of T not 1-covered by Z is in P, and hence is 2-covered by p. So Z' U {p}
is a 2-kernel, and therefore we may assume its size is more than |G|/2. Since |Z| = |B|, it follows
that |7\ B| =1 and hence T'\ B = P = {p}, since PN B = ; and so py = p. Since Z 1-covers B
and does not 2-cover py = p, it follows that p is adjacent to every vertex in B. But then {p} is a
2-kernel (because every vertex in S = Z has an in-neighbour, since it is not a source). This proves (1).

(2) If v € Z then the theorem holds.

Let J be the set of vertices in S\ Z that are 2-covered by v. (Possibly J N Q # (.) Let
A=8\(JUuQUZ), and F = (T\ B)\ NJ(v). Since Ni(v) = F, and therefore the union of
the sets ®(u) (u € Ny (v)) includes F'U A, it follows that ¢~ (v) > |F| + |A|. Moreover,

P )= 5 1) = Q12

z2€Z

Consequently, the score of v is at least |F| + |A] + |Q|/2, and so the latter is at most |G|/2 — |Z|.
Choose X C S minimal such that AUZ U X 1-covers every vertex of T" that is not pure-up. Thus
|X| < |F|, since Z 1-covers BU (T N NJ(v)). Let K = AUZ U X. We claim that K is a 2-kernel.
It certainly 2-covers S, since Z 2-covers ), and AU {v} 2-covers S\ (Q U Z). It 1-covers all vertices
in T that are not pure-up, from the choice of X. Suppose it does not 2-cover some p € T'\ B. Then
p is pure-up, so p ¢ B; and p is complete to all vertices in T that are not pure-up, since X 1-covers
all such vertices and does not 2-cover p. Moreover, each vertex in Z is adjacent from p in H. Thus,



every H-in-neighbour of p is also pure-up, and so is adjacent to v in H. Consequently

)+ Y le@< Y |ew);

uEN (p) uEN (v)

and so p has smaller score than v, a contradiction.
So K is a 2-kernel. But

K| < [ X[+ [Al+ 2] < [F[ + [Al + 2] < |G]/2 = |Ql/2.
It follows that |K| < |G|/2. This proves (2).

Henceforth we assume that v € V(T) \ B and, by (1), either v has score strictly less than
GI/2— |2, or [B(v)] > 2.

(3) v extends to a strong 2-kernel.

Suppose not. By 2.2, there exists t € T, adjacent to v, such that every G-in-neighbour of ¢ is a
G-in-neighbour of v, and t € T'\ B by 2.3. A vertex of H is a G-in-neighbour of v if and only if it
is an H-in-neighbour of v, and the same is true for in-neighbours of t; so every H-in-neighbour of ¢
is an H-in-neighbour of v. Hence ¢~ (v) > ¢~ (t) +|®(¢)|. Since ¢°(v) = |®(v)| and ¢°(¢) = |®(t)], it
follows that

6= (v) + ()2 2 (1) + || + [2()|/2 > 6~ (1) + 6°(1)/2,

and so the score of ¢ is strictly less than that of v, contradicting the choice of v. This proves (3).

Let Q" = U,ex\n-(v) 2(2), and Q" = U, cznn-() 2(2); s0 Q" = @\ Q'. Let J be the set of
vertices in S\ @ that are 2-covered by v in G\ B. So, J, Z are both subsets of S\ @, but they might
intersect each other. S is also partitioned into three subsets, S N NZ (v), SN Ng(v) and S\ Ng(v),
where we define Ng(v) = NZ (v) U Ng (v). (See figure 3.) We intend to find a 2-kernel containing
v of size at most |G|/2, but we must be careful only to add vertices in S\ Ng(v), to keep the set
stable.



SN NG (v)

S\ Ng(v)

SN (v)

T\ (BU{v}) B

Figure 3: v is adjacent to everything in the top row of boxes, and from everything in the third. Its
adjacency to B is not specified in the figure. It has no out-neighbours in @ since v ¢ B, and so all
its out-neighbours in .S belong to J.

Let D= Ng(v)NS, and F = (T'\ B) N N (v). Thus
Ny (v)=FU(ZND,).

The union of the sets ®(t) (¢t € F') includes FU(S\(QUJUZ)), and | J, . ,~p ®(2) = Q". Consequently
¢~ (v) 2 [Fl+ S\ (QUJ U Z)[+1Q",

and so the score of v is at least
[F[+[S\(QUJUZ)| + Q"+ ¢°(v) /2.

Since ¢Y(v) > 1, and either ¢°(v) > 2 or the score of v is strictly less than |G|/2 — |Z], it follows that

[FI+IS\(QUJIUZ)|+1Q"+1+12] < |G|/2

Since v extends to a strong 2-kernel, for each v € T\ B that is not 2-covered by v, there is
an in-neighbour of w in S\ Ng(v); choose X C S\ Ng(v) minimal 1-covering each vertex in F'
that is not 2-covered by v. Thus |X| < |F|. For each u € D, since v extends to a 2-kernel, there
exists t € S\ Ng(v) that 2-covers u; let Y C S\ Ng(v) be minimal 2-covering D\ (J U Q’). Thus
Y1 <D\ (JUQ)
Let
K={}U(Z\D)u(S\(QUJUZUD)UXUY U(Q"\D).

We claim that K is a 2-kernel. Certainly it is stable.

(4) K 2-covers S.



Let s € S, and assume first that s ¢ Q. If s € J then v 2-covers s; if s € D\ J then Y 2-
covers s; ifif s € Z\ (JUD) then s € K; and if s ¢ ZUJUD then s € K. So in this case K 2-covers
s. Next assume that s € Q. So s ¢ JUNZ (v). If s € Q" \ D then s € K, and if s € Q" N D then
Y 2-covers s, so we assume that s € Q’, and so z,, € Z \ D. If z,, ¢ N (v) then 2, € K and so K
2-covers s, so we assume that z,, € N (v). Then b is adjacent from v (because bs does not 2-cover
2p, since zp, is a problem for b) and so K 2-covers s. This proves (4).

(5) K 2-covers T, and hence K is a 2-kernel.

Let t € T. We may assume that t € N5 (v). If t € T'\ B then t € F and X I-covers t, so we
assume that ¢ € B. If zx ¢ Ng(v) then z: € K and 1-covers ¢, so we assume that z; € Ng(v). Since
t is adjacent from v and 2 is a problem for ¢, it follows that z, ¢ N (v), so 2, € Ng(v). Choose
y € Y such that y 2-covers z;, and choose u € T such that y-u-z; is a directed path. Since z; is a
problem for ¢, it follows that ¢ is adjacent from u, and so y 2-covers t. This proves (5).

Now let us bound the size of K. We have
|IK|=1+|Z\D|+|S\ (QUJUZUD)|+|X|+|Y|+|Q"\ D|.

We know that
[F|+ 1S\ (QUJUZ)| +1Q"+1<1G|/2—|Z|,

and | X| <|F|, and |Y| < |D\ (JUQ’)|. Adding, we deduce that:

K[+ [F]+ S\ (QUJUZ)| +]Q"| + 1+ X[+ Y]
<1+|Z\D|+|S\(QUJUZUD)|+|X|+|Y|+|Q"\ D|
+ (|Gl = 12| = |B])/2+ |F| + D\ (JUQ).

This simplifies to:

K|+ IS\ (QUJUZ)[+|Q" < |Z\D[+[S\(QUJUZUD)+[Q"\ D]
+1G1/2 =12+ D\ (JU Q.

Since |Z| < |BJ, and
IS\ (QUJUZ)[ =[S\ (QUJUZUD)|+|D\(QUJUZ),

we deduce

K|+ D\ (QUJUZ)|+[Q" <1Q"\D|+ D\ (JUQ)| + |2\ D| +|G|/2 - |Z]|.
Since

D\ (JUQ)|[=[D\(QUJUZ)[=|(D\])N(Q"U(Z\Q)| < DN (Q"UZ)|
this further simplifies to:

|K|+1Q"NDI<|DN(Q"UZ)|—[ZnD|+|G|/2,

and so |K| < |G|/2. This proves 2.4. |



3 Large 2-kernels

In this section, we turn to a second topic, Spiro’s question 1.3. While it seems to be asking for
something close to the opposite of 1.1, Spiro observed that 1.1 implies 1.3. Here is his argument:
to prove 1.3 for a digraph G, choose a large number n. If G has a source v, delete v and all its
out-neighbours and apply induction; while if G has no sources, for each vertex v of G, add n new
vertices adjacent from v and with no other neighbours. Applying 1.1 with n sufficiently large implies
that G satisfies 1.3.

If G is a digraph and X C V(G), let N} [X] denote the set of vertices that either belong to
X or are adjacent from a vertex in X. The same construction (adding nw(v) new out-leaves for
each vertex) shows that 1.1 implies a slightly stronger statement (Z denotes the set of non-negative
integers, and f(X) denotes ) .y f(v)):

3.1 Conjecture: In every digraph G, and for every map f : V(G) — Z4 there is a 2-kernel K
such that f(NA[K]) > f(V(G))/2.

In this section we show that 3.1 is true for split digraphs, and indeed for a somewhat more general
class of graphs. If G is an oriented graph, let us say a break of G is a partition (S,T) of V(G) such
that G[S] is acyclic (that is, has no directed cycles), and G[T] is a tournament. We will show:

3.2 In every oriented graph G that admits a break, and for every map f : V(G) — Z4, there is a
2-kernel K such that f(NZ[K]) > f(V(G))/2.

The greater generality given by the function f will be useful for the inductive proof, allowing us to
delete vertices without changing f(V(G)). We need a result of von Neumann and Morgenstern [6]:

3.3 Every acyclic digraph has a unique 1-kernel.

In order to prove 3.2, we prove a stronger statement (by the non-neighbourhood of a vertex v, we
mean the digraph induced on the set of vertices different from and nonadjacent with v):

3.4 Let (S,T) be a break of an oriented graph G, and let f : V(G) — Z4 be a map. Then there is
a 2-kernel K such that f(NG[K]) > f(V(G))/2, where either K C S, or K consists of some v € T
together with the unique 1-kernel of its non-neighbourhood.

Proof. We assume the result holds for all oriented graphs that admit breaks (S’,T") with 2|S’| +
|T'| < 2|S| + |T|. For each X C S, let A(X) be the unique 1-kernel of G[X] (which exists by 3.3);
and for each v € T, let M (v) be its non-neighbourhood. Let us say a 2-kernel K of G is special for
(G,S8,T) if either K C S, or K = {v} UA(M(v)) for some v € T

(1) We may assume that {v} U A(M(v)) is a 2-kernel for each v € T.

Suppose not. Certainly {v} U A(M (v)) is stable, so there is a vertex w # v such that {v} U A(M (v))
does not 2-cover w. We claim that N (w) € N (v). For suppose that s € N (w) \ Ng (v). Since
s ¢ {v} UN/ (v) (because {v} U A(M(v)) does not 2-cover w, it follows that v, s are nonadjacent,
and so s € M(v) C S. But then s is 1-covered by A(M (v), and so w is 2-covered by {v} U A(M (v)),
a contradiction. This proves that Nj(w) € N (v). Thus every 2-kernel of G' = G \ v is also a
2-kernel of G. Define f'(w) = f(w)+ f(v), and f/'(x) = f(z) for all z € V(G) \ {v,w}. Applying the



inductive hypothesis to G’ and f’, we deduce there is a 2-kernel K of G’ (and hence of G), special for
(G, S, T\ {v}) (and hence special for (G, S,T)), such that f'(NZ,[K]) > f'(V(G))/2 = f(G)/2. But
N&[K] € NAIK], and if w € N, [K] then v,w € NA[K], and so f'(NZ,[K]) < f(NZ([K]). Hence
f(NL[K]) > f(G)/2. This proves (1).

A sink of GG is a vertex that has no out-neighbours.
(2) Let s € S be a sink of G[S]. We may assume that s is a neighbour of every vertex in T

For each t € T, if s,t are nonadjacent, let us add the edge ts, forming an oriented graph G’.
Suppose the theorem holds for G’, with the same function f, and let K’ be a 2-kernel of G’, spe-
cial for (G',S,T), with f(NL[K']) > f(V(G))/2 = f(V(G))/2. For each v € T, let M'(v) be the
non-neighbourhood of v in G’. There are four cases:

o K'={v}UA(M'(v)) for some v € T adjacent from s in G;

o K'={v}UA(M'(v)) for some v € T adjacent to s in G;

o K'={v}UA(M'(v)) for some v € T nonadjacent with s in G;
e K'CS.

In the first two cases, M'(v) = M(v), and {v} U A(M(v)) is a 2-kernel of G by (1); and N, [K'] =
N [K'], and so K’ satisfies the theorem. In the third case, M’(v) = M (v)\{s}. If A(M’(v)) 1-covers
s, then A(M'(v)) = A(M(v)) and so K’ satisfies the theorem. If A(M’'(v)) does not 1-cover s, then
A(M(v)) = A(M'(v)) U {s} (because s is a sink of G[S]), and so K = {v} U A(M(v)) satisfies the
theorem. Finally, in the fourth case, K’ C S. If K’ is a 2-kernel of G then it satisfies the theorem,
so we assume it is not; and since K’ is a 2-kernel of G’, it follows that K’ does not 2-cover s. But
then K’ U {s} satisfies the theorem. This proves (2).

If S = (), then G is a tournament and the result holds, so we assume that S # (), and hence
contains a sink of G[S]. By (2), then (S \ {s},T U {s}) is also a break of G, and from the inductive
hypothesis, there is a 2-kernel K of G such that f(NG[K]) > f(V(G))/2, and K is special for
(G, S\ {s},TU{s}). But then K is also special for (G, S,T). This proves 3.4. |

What happens to 3.1 if we assume that V(G) can be partitioned into two sets S, T where T is
a tournament and S is small? By 3.4, the conjecture holds if |S| < 2, and in hope of finding a
counterexample, we worked on the case when |S| = 3. But the conjecture is also true in this case
(by an ad hoc argument that does not seem capable of any generalization, and we omit the details).

There is a natural refinement of the conjectures 1.1 and 1.3, equivalent to 1.1 and implying 1.3,
that:

3.5 Conjecture: In every digraph G, and for every map f : V(G) — Z4 there is a 2-kernel K
such that | K|+ f(V(G))/2 < |G|/2+ f(N}(K)).

To deduce this from 1.1, add f(v) out-leaves to each vertex v. It implies 1.1 by taking f(v) = 0 for
all v, and it implies 1.3 by scaling f to be very large. Perhaps the proof of 2.1 can be modified to
show that split graphs satisfy 3.5, but we have not seriously attempted this.
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4 k-kernels

Now we turn to the proof of our third result, 1.5. We begin with:

4.1 For all integers k > 0, if G is an acyclic digraph with only one source, then there erists
X C V(G) with | X| < 14 (|G| —1)/(k + 1) that k-covers V(G). Moreover, either |G| = 1 or
| X| <14 (|G| —-2)/(k+1) or X is not stable.

Proof. Let r be the unique source. If |G| < k, we may take X = {r}; then | X| < 1+(|G|-2)/(k+1)
unless |G| = 1, so the result holds. We assume then that |G| > k, and proceed by induction on G.
For each v € V(G), let A, be the set of vertices that are joined by a directed path (of any length)
from v; and choose v with |A,| minimal such that |A,| > k+ 1. (This is possible since |A,| > k+1.)
For each w € A,, there is a directed path P from v to w, and if P has length more than k then we
may replace v by its outneighbour in P, contradicting the minimality of A,. Thus every vertex in
A, is joined from v by a path of length at most k. If v = r then we may take X = {r} and win as
before, so we assume that v # r. Let G’ be the digraph obtained by deleting A,. Every vertex of G’
has an in-neighbour in G’ except 7, so G’ has a unique source; and from the inductive hypothesis,
there exists X’ C V(G’) such that | X'| <1+ (|G'| = 1)/(k+ 1) and X' k-covers V(G’). Moreover,
either |G'| =1 or |[X'| <14 (|G'| —2)/(k+ 1) or X is not stable. Let X = X’ U {v}. Thus X
k-covers V(G). Moreover, since |A,| > k+ 1, it follows that | X| < 1+ (|G| —1)/(k+1), and if either
| X' <1+4(]G'|—2)/(k+1) or X’ is not stable, then correspondingly either | X| < 14 (|G|—2)/(k+1)
or X is not stable. So we assume that |G’| = 1, and so V(G’) = {r}. Since G has a unique source,
it follows that v is adjacent from r, and so X is not stable. This proves 4.1. |

We deduce:

4.2 For every integer k > 1, if G is an acyclic digraph with |G| > 1 and with only one source, then
G has a k-kernel of size at most 1 + (|G| — 2)/k.

Proof. By 4.1 applied to G with k replaced by k—1, there exists X C V(G) with | X| < 1+(|G|-1)/k
that (k — 1)-covers V(G). The digraph G[X] is acyclic and hence has a 1-kernel Y, by 3.3. Hence Y
is a k-kernel in G. Moreover, since |G| > 2, either |X| < 1+ (|G| —2)/k (when |Y] < |X| and the
result is true), or X is not stable (when |Y| < |X| —1 < (|G| — 1)/k and again the result is true).
This proves 4.2. |

As we said before, this result is tight (see figure 1). Now let us deduce 1.5, which we restate:

4.3 For all integers k > 2, every digraph G with |G| > 1 and with a spanning arborescence has a
k-kernel of size at most 1 4+ (|G| —2)/(k — 1).

Since G has a spanning arborescence, its vertex set can be numbered {vy,...,v,} in such a way that
for 2 < j < n there exists i € {1,...,j — 1} such that v;v; is an edge. Let A be the set of all edges
vvj of G with ¢ < j, and let B = E(G) \ A. Let G4 be the subgraph with vertex set V(G) and edge
set A, and define G g similarly. Both G4, G are acyclic, and G4 has a unique source. By 4.2 applied
to G4 with k replaced by k —1, G4 has a (k —1)-kernel X of size at most 1+ (|G| —2)/(k—1). Now
X is stable in G4, and Gp[X] is acyclic, and so has a 1-kernel Y, by 3.3. But then Y is a k-kernel
in G, and |Y| < |X| <1+ (|G| —2)/(k —1). This proves 4.3. |

11



References

[1] J. Ai, S. Gerke, G. Gutin, A. Yeo and Y. Zhou, “Results on the small quasi-kernel conjecture”,
Discrete Math. 346 (2023), 113435.

[2] V. Chvatal and L. Lovész, “Every directed graph has a semi-kernel”, in Hypergraph Seminar:
Ohio State University 1972, 175-175. Springer, 1974.

(3] P. L. Erdés, E. Gyéri, T. R. Mezei, N. Salia and M. Tyomkyn, “On the small quasi-kernel
conjecture”, arXiv:2307.04112.

[4] P. L. Erd6s and L. A. Székely, “Two conjectures on quasi-kernels”, open problems no. 4, in Fete
of Combinatorics and Computer Science, Bolyai Society Mathematical Studies, 2010.

[5] H. Langlois, F. Meunier, R. Rizzi, S. Vialette and Y. Zhou, “Quasi-kernels in split graphs”,
arXiv:2312.15519v2.

[6] J.von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 2nd rev., 1947.

[7] Sam Spiro, “Generalized quasikernels in digraphs”, arXiv:2404.07305.

12



