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Abstract

In 1972, Mader showed that every graph without a 3-connected subgraph is
4-degenerate and thus 5-colourable. We show that the number 5 of colours can be
replaced by 4, which is best possible.

Mathematics Subject Classifications: 05C15, 05C40

1 Introduction

Throughout the paper all graphs are finite and simple, and we only use standard notions
and notation. We recall that a graph is k-connected if it has at least k + 1 vertices and
no vertex cutset with at most k − 1 vertices. In 1972, Mader [2] proved the following
theorem.

Theorem 1. For every integer k ⩾ 1, every graph with average degree at least 4k contains
a (k + 1)-connected subgraph.

Focusing on the case k = 2 of Theorem 1, we call a graph fragile if it has no 3-connected
subgraph. From Theorem 1, every non-null fragile graph has a vertex of degree at most 7.
By restricting the proof of Mader to the case k = 2, it is easy to show that all fragile
graphs G on at least four vertices satisfy |E(G)| ⩽ 2.5|V (G)| − 5 (we supply the proof
in Section 3 for the sake of completeness). So the average degree of G is smaller than 5.
Thus every fragile graph contains a vertex of degree at most 4, and this is best possible
as shown by the graph in Figure 1. Every fragile graph is therefore 5-colourable.

Despite recent progress on related questions, there is no available proof that the num-
ber 5 of colours can be improved. The objective of this paper is to prove the following
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Minimum degree 4 Chromatic number 4

Figure 1: Graphs with no 3-connected subgraph.

theorem that implies that every fragile graph is 4-colourable. It was announced without
proof in [3] (which also contains a thorough literature review) and was independently
rediscovered by the first two and last two authors of this article.

Theorem 2. For all m ⩾ 4, every graph with chromatic number at least m + 1 has a
3-connected subgraph with chromatic number at least m.

Theorem 2 is best possible as shown by the graph in Figure 1. The proof of Theorem 2
is given in Section 2. Several remarks and open questions are presented in Section 3.

2 Proof of Theorem 2

For every integer m ⩾ 4, a graph G is m-fragile if all 3-connected subgraphs of G are
(m − 1)-colourable. Observe that a fragile graph is m-fragile for all m ⩾ 4. Theorem 2
can be rephrased as: for all m ⩾ 4, every m-fragile graph is m-colourable. To prove
Theorem 2, we shall establish the following stronger statement. By a k-colouring of a
graph G, we mean a function c that associates to each vertex of G an integer in {1, . . . , k}
and such that for all edges xy of G, c(x) ̸= c(y).

Theorem 3. For every integer m ⩾ 4, every m-fragile graph G satisfies the following
four conditions.

1. For all non-adjacent x, y ∈ V (G), G admits an m-colouring c such that c(x) = c(y).

2. For all distinct x, y ∈ V (G), G admits an m-colouring c such that c(x) ̸= c(y).

3. For all distinct x, y, z ∈ V (G), G admits an m-colouring c such that

c(x) /∈ {c(y), c(z)}.

4. For all distinct x, y, z ∈ V (G) that are not all pairwise adjacent, G admits an m-
colouring c such that |{c(x), c(y), c(z)}| = 2.
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Proof. We proceed by induction on |V (G)|. If |V (G)| ⩽ 3, then G obviously satisfies
conditions (1)–(4). For the induction step, suppose |V (G)| ⩾ 4 and that the statement
holds for every graph with fewer vertices than G.

If G is 3-connected, then G satisfies conditions (1)–(4) because by assumption G is
(m−1)-colourable. So G can be coloured with colours 1 tom−1, and colourm is available
to satisfy any of the conditions (1)–(4) (for instance x and y can be recoloured with colour
m to satisfy (1)). Hence we may assume from here on that G is not 3-connected.

Since G is not 3-connected, there exist two induced subgraphs G1, G2 of G such that
V (G) = V (G1)∪V (G2), E(G) = E(G1)∪E(G2), V (G1)\V (G2) ̸= ∅, V (G2)\V (G1) ̸= ∅,
and S = V (G1)∩V (G2) has size at most 2. Moreover, since G is m-fragile, G1 and G2 are
also m-fragile and, as |V (G1)|, |V (G2)| < |V (G)|, we may apply the induction hypothesis
to both G1 and G2.

If S = ∅, the induction step is obvious and we omit the details. So we may set S =
{u, v} (possibly u = v). We have to prove that for each of the precolouring conditions C
among (1)–(4) on any given set X ⊆ V (G) (namely, X = {x, y} for conditions (1) and
(2) and X = {x, y, z} for conditions (3) and (4)) some appropriate 4-colouring exists.
Suppose first that X ⊆ V (G1). Then, by the induction hypothesis, G1 admits a colouring
c1 that satisfies C. By applying (1) or (2) to the vertices u and v of G2 (or trivially if
u = v), and up to a relabeling of the colours, we can force a colouring c2 of G2 such that
c2(u) = c1(u) and c2(v) = c1(v). Note that the case when uv is an edge corresponds to
the usual amalgamation of two colourings on a clique cutset. Hence, c1 ∪ c2 is a colouring
of G that satisfies C. The proof is similar when X ⊆ V (G2). Hence, from here on, we
may assume that

X intersects both V (G1) \ V (G2) and V (G2) \ V (G1). (⋆)

We now prove four claims, from which Theorem 3 trivially follows. Note that, unless
specified otherwise, we shall make no assumption on whether u ̸= v or uv ∈ E(G).

Claim 1. The graph G satisfies (1).

Proof. By (⋆), we may assume that x ∈ V (G1) \ V (G2) and y ∈ V (G2) \ V (G1). Suppose
first that u = v. By (2) applied to G1, let c1 be a colouring of G1 such that c1(x) ̸= c1(u),
and similarly, let c2 be a colouring of G2 such that c2(y) ̸= c2(u). Up to a relabelling of
the colours, we may assume that c1(u) = c2(u) and c1(x) = c2(y). Hence, c1 ∪ c2 is a
colouring of G satisfying (1). So, we may suppose from here on that u ̸= v.

We build three colourings a1, b1 and c1 of G1 and three colourings a2, b2 and c2 of G2

that are represented in Figure 2 for the reader’s convenience.
By (3) applied to x, u, v (in this order) in G1, we obtain a colouring a1 of G1 such

that a1(x) /∈ {a1(u), a1(v)}. Similarly, we obtain a colouring a2 of G2 such that a2(y) /∈
{a2(u), a2(v)}. Up to a relabeling, we may assume that a1(x) = a2(y) = 1, a1(u) =
a2(u) = 2 and a1(v), a2(v) ∈ {2, 3}. If a1(v) = a2(v), then a1 ∪ a2 is a colouring of G that
satisfies (1). Hence, up to symmetry, we may assume that a1(v) = 3 and a2(v) = 2.

By (3) applied to u, x, v in G1, we obtain a colouring b1 of G1 such that b1(u) /∈
{b1(x), b1(v)}. Similarly, we obtain a colouring b2 of G2 such that b2(u) /∈ {b2(y), b2(v)}.
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Figure 2: Colourings obtained in the proof of Claim 1.
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Up to a relabeling, we may assume that b1(x) = b2(y) = 1, b1(u) = b2(u) = 2 and
b1(v), b2(v) ∈ {1, 3}. If b1(v) = b2(v), then b1 ∪ b2 is a colouring of G that satisfies (1).
Hence, we may assume that b1(v) ̸= b2(v). If b2(v) = 3, then a1 ∪ b2 is a colouring of G
that satisfies (1). Hence, we may assume that b1(v) = 3 and b2(v) = 1.

By (3) applied to v, x, u in G1, we obtain a colouring c1 of G1 such that c1(v) /∈
{c1(x), c1(u)}. Similarly, we obtain a colouring c2 of G2 such that c2(v) /∈ {c2(y), c2(u)}.
Up to a relabeling, we may assume that c1(x) = 1 and either c1(u) = 1 and c1(v) = 2
or c1(u) = 2 and c1(v) = 3. Up to a relabeling, we may also assume that c2(y) = 1 and
either c2(u) = 1 and c2(v) = 2 or c2(u) = 2 and c2(v) = 3. If c1(u) = c2(u), then c1 ∪ c2 is
a colouring of G that satisfies (1). Hence, we may assume that c1(u) ̸= c2(u). If c2(u) = 2
(and so c2(v) = 3), then a1 ∪ c2 is a colouring of G that satisfies (1). Hence, we may
assume that c1(u) = 2, c1(v) = 3, c2(u) = 1 and c2(v) = 2.

By (4) applied to x, u, v in G1, we obtain a colouring d1 of G1 such that |{d1(x),
d1(u), d1(v)}| = 2 (note that x, u and v are not pairwise adjacent because a2(u) =
a2(v) implies uv /∈ E(G)). Up to a relabeling, we may assume that d1(x) = 1 and
{d1(x), d1(u), d1(v)} = {1, 2}. If d1(u) = 1 and d1(v) = 2, then d1 ∪ c2 satisfies (1). And
if d1(u) = 2 and d1(v) = 1, then d1 ∪ b2 satisfies (1). Finally, if d1(u) = 2 and d1(v) = 2,
then d1 ∪ a2 satisfies (1). The claim is proved.

Claim 2. The graph G satisfies (3).

Proof. If x ∈ {u, v} (say x = u up to symmetry), then by (⋆) we may assume that
y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1). If u ̸= v, then by (3) applied separately to
x, v and y in G1 and to x, v and z in G2, we obtain up to a relabeling a colouring a1 of
G1 and a colouring a2 of G2 such that a1(x) = a2(x) = 1, a1(v) = a2(v) = 2, a1(y) ̸= 1
and a2(z) ̸= 1. Hence, a1 ∪ a2 is a colouring of G that satisfies (3). If u = v, then by (2)
applied separately to x and u in G1 and to y and u in G2, we obtain up to a relabeling a
colouring a1 of G1 and a colouring a2 of G2 such that a1(x) = a2(x) = 1, a1(y) ̸= 1 and
a2(z) ̸= 1. Hence, a1 ∪ a2 is a colouring of G that satisfies (3). We may therefore assume
that x /∈ {u, v}, and so up to symmetry that x ∈ V (G1) \ V (G2).

Hence, by (⋆) and up to symmetry, we may restrict our attention to the following two
cases.

Case 1: x ∈ V (G1) \ V (G2) and y, z ∈ V (G2).
If uv ∈ E(G) (so in particular u ̸= v), then by (3) applied to x, u and v and up

to a relabeling, there exists a colouring a1 of G1 such that a1(x) = 1, a1(u) = 2, and
a1(v) = 3. We claim that there exists a colouring a2 of G2 that requires at most m − 1
colours for u, v, y, z. If m ⩾ 5, this is trivial, so suppose m = 4. Then the graph
induced by u, v, y and z is not a complete graph on four vertices, because such a graph
is 3-connected with chromatic number 4 and would imply that G is not m-fragile. Hence,
either |{u, v, y, z}| ⩽ 3 or there are non-adjacent vertices among u, v, y and z. In either
case, there exists a colouring a2 of G2 that requires at most m − 1 = 3 colours for u,
v, y, z (trivially if |{u, v, y, z}| ⩽ 3 or by applying (1) to a non-edge otherwise). This
proves our claim. Up to a relabeling, we may assume that a2(u) = 2, a2(v) = 3 and
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{a2(y), a2(z)} ⊆ {2, . . . ,m}. Hence, a1 ∪ a2 is a colouring of G satisfying (3). We may
therefore assume from here on that uv /∈ E(G).

Suppose that there exists a colouring a1 of G1 such that a1(x) ̸= a1(u) = a1(v) (this
is the case when u = v because of (2) applied to x and u in G1). So, up to a relabeling,
we may assume a1(x) = 1 and a1(u) = a1(v) = 2. Then by (1) applied to u and v in
G2 (or trivially if u = v), there exists a colouring a2 of G2 such that a2(u) = a2(v).
Hence, |{a2(u), a2(v), a2(y), a2(z)}| ⩽ 3. So, up to a relabeling, we may assume that
a2(u) = a2(v) = 2 and {a2(y), a2(z)} ⊆ {2, 3, 4}. So a1 ∪ a2 is a colouring of G that
satisfies (3). We may therefore assume that no colouring as a1 exists. In particular,
u ̸= v.

Hence, when applying (3) to x, u and v, up to a relabeling, we obtain a colouring b1
of G1 such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And when applying (4) to x, u and v
(which is allowed since uv /∈ E(G)), up to a relabeling and to the symmetry between
u and v, we obtain a colouring c1 of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

By (2) applied to u and v, there exists a colouring d2 of G2 such that d2(u) ̸= d2(v). If
|{d2(u), d2(v), d2(y), d2(z)}| ⩽ 3, then up to a relabeling, we may assume that d2(u) = 2,
d2(v) = 3 and {d2(y), d2(z)} ⊆ {2, 3, 4}, So b1 ∪ d2 is a colouring of G that satisfies (3).
And if |{d2(u), d2(v), d2(y), d2(z)}| = 4, then we may assume up to a relabeling that
d2(u) = 1, d2(v) = 2, d2(y) = 3 and d2(z) = 4, so c1 ∪ d2 is a colouring that satisfies (3).

Case 2: x, y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1).
By (3) applied to x, y and u, up to a relabeling, we obtain a colouring a1 of G1 such

that a1(x) = 1, a1(y) = 2 and a1(u) ∈ {2, 3}. If a1(v) ̸= 1, then colour 1 is not used on
u or v under a1. By (1) or (2) applied to u and v (or just trivially if u = v), we obtain
up to a relabeling a colouring a2 of G2 such that a2(u) = a1(u) and a2(v) = a1(v). Thus,
colour 1 is not used on u or v under a2 either and so, up to a relabeling, we may assume
that a2(z) ̸= 1. Hence a1 ∪ a2 is a colouring of G that satisfies (3). We may therefore
assume that a1(v) = 1 (so u ̸= v).

By (3) applied to v, u and z, up to a relabeling, we obtain a colouring b2 of G2 such
that b2(v) = 1, b2(u) = a1(u) and b2(z) ̸= 1. Hence a1 ∪ b2 is a colouring of G that
satisfies (3).

Claim 3. The graph G satisfies (2).

Proof. By Claim 2, we may apply (3) to x, y and any vertex of G. We obtain a colouring
of G that satisfies (2).

Claim 4. The graph G satisfies (4).

Proof. By (⋆), we may assume that x ∈ V (G1)\V (G2), y ∈ V (G2) and z ∈ V (G2)\V (G1).
Moreover, we suppose that if y ∈ {u, v}, then y = v.

Suppose that uv ∈ E(G) (in particular, u ̸= v). Then by (3) applied to x, u and v
and up to a relabeling, there exists a colouring a1 of G1 such that a1(x) = 1, a1(u) =
2 and a1(v) = 3. By (3) applied to u, y and z (that are distinct since y ̸= u and
z ∈ V (G2) \ V (G1)) and up to a relabeling, we obtain a colouring a2 of G2 such that
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a2(u) = 2, a2(v) = 3 and {a2(y), a2(z)} is either {3, 1}, {3} or {4}. In either case, a1 ∪ a2
is a colouring of G satisfying (4). We may therefore assume from here on that uv /∈ E(G).

Suppose that there exists a colouring a1 of G1 such that a1(x) ̸= a1(u) = a1(v) (this
is the case when u = v because of (2) applied to x and u in G1). Then up to a relabeling
we may assume that a1(x) = 1 and a1(u) = a1(v) = 2. By (1) applied to u and v
in G2 (or trivially if u = v), there exists up to a relabeling a colouring a2 of G2 such
that a2(u) = a2(v) = 2. If a2(y) = a2(z), then up to relabeling, we may assume that
a2(y) = a2(z) ̸= 1, so (4) is satisfied by a1 ∪ a2. And if a2(y) ̸= a2(z), then up to a
relabeling, we may assume a2(y) = 1 or a2(z) = 1, and (4) is again satisfied by a1 ∪ a2.
We may therefore assume that no colouring as a1 exists. In particular, u ̸= v.

Hence, when applying (3) to x, u and v, up to a relabeling, we obtain a colouring b1
of G1 such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And when applying (4) to x, u and
v (which is allowed since uv /∈ E(G)), up to a relabeling and to the symmetry between u
and v, we obtain a colouring c1 of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

On the other hand, by (2) applied to u and v, there exists a colouring d2 of G2 such that
d2(u) ̸= d2(v). If d2(y) = d2(z), then up to a relabeling, we may assume that d2(u) = 2,
d2(v) = 3 and d2(y) ̸= 1. Thus, b1 ∪ d2 is a colouring that satisfies (4). Hence, from here
on, we may assume that d2(y) ̸= d2(z).

If |{d2(u), d2(v), d2(y), d2(z)}| ⩾ 3, then we may assume up to a relabeling that
d2(u) = 2, d2(v) = 3 and 1 ∈ {d2(y), d2(z)}, so b1 ∪ d2 is a colouring that satisfies (4). If
|{d2(u), d2(v), d2(y), d2(z)}| = 2, then up to a relabeling, we may assume that d2(u) = 1,
d2(v) = 2, so that {d2(y), d2(z)} = {1, 2}. So c1 ∪ d2 is a colouring of G that satis-
fies (4).

Theorem 3 immediately follows from Claims 1–4.

3 Conclusion and open questions

We collect here several remarks and open questions.

3.1 Fragile graphs have average degree less than 5

As announced in the introduction, we recall the proof that every fragile graph G on at
least four vertices satisfies |E(G)| ⩽ 2.5|V (G)|− 5. When G has 4 vertices, the inequality
holds since the graph on 4 vertices and 6 edges is a complete graph and is 3-connected.
For the induction step, we decompose G into G1 and G2 as in the previous section. If
|V (G1)| ⩽ 3, then G contains a vertex x of degree at most 2. Hence,

|E(G)| ⩽ |E(G \ x)|+ 2 ⩽ 2.5|V (G \ x)| − 5 + 2 = 2.5(|V (G)| − 1)− 3 ⩽ 2.5|V (G)| − 5.

We may therefore assume that |V (G1)| ⩾ 4 and symmetrically |V (G2)| ⩾ 4. Hence the
induction hypothesis can be applied to both G1 and G2 so that the result follows from
these inequalities:
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|E(G)| ⩽ |E(G1)|+ |E(G2)|
⩽ 2.5|V (G1)| − 5 + 2.5|V (G2)| − 5

= 2.5(|V (G1)|+ |V (G2)|)− 10

⩽ 2.5(|V (G)|+ 2)− 10

= 2.5|V (G)| − 5.

We do not know whether a fragile graph with minimum degree 4 and chromatic num-
ber 4 exists.

3.2 Girth conditions

It is easy to prove by induction that every fragile graph of girth at least 4 on at least 3
vertices satisfies |E(G)| ⩽ 2|V (G)| − 4 (the proof is as in Section 3.1). This implies
that every fragile graph with girth at least 4 contains a vertex of degree at most 3, so is
4-colourable. We tried to improve this bound, but we instead found a fragile graph with
girth 4 and chromatic number 4, as we now present.

a

b

x x′

y1

y2

y3

y4

z1

z2 z3

z4
u

v

Figure 3: The graph G1.

Let G1 be the graph represented in Figure 3. It has girth 4 and is 2-degenerate; so in
particular it is fragile and has chromatic number at most 3. For all 3-colourings of G1,
vertices a and b receive different colours. Indeed, suppose for a contradiction that for
some 3-colouring of G1, a and b receive the same colour, say colour 1. Then, one of x
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and x′, say x up to symmetry, must receive a colour different from 1, say colour 2. So,
the vertices y1, . . . , y4 must all receive the same colour, say colour 3. It follows that the
vertices z1, . . . , z4 are coloured with colour 1 and 2 alternately. Hence, u receives colour 3.
Now, v has three neighbors, namely a, x and u that are coloured with colours 1, 2 and 3
respectively, a contradiction.

It follows that the triangle-free graph G2 represented in Figure 4 is not 3-colourable,
but it is fragile since {a′, b′} is a cutset, and G1 is 2-degenerate even if two vertices adjacent
to a and b are added.

a′

b′

a

b

Figure 4: The graph G2.

We could also obtain a fragile graph with no cycle of length 4 and chromatic number 4,
see Figure 5.

Figure 5: A fragile graph with no cycle of length 4 and chromatic number 4.

This raises the following question: Is there a finite girth that makes fragile graphs
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3-colourable? A possible approach could be to prove that if the girth of a fragile graph
is large enough, then the graph is 2-degenerate. But this approach fails because of the
following construction. Consider an integer g ⩾ 3 and a connected cubic graph G of girth
g (this exists, see for instance [1]). Remove an edge uv of G. This yields a 2-degenerate,
and therefore fragile graph. Consider a copy G′ of G \ uv, with the vertices u′ and v′

corresponding to u and v respectively. Now add an edge uu′ and an edge vv′. The
obtained graph is fragile, cubic and has girth g.

Trivially, a graph G is fragile if and only if every subgraph H of G is either on at
most 3 vertices or admits a cutset of size at most 2. In fragile graphs of girth at least 4,
one can further impose the cutset to be an independent set.

Lemma 4. A graph G with girth at least 4 is fragile if and only if every subgraph H of G
is either on at most 2 vertices or admits an independent cutset of size at most 2.

Proof. We prove the statement by induction on |V (G)|. The equivalence can be checked
to hold on graphs of up to 3 vertices. If |V (G)| ⩾ 4, then since G is not 3-connected, it
admits a cutset S of size at most 2. Suppose that S is not independent, so S = {u, v}
and uv ∈ E(G). Let C be a connected component of G \ S. Since G has girth at least 4,
no vertex of C is adjacent to both u and v. Hence, if |C| = 1, G admits a cutset of
size 1 (and therefore independent). So we may assume that |C| ⩾ 2. So, by the induction
hypothesis, G[S ∪ C] admits an independent cutset S ′. It is easy to check that S ′ is also
a cutset of G.

3.3 Algorithms

By subdividing twice every edge of any graph G, a fragile graph G′ is obtained. Poljak [4]
proved that α(G′) = α(G) + |E(G)|. It follows that a polynomial-time algorithm that
computes a maximum independent set for any fragile graph would yield a similar algorithm
for all graphs. This proves that computing a maximum independent set in a fragile graph
is NP-hard.

We also observe that, in G′, every edge uv becomes a path uxuvyuvv. Consider the
graph G′′ obtained from G′ by adding, for every vertex xuv, a new vertex x′

uv adjacent
to u, xuv and yuv. It is easy to check that G′′ is fragile and for all 3-colourings of G′′

and all edges uv of G, u and v have different colours (in G′′). It follows that if G′′ is
3-colourable, then so is G. Conversely it is easy to check that if G is 3-colourable, so is
G′′. This proves that deciding whether a fragile graph is 3-colourable is NP-complete. By
the same kind of argument, we can prove that deciding whether a graph is 3-colourable
stays NP-complete even when we restrict ourselves to fragile triangle-free graphs. To see
this, pick any graph G, remove all edges uv, and replace them by a copy of the graph
G1 from Figure 3 with a identified to u and b identified to v. This yields a triangle-free
fragile graph that is 3-colourable if and only if G is 3-colourable.

Our proof that every fragile graph is 4-colourable yields an algorithm that actually
computes a 4-colouring. A crude implementation of this algorithm would run in expo-
nential time, but it is easy to turn it into a polynomial time algorithm by maintaining
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for each 2-tuples and 3-tuples X of vertices of the input graph, a colouring satisfying the
constraints (1)–(4) when applicable to X.
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