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Abstract

This paper shows that Kt-minor-free (and Ks,t-minor-free) graphs G are
subgraphs of products of a tree-like graph H (of bounded treewidth) and a
complete graph Km. Our results include optimal bounds on the treewidth of H

and optimal bounds (to within a constant factor) on m in terms of the number of
vertices of G and the treewidth of G. These results follow from a more general
theorem whose corollaries include a strengthening of the celebrated separator
theorem of Alon, Seymour, and Thomas [J. Amer. Math. Soc. 1990] and the
Planar Graph Product Structure Theorem of Dujmović et al. [J. ACM 2020].

1 Introduction

Graph Product Structure Theory is a body of research which describes complicated
graphs as subgraphs of products of simpler graphs. Typically, the simpler graphs are
tree-like, in the sense that they have bounded treewidth, which is the standard measure
of how similar a graph is to a tree. (We postpone the definition of treewidth and other
standard graph-theoretic concepts until Section 2.) This area has recently received a lot
of attention [2, 6, 7, 10, 15, 17, 19, 20, 25–27, 40] with highlights including the Planar
Graph Product Structure Theorem of Dujmović et al. [15]; see Theorem 7 below.

Our main contribution is a powerful general result, Theorem 12, that essentially converts
a tree-decomposition of a graph excluding a particular minor into a product that inherits
some of the properties of the decomposition. Its applications include a strengthening of
the celebrated Alon–Seymour–Thomas separator theorem as well as the Planar Graph
Product Structure Theorem.
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Throughout the paper we work with strong products of graphs. The strong product A⊠B

of graphs A and B has vertex-set V (A) × V (B), where distinct vertices (v, x), (w, y)
are adjacent if v = w and xy ∈ E(B), or x = y and vw ∈ E(A), or vw ∈ E(A) and
xy ∈ E(B). This paper focuses on products of the form H ⊠ Km and H ⊠ P ⊠ Km

where H is a graph of bounded treewidth, P is a path and m is some function of the
original graph. An alternative view of the product H ⊠ Km is as a ‘blow-up’ of the
graph H, obtained by replacing each vertex of H be a copy of the complete graph Km

and each edge of H by a copy of the complete bipartite graph Km,m.

In one of the cornerstone results of Graph Minor Theory, Alon, Seymour, and Thomas [1]
proved that every Kt-minor-free graph has a balanced separator of size at most t3/2n1/2.
In fact, they proved the following stronger result.1

Theorem 1 ([1]). Every n-vertex Kt-minor-free graph G has treewidth tw(G) < t3/2n1/2.

Our first result is the following strengthening of Theorem 1 that describes Kt-minor-free
graphs as blow-ups of simpler graphs, namely graphs with bounded treewidth.

Theorem 2. For any integer t ⩾ 4, every n-vertex Kt-minor-free graph G is

(a) isomorphic to a subgraph of H ⊠ K⌊m⌋, where tw(H) ⩽ t − 1 and m :=
√

(t − 3)n;
(b) isomorphic to a subgraph of H ⊠K⌊m⌋, where tw(H) ⩽ t − 2 and m := 2

√
(t − 3)n.

Theorem 2(a) immediately implies Theorem 1, since

tw(G) ⩽ tw(H ⊠ K⌊m⌋) ⩽ (tw(H) + 1)m − 1 < t
√

(t − 3)n.

The dependence on n in the blow-up factor m is best possible since the n1/2 ×n1/2 planar
grid graph G is K5-minor-free and has treewidth n1/2. If G is isomorphic to a subgraph
of H ⊠ Km where H has bounded treewidth, then n1/2 ⩽ tw(G) ⩽ (tw(H) + 1)m − 1
and so m = Ω(n1/2). The dependence on t is discussed in Section 6; see Q1 there.

While our proof of Theorem 2 uses some ideas from the proof of Theorem 1 (in particular,
Lemma 10 below), it is in fact significantly simpler, avoiding the use of havens or any
form of treewidth duality. Instead, the proof directly constructs an isomorphism from
G to H ⊠ K⌊m⌋ where H is a graph obtained by repeated clique-sums (which implies
the desired treewidth bound).

We also prove the following analogous theorem for excluded complete bipartite minors.
Let K∗

s,t be the graph whose vertex-set can be partitioned A ∪ B, where |A| = s, |B| = t,
A is a clique, B is an independent set, and every vertex in A is adjacent to every vertex
in B, that is, K∗

s,t is obtained from Ks,t by adding all the edges inside the part of size s.
1The balanced separator result follows from Theorem 1 and the separator lemma of Robertson and

Seymour [37, (2.6)].
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Theorem 3. For all integers s, t ⩾ 2, every n-vertex K∗
s,t-minor-free graph G is

isomorphic to a subgraph of H ⊠ K⌊m⌋, where tw(H) ⩽ s and m := 2
√

(s − 1)(t − 1)n.

Again the n1/2 × n1/2 planar grid (which is K3,3-minor-free) shows the dependence on n

in the blow-up factor is best possible—we must have m = Ω(n1/2).

In light of Theorem 1, it is natural to try to qualitatively strengthen Theorems 2 and 3
by bounding the blow-up factor by a function of the treewidth of G, and ideally by a
linear function of tw(G) since if G ⊆ H ⊠ Km and tw(H) = O(1), then m = Ω(tw(G)).
In this direction, Campbell et al. [7, Thm. 18] proved that every Kt-minor-free graph
G is isomorphic to a subgraph of H ⊠ Km where tw(H) ⩽ t − 2 and m = Ot(tw(G)2).
Similarly, they proved [7, Thm. 19] that every Ks,t-minor-free graph G is isomorphic
to a subgraph of H ⊠ Km where tw(H) ⩽ s and m = Os,t(tw(G)2). Here Os,t(·) and
Ωs,t(·) hide dependence on s and t.

We achieve a blow-up factor that is linear in tw(G), and is independent of t for Kt-
minor-free graphs.

Theorem 4. For any integer t ⩾ 2, every Kt-minor-free graph G is isomorphic to a
subgraph of H ⊠ Km, where tw(H) ⩽ t − 2 and m := tw(G) + 1.

The value of m in Theorem 4 is within a factor t − 1 of best possible, since

tw(G) ⩽ tw(H ⊠ Km) ⩽ (tw(H) + 1)m − 1 < (t − 1)m.

Furthermore, the t − 2 bound on the treewidth of H is best possible, since Campbell
et al. [7, Thm. 18] proved that, for any function f and for all t, there is a Kt-minor-free
graph G that is not a subgraph of H ⊠ Kf(tw(G)) for any graph H with treewidth at
most t − 3.

For K∗
s,t-minor-free graphs we also obtain a blow-up factor that is linear in tw(G).

Theorem 5. For all integers s, t ⩾ 2, every K∗
s,t-minor-free graph G is isomorphic to a

subgraph of H ⊠ Km, where tw(H) ⩽ s and m := (t − 1)(tw(G) + 1).

Here the value of m is within a factor (s + 1)(t − 1) of best possible and the tw(H) ⩽ s

bound is best possible [7, Thm. 19].

An attraction of Theorems 3 and 5 is that tw(H) depends on s and not on the size of
the excluded minor. This is particularly relevant for graphs of Euler genus2 g, since
these contain no K3,2g+3-minor. Thus the next result follow from Theorems 3 and 5.

2The Euler genus of a surface with h handles and c cross-caps is 2h + c. The Euler genus of a graph
G is the minimum integer g ⩾ 0 such that G embeds in a surface of Euler genus g; see [33] for more
about graph embeddings in surfaces.
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Corollary 6. For any integer g ⩾ 0, every n-vertex graph G of Euler genus g is
isomorphic to a subgraph of H ⊠ K⌊m⌋, where tw(H) ⩽ 3 and

m := min{4
√

(g + 1)n, 2(g + 1)(tw(G) + 1)}.

Corollary 6 is a product strengthening of results about balanced separators (equivalently,
about treewidth) in graphs embeddable on surfaces of genus g, independently due to
Djidjev [11] and Gilbert, Hutchinson, and Tarjan [23]. In particular, Corollary 6 implies
that tw(G) ⩽ (tw(H) + 1)m − 1 = 4m − 1 < 16

√
(g + 1)n and that G has a balanced

separator of size at most 4m ⩽ 16
√

(g + 1)n. Both these bounds are tight up to the
multiplicative constant.

Theorems 4 and 5 are in fact special cases of a more general result, Theorem 12, that
essentially converts any tree-decomposition of a graph excluding a particular minor into
a strong product. The starting tree-decomposition may be chosen to suit one’s needs.
Making use of this flexibility, we deduce the Planar Graph Product Structure Theorem,
Theorem 7(b).

Theorem 7 ([15]). Every planar graph is isomorphic to a subgraph of :

(a) H ⊠ P for some graph H of treewidth 8 and for some path P .
(b) H ⊠ P ⊠ K3 for some graph H of treewidth 3 and for some path P .

Theorem 7 has been the key tool to resolve several open problems regarding queue
layouts [15], nonrepetitive colouring [14], p-centred colouring [12], adjacency labelling [4,
13, 22], infinite graphs [28], twin-width [2, 5], and comparable box dimension [18].

The bound of 3 on the treewidth of H in (b) is tight [15] even if K3 is replaced by any
constant-sized complete graph. Note that tw(H ⊠ K3) ⩽ 3 tw(H) + 2 for any graph
H, so (b) implies (a) but with 8 replaced by 11. Our proof of Theorem 7(b) removes
much of the topology from the original proof, avoiding the use of Sperner’s planar
triangulation lemma. This allows us to prove a more general H ⊠ P ⊠ Km structure
theorem, Theorem 16, which we apply in the more general setting of apex-minor-free
graphs, Theorem 20. This in turn has applications for p-centred colourings.

2 Preliminaries

We consider simple finite undirected graphs G with vertex-set V (G) and edge-set E(G).
For each vertex v ∈ V (G), let NG(v) = {w ∈ V (G) : vw ∈ E(G)}. For S ⊆ V (G), let
NG(S) = ⋃{NG(v) : v ∈ S} \ S.
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A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a
subgraph of G by contracting edges. Say G is H-minor-free if H is not a minor of G. A
Kr-model in a graph G consists of pairwise-disjoint vertex-sets (U1, . . . , Ur) such that,
for each i, the induced subgraph G[Ui] is connected and, for all distinct i, j, there is an
edge between Ui and Uj . Clearly Kr is a minor of a graph G if and only if G contains a
Kr-model.

2.1 Tree-decompositions and treewidth

A tree-decomposition (T, W) of a graph G consists of a collection W = (Wx : x ∈ V (T ))
of subsets of V (G), called bags, indexed by the nodes of a tree T , such that:

• for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a non-empty
(connected) subtree of T ; and

• for each edge vw ∈ E(G), there is a node x ∈ V (T ) for which v, w ∈ Wx.

The width of such a tree-decomposition is max{|Wx| : x ∈ V (T )} − 1. The treewidth
tw(G) of a graph G is the minimum width of a tree-decomposition of G. Treewidth is
the standard measure of how similar a graph is to a tree. Indeed, a connected graph
has treewidth 1 if and only if it is a tree. Treewidth is of fundamental importance in
structural and algorithmic graph theory; see [3, 24, 36] for surveys.

We use the following property to prove treewidth upper bounds. A graph G is a
clique-sum of graphs G1 and G2, if for some clique {v1, . . . , vk} in G1 and for some
clique {w1, . . . , wk} in G2, G is obtained from the disjoint union of G1 and G2 by
identifying vi and wi for each i.3 In this case, it is well known and easily seen that
tw(G) = max{tw(G1), tw(G2)}.

2.2 Partitions

Instead of working with products, it is convenient to present our proofs using the
following definition. A partition of a graph G is a graph H such that:

• each vertex of H is a set of vertices of G,
• each vertex of G is in exactly one vertex of H, and
• for each edge vw of G, if v ∈ X ∈ V (H) and w ∈ Y ∈ V (H) then XY ∈ E(H) or

X = Y .
3It is common in the literature for clique-sums to allow the deletion of edges after the identification.

In this paper we do not allow this.
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We call the vertices of H the parts of the partition. The width of a partition is the size of
its largest part. The treewidth of a partition H is tw(H). The next observation follows
from the definitions and gives a useful characterisation of when a graph is isomorphic to
a subgraph of a product of the form H ⊠ Km.

Observation 8. A graph G has a partition H of width at most m if and only if G is
isomorphic to a subgraph of H ⊠ K⌊m⌋.

In light of Observation 8, to prove our results it suffices to find a suitable partition. The
following definition enables inductive proofs. A partition H of a graph G is rooted at a
Kr-model (U1, . . . , Ur) in G if U1, . . . , Ur are vertices of H. Note that U1, . . . , Ur must
be the vertices of an r-clique in H.

Finally, it will be useful to measure the ‘complexity’ of a vertex-set with respect to a
tree-decomposition (T, W) of G. For a vertex-set S ⊆ V (G), the W-width of S is the
minimum number of bags of W whose union contains S. The W-width of a collection of
vertex-sets is the maximum W-width of one of its sets. In a slight abuse of terminology,
the W-width of a partition H of G is the maximum W-width of one of the vertices of H.

2.3 Hitting sets

Our proofs use results that say a collection of connected subgraphs of a graph (satisfying
certain conditions) either has a small ‘hitting set’ (a small set of vertices that meets every
subgraph in the collection) or contains some suitable graphs. The following folklore
lemma (see [38, (8.7)]) essentially says that complements of chordal graphs are perfect.
We include the proof for completeness.

Lemma 9. For any integer ℓ ⩾ 0 and any collection F of subtrees of a tree T , either :

(a) there are ℓ + 1 vertex-disjoint trees in F , or
(b) there is set S of at most ℓ vertices such that S ∩ V (T ′) ̸= ∅ for all T ′ ∈ F .

Proof. We proceed by induction on |V (T )|. The |V (T )| = 1 case is immediate. Let x

be a leaf of T and y its unique neighbour. Let T ′ := T − x.

First suppose that T [{x}] is not in F . Let F ′ be obtained by removing x from every
tree in F . By induction, either (a) or (b) occurs for F ′ and T ′. If (a) occurs, then the
corresponding trees in F are also vertex-disjoint (since if two trees of F contain x, then
they also both contain y). If (b) occurs, then the set obtained also meets every tree in
F .
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Second suppose that T [{x}] is in F . Let F ′′ be the set of all trees in F that do not
contain x. So F ′′ is a collection of subtrees of T ′. Now apply induction to F ′′ and T ′

with ℓ − 1 in place of ℓ. If (a) occurs, then these trees together with T [{x}] are ℓ + 1
vertex-disjoint trees in F . If (b) occurs, then this set together with x meets every tree
in F .

In the setting of O(
√

n) blow-ups we need the following hitting set lemma due to Alon,
Seymour, and Thomas [1]. Let F be the collection of connected subgraphs of G that
intersect all of A1, . . . , Ak. Lemma 10 says that F either contains a small graph or has
a small hitting set.

Lemma 10 ([1, (2.1)]). Let G be a graph, A1, . . . , Ak be non-empty subsets of V (G),
and x ⩾ 1 be a real. Then either :

(a) there is a subtree X of G with |V (X)| ⩽ x such that V (X) ∩ Ai ̸= ∅ for each i, or
(b) there is a set Y of at most (k − 1)|V (G)|/x vertices such that no component of

G − Y intersects all of A1, . . . , Ak.

The next result is a straightforward extension of Lemma 10.

Lemma 11. Let G be a graph, A1, . . . , Ak be non-empty subsets of V (G), x ⩾ 1 be a
real, and ℓ ⩾ 1 be an integer. Then either :

(a) there are pairwise disjoint trees X1, . . . , Xℓ in G with |V (Xj)| ⩽ x and such that
V (Xj) ∩ Ai ̸= ∅ for each i and j, or

(b) there is a set Y of at most (ℓ − 1)x + (k − 1)|V (G)|/x vertices such that no
component of G − Y intersects all of A1, . . . , Ak.

Proof. We proceed by induction on ℓ. Lemma 10 proves the result if ℓ = 1. Now assume
that ℓ ⩾ 2 and the result holds for ℓ − 1. If outcome (b) holds for ℓ − 1, then the
same set Y satisfies outcome (b) for ℓ. So assume that (a) holds for ℓ − 1. That is,
there are pairwise disjoint trees X1, . . . , Xℓ−1 in G with |V (Xj)| ⩽ x and such that
V (Xj) ∩ Ai ̸= ∅ for each i and j. Apply Lemma 10 to G′ := G − V (X1 ∪ · · · ∪ Xℓ−1). If
there is a tree Xℓ in G′ with |V (Xℓ)| ⩽ x such that V (Xℓ) ∩ Ai ̸= ∅ for each i, then
X1, . . . , Xℓ are the desired set of trees, and outcome (a) holds. Otherwise there exists
Y ′ ⊆ V (G′) with |Y ′| ⩽ (k−1)|V (G)|/x such that no component of G′ −Y ′ intersects all
of A1, . . . , Ak. Let Y := V (X1 ∪ · · · ∪ Xℓ−1) ∪ Y ′. Thus |Y | ⩽ (ℓ − 1)x + (k − 1)|V (G)|/x

and no component of G − Y intersects all of A1, . . . , Ak (since G′ − Y ′ = G − Y ). That
is, Y satisfies (b).
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3 Main theorem and O(tw(G)) blow-up

We now prove our main technical theorem and deduce Theorems 4 and 5 from it.

The following definition allows the Kt-minor-free and K∗
s,t-minor-free cases to be com-

bined. Let Js,t be the class of graphs G whose vertex-set has a partition A ∪ B, where
|A| = s and |B| = t, A is a clique, every vertex in A is adjacent to every vertex in B,
and G[B] is connected. A graph is Js,t-minor-free if it contains no graph in Js,t as a
minor. The following is our main theorem.

Theorem 12. Let s, t ⩾ 2 be integers, G be a Js,t-minor-free graph, and (T, W) be a
tree-decomposition of G. Then G has a partition of W-width at most t − 1 and treewidth
at most s.

This says that, given a Js,t-minor-free G and a tree-decomposition (T, W) of G, there is
a simple (low treewidth) partition that is also simple with respect to W. Theorem 12
follows immediately from the next lemma (for example, by taking r = 1 and U1 to
consist of a single vertex).

Lemma 13. Let s, t ⩾ 2 be integers, G be a Js,t-minor-free graph, and (T, W) be a
tree-decomposition of G. Suppose that (U1, . . . , Ur) is a Kr-model of W-width at most
t − 1 where r ⩽ s. Then G has a partition of W-width at most t − 1 and treewidth at
most s that is rooted at (U1, . . . , Ur).

Proof. Let U := U1 ∪ · · · ∪ Ur. We proceed by induction on |V (G)|. If V (G) = U , then
(U1, . . . , Ur) is the desired partition H where H = Kr has treewidth r − 1 ⩽ s. Now
assume that V (G) \ U ̸= ∅. Let Ai := NG(Ui) \ U for each i.

First suppose that some Ai is empty, say A1 = ∅. By induction, G − U1 has a partition
H1 of W-width at most t−1 and treewidth at most s that is rooted at (U2, . . . , Ur). Add
a new part U1 adjacent to each of U2, . . . , Ur to obtain the desired H-partition of G. The
neighbourhood of U1 is a clique on r − 1 vertices, so tw(H) = max{tw(H1), r − 1} ⩽ s.
Thus we may assume that Ai is non-empty for all i.

Next suppose that G−U is disconnected. Then there is a partition U, V1, V2 of V (G) into
three non-empty sets such that there is no edge between V1 and V2. Let G1 := G[U ∪ V1]
and G2 := G[U ∪ V2]. For j ∈ {1, 2}, let Wj be the tree-decomposition of Gj obtained
from W by deleting all the vertices of G not in Gj . By induction, each Gj has a partition
Hj of Wj-width at most t − 1 and treewidth at most s that is rooted at (U1, . . . , Ur).
Let H be the partition of G obtained from H1 and H2 by identifying the vertex Ui in
H1 with the vertex Ui in H2 for each i. The graph H is a clique-sum of H1 and H2, so
tw(H) = max{tw(H1), tw(H2)} ⩽ s. Since every bag of W1 and W2 is a subset of a bag
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of W , the partition H has W-width at most t − 1. Thus we may assume that G − U is
connected.

We now show there exists a set Y ⊆ V (G) \ U of W-width at most t − 1 such that

no component of G − U − Y meets every Ai. (†)

Let F be the collection of all connected subgraphs F of G − U such that V (F ) ∩ Ai ̸= ∅
for all i. For each F ∈ F , let TF := T [{x ∈ V (T ) : Wx ∩ V (F ) ̸= ∅}]. Since F is
connected, TF is a (connected) subtree of T .

First consider the case r ⩽ s − 1.

First suppose there exists F1, F2 ∈ F such that TF1 and TF2 are disjoint. Let xy be any
edge of T on the shortest path between TF1 and TF2 . Then Wx ∩ Wy separates4 V (F1)
and V (F2). Let S be a minimal subset of Wx ∩ Wy that separates V (F1) and V (F2).
By construction, S has W-width 1, S ∩ V (F1) = ∅, and S ∩ V (F2) = ∅. Then there
is a partition S ∪ V1 ∪ V2 of V (G) \ U such that V (F1) ⊆ V1, V (F2) ⊆ V2 and there is
no edge between V1 and V2. We now show that G[S ∪ V1] and G[S ∪ V2] are connected.
Consider some s ∈ S. Since S is minimal, there is a path from s to V (F1) internally
disjoint from S ∪ V (F2). Since there is no edge between V1 and V2, this path must lie
entirely inside S ∪ V1. Since F1 is connected, between any two vertices of S there is a
path entirely inside S ∪ V1. Since G − U is connected, there is a path from any vertex
of V1 to S inside S ∪ V1. Hence G[S ∪ V1] is connected. Similarly for G[S ∪ V2]. For
j ∈ {1, 2}, let Gj be the graph obtained from G by contracting all of S ∪ Vj into a
single vertex vj . Each Gj is a minor of G and thus is Js,t-minor-free. Furthermore, since
V (Fj) ⊆ Vj , (U1, . . . , Ur, {vj}) is a Kr+1-model in Gj . Let Wj be the tree-decomposition
of Gj obtained from W by replacing every instance of a vertex in S ∪ Vj by vj. By
induction, each Gj has a partition Hj of Wj-width at most t − 1 and treewidth at most
s that is rooted at (U1, . . . , Ur, {vj}). Let H be obtained from the disjoint union of H1

and H2 by identifying corresponding Ui, and identifying v1 and v2 into a single vertex S.
If X ⊆ V (Gj) \ {vj} is a subset of a bag of Wj, then X is a subset of a bag of W. So
if X ⊆ V (Gj) \ {vj} has Wj-width at most t − 1, then X has W-width at most t − 1.
Since S also has W-width 1 ⩽ t − 1, the partition H has W-width at most t − 1. The
graph H is a clique-sum of H1 and H2, so tw(H) ⩽ max{tw(H1), tw(H2)} ⩽ s and the
partition has all the required properties.

Now assume that TF1 and TF2 intersect for all F1, F2 ∈ F . By the Helly property, there
is a node x ∈ V (T ) such that x ∈ V (TF ) for all F ∈ F . Let Y := Wx. Then Y has
W-width 1 and intersects every F ∈ F . Thus G − U − Y contains no graph of F and

4Given a graph G and V1, V2 ⊆ V (G), a set S separates V1 and V2 if no connected component of
G − S contains a vertex of both V1 and V2.
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so every component of G − U − Y avoids some Ai. This Y satisfies (†).

Now consider the case r = s.

Suppose that F contains t vertex-disjoint graphs F1, . . . , Ft. Since G − U is connected,
there is a partition Q1, . . . , Qt of V (G)\U such that V (Fi) ⊆ Qi and G[Qi] is connected,
for all i. Contract each Qi to a single vertex qi and each Ui to a single vertex ui

to get a graph G′ with vertex-set {u1, . . . , us, q1, . . . , qt}. Since G − U is connected,
G′[{q1, . . . , qt}] is connected and so G′ ∈ Js,t, a contradiction. Hence, there are no t

vertex-disjoint graphs in F . For any F1, F2 ∈ F , if TF1 and TF2 are disjoint, then F1

and F2 are disjoint. So {TF : F ∈ F} contains no t pairwise disjoint subtrees. Thus,
by Lemma 9, there is a set S ⊆ V (T ) of size at most t − 1 that meets every TF . Let
Y := ⋃

x∈S Wx. Then Y has W-width at most t − 1 and intersects every F ∈ F . This Y

satisfies (†).

We have shown in all cases that there exists Y ⊆ V (G) \ U satisfying (†). Take a
minimal such Y . Let G1, . . . , Gr be unions of components of G − U − Y such that
V (G1), . . . , V (Gr) is a vertex-partition of V (G) − U − Y and V (Gj) ∩ Aj = ∅ for each
j. Some Gj may be empty; ignore such indices henceforth. Fix j and consider w ∈ Y .
Since Y is minimal, there is a component of G − U − (Y \ {w}) that meets every Ai.
Since Y satisfies (†), this component contains w. In particular, there is a path Pw from
w to Aj in G−U − (Y \{w}). Pw cannot meet Gj otherwise G−U −Y has a component
meeting Aj and Gj. Hence, for every w ∈ Y , there is a path Pw from w to Aj that
avoids V (Gj) ∪ U . Let Zj be the subgraph induced by the union of Uj and all Pw (where
w ∈ Y ). By construction, Zj is connected and disjoint from V (Gj) ∪ (U \ Uj).

Take the subgraph of G induced by V (Gj) ∪ Zj ∪ U and contract Zj into a new vertex
zj. Call the graph obtained G′

j, which has vertex-set V (Gj) ∪ (U \ Uj) ∪ {zj}. Now
(Ui : i ̸= j, {zj}) is a Kr-model in G′

j. Let Wj be the tree-decomposition of G′
j obtained

from W by deleting vertices of G not in V (Gj) ∪ Zj ∪ U , and then replacing each vertex
in Zj by zj . By induction, G′

j has a partition Hj of Wj-width at most t−1 and treewidth
at most s that is rooted at (Ui : i ̸= j, {zj}). Add to Hj the vertex Uj adjacent to all
other Ui and to {zj}. Since the neighbourhood of this added vertex is a clique of order
r ⩽ s, Hj still has treewidth at most s. Let H be obtained from the disjoint union
of H1, . . . , Hr, by identifying corresponding Ui, and identifying z1, . . . , zr into a single
vertex Y . Note that if X ⊆ V (Gj) \ {zj} is a subset of a bag of Wj , then X is a subset
of a bag of W . So if X ⊆ V (Gj)\{zj} has Wj-width at most t−1, then X has W-width
at most t − 1. Since Y has W-width at most t − 1, the partition H has W-width at
most t − 1. The graph H is a clique-sum of H1, . . . , Hr, so tw(H) ⩽ maxj tw(Hj) ⩽ s.

We finally check that H is a partition of G. The vertices U1, . . . , Ur, Y form a clique in
H, so all edges of G inside Y ∪ U appear in H. Every edge inside Gj appears in G′

j − zj ,
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thus appears in Hj and hence in H. Any edge between U and Gj is, by definition of Gj ,
an edge between Gj and U \ Uj so appears in G′

j − zj and hence in H. Finally consider
edges between Y and Gj. Let vw be an edge with v ∈ V (Gj) and w ∈ Y . Note that
w ∈ Zj and so the edge vzj is present in G′

j and hence in Hj . Since zj is replaced by Y ,
the edge vw is in H.

Applying Theorem 12 to a tree-decomposition of minimum width gives the following.

Theorem 14. For all integers s, t ⩾ 2, every Js,t-minor-free graph G is isomorphic to
a subgraph of H ⊠ Km, where tw(H) ⩽ s and m := (tw(G) + 1)(t − 1).

Proof. Let G be a Js,t-minor-free graph. Fix a tree-decomposition (T, W) of G in which
every bag has size at most tw(G) + 1. By Theorem 12, G has a partition H of W-width
at most t − 1 where tw(H) ⩽ s. Since each bag of W has size at most tw(G) + 1, the
partition has width at most (t − 1)(tw(G) + 1) = m. Hence, by Observation 8, G is
isomorphic to a subgraph of H ⊠ Km.

Observe that Jt−2,2 = {Kt} so every Kt-minor-free graph is Jt−2,2-minor-free. Hence
Theorem 14 implies Theorem 4. Clearly, K∗

s,t is a subgraph of every graph in Js,t and so
every K∗

s,t-minor-free graph is Js,t-minor-free. Hence, Theorem 14 implies Theorem 5.

4 Layered treewidth: planar and apex-minor-free graphs

A layering of a graph G is a partition L = (V1, V2, . . . ) of V (G) such that for each edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj, then |i − j| ⩽ 1. A layering of G is equivalent to a
partition P of G where P is a path. The next observation, first noted in [15], gives a
useful characterisation of when a graph is isomorphic to a subgraph of a product of the
form H ⊠ P ⊠ Km.

Observation 15 ([15]). A graph G has a layering L and a partition H such that
each layer of L and each part of H intersect in at most m vertices if and only if G is
isomorphic to a subgraph of H ⊠ P ⊠ Km for some path P .

Proof. Suppose that G is isomorphic to a subgraph of H ⊠ P ⊠ Km where V (H) =
{x1, . . . , xh}, V (P ) = {y1, y2, . . .}, and V (Km) = {z1, . . . , zm}. Then the isomorphism
maps each vertex v of G to (xa(v), yb(v), zc(v)) where v 7→ (a(v), b(v), c(v)) is injective.
Let L have layers Vi = {v : b(v) = i} and the partition H have parts {v : a(v) = j} for
j ∈ {1, . . . , h}. Since c(v) takes at most m values, each layer and part have at most m

vertices in common.
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Reversing this identification converts a suitable layering L and partition H into an
isomorphism from G to a subgraph of H ⊠ P ⊠ Km.

The layered treewidth ltw(G) of a graph G is the minimum integer k for which G has a
layering L and tree-decomposition (T, W) such that |L ∩ W | ⩽ k for each layer L ∈ L
and each bag W ∈ W . This notion was independently introduced by Dujmović, Morin,
and Wood [16] and Shahrokhi [39]. Theorem 12 has the following corollary.

Theorem 16. For all integers s, t ⩾ 2, every Js,t-minor-free graph G is isomorphic to
a subgraph of H ⊠ P ⊠ Km, where P is a path, tw(H) ⩽ s, and m := (t − 1) ltw(G).

Proof. Let G be a Js,t-minor-free graph. Fix a layering L and tree-decomposition (T, W)
of G such that |L ∩ W | ⩽ ltw(G) for every layer L ∈ L and each bag W ∈ W. By
Theorem 12, G has a partition H of W-width at most t − 1 where tw(H) ⩽ s.

Let X ∈ V (H) be a part and L ∈ L be a layer. Since the partition has W-width at most
t−1, there are bags W1, . . . , Wt−1 ∈ W such that X ⊆ ⋃t−1

i=1 Wi. Since |L∩Wi| ⩽ ltw(G)
for each i, |X ∩ L| ⩽ (t − 1) ltw(G). The result now follows from Observation 15.

Again, since Jt−2,2 = {Kt} and K∗
s,t is a subgraph of every graph in Js,t, Theorem 16

has the following corollaries.

Theorem 17. For any integer t ⩾ 2, every Kt-minor-free graph G is isomorphic to a
subgraph of H ⊠ P ⊠ Km, where P is a path, tw(H) ⩽ t − 2, and m := ltw(G).

Theorem 18. For all integers s, t ⩾ 2, every K∗
s,t-minor-free graph G is isomorphic to

a subgraph of H ⊠ P ⊠ Km, where P is a path, tw(H) ⩽ s, and m := (t − 1) ltw(G).

The Planar Graph Product Structure Theorem (Theorem 7(b)) follows from Theorem 17
(with t = 5) and the fact that every planar graph has layered treewidth at most 3, as
proved by Dujmović et al. [16]. We sketch the proof for completeness.

Theorem 19 ([16, Thm. 12]). Every planar graph has layered treewidth at most 3.

Proof Sketch. We may assume that G is a planar triangulation. Let T be a breadth-
first-search spanning tree rooted at an arbitrary vertex r. Let G∗ be the dual of G

and T ∗ be the spanning subgraph of G∗ consisting of those edges not dual to edges
in T . Von Staudt [41] showed that T ∗ is a spanning tree of G∗. For each vertex x

of T ∗, corresponding to face uvw of G, let Wx be the union of the ur-path in T , the
vr-path in T , and the wr-path in T . Eppstein [21] showed that (Wx : x ∈ V (T ∗)) is a
tree-decomposition of G. Let Vi := {v ∈ V (G) : distG(v, r) = i} and so (V0, V1, . . . ) is a
layering of G. Since T is a breadth-first-search spanning tree, each bag Wx has at most
three vertices in each layer Vi. Hence ltw(G) ⩽ 3.
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We now show that the bound in Theorem 19 is tight. Suppose on the contrary that
ltw(G) ⩽ 2 for every planar graph G. Then each layer induces a subgraph with treewidth
1, which is thus a forest. Taking alternate layers, G has a vertex-partition into two
induced forests (which would imply the 4-colour theorem). Chartrand and Kronk [8]
constructed planar graphs G that have no vertex-partition into two induced forests,
implying ltw(G) ⩾ 3.

Theorem 7 is generalised as follows. The vertex-cover number τ(G) of a graph G is the
size of a smallest set S ⊆ V (G) such that every edge of G has at least one end-vertex in
S. By definition, G is a subgraph of every graph in Jτ(G),|V (G)|−τ(G). A graph X is apex
if X − v is planar for some vertex v ∈ V (X). Dujmović et al. [16] showed that for any
graph X, the class of X-minor-free graphs has bounded layered treewidth if and only if
X is apex. Thus, the next result follows from Theorem 18.

Theorem 20. For every apex graph X there exists m ∈ N, such that every X-minor-free
graph is isomorphic to a subgraph of H ⊠P ⊠Km, where P is a path and tw(H) ⩽ τ(X).

Dujmović et al. [15] proved a similar result to Theorem 20, but with a much larger
bound on tw(H) (depending on constants from the Graph Minor Structure Theorem).

Theorem 20 has applications to p-centred colouring, as we now explain. For p ∈ N, a
vertex colouring of a graph G is p-centred if for every connected subgraph X of G, X

receives more than p colours or some vertex in X receives a unique colour. The p-centred
chromatic number χp(G) is the minimum number of colours in a p-centred colouring of
G. Centred colourings are important within graph sparsity theory as they characterise
graph classes with bounded expansion [34]. A result of Dębski, Felsner, Micek, and
Schröder [12, Lem. 8] implies that χp(H ⊠ P ⊠ Km) ⩽ m(p + 1)χp(H) for every graph
H. Pilipczuk and Siebertz [35, Lem. 15] proved that every graph of treewidth at most t

has p-centred chromatic number at most
(

p+t
t

)
⩽ (p + 1)t. In particular, Theorem 20

implies:

Theorem 21. For every apex graph X with τ(X) ⩽ t there exists m ∈ N such that for
every X-minor-free graph G,

χp(G) ⩽ m(p + 1)t+1.

Pilipczuk and Siebertz [35] proved that for every graph X there exists c such that
every X-minor-free graph has p-centred chromatic number O(pc). However, the known
bounds on c are huge (depending on the Graph Minor Structure Theorem). Theorem 21
provides much improved bounds in the case of apex-minor-free graphs. As an example,
since K∗

3,t is apex with τ(K∗
3,t) ⩽ 3, Theorem 21 implies there exists m = m(t) such

that χp(G) ⩽ m(p + 1)4 for every K∗
3,t-minor-free graph G. This bound is only slightly
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greater than the best bound for planar graphs of O(p3 log p), and for graphs of Euler
genus g (which are K3,2g+3-minor-free) of O(gp + p3 log p), both due to Dębski et al. [12].

5 Blow-up O(
√

n)

In this section we employ a similar proof strategy but with a different hitting result
(Lemma 11 in place of Lemma 9) to prove Theorems 2 and 3.

Theorem 22. Let s, t, n be positive integers and define

m :=


max{t − 1, 1} if s = 1 or 2,√

(s − 2)n if s ⩾ 3 and t = 1,

2
√

(s − 1)(t − 1)n otherwise.

Then every Js,t-minor-free graph G on n vertices is isomorphic to a subgraph of H⊠K⌊m⌋

for some graph H of treewidth at most s.

Theorem 22 implies Theorems 2 and 3 since Jt−1,1 = Jt−2,2 = {Kt} and K∗
s,t is a

subgraph of every graph in Js,t. Theorem 22 is implied by Observation 8 and the
following lemma.

Lemma 23. Let s, t, n be positive integers and define m as in Theorem 22. Suppose
G is a Js,t-minor-free graph on n vertices and (U1, . . . , Ur) is a Kr-model in G where
r ⩽ s and |Ui| ⩽ m for all i. Then G has a partition of width at most m and treewidth
at most s that is rooted at (U1, . . . , Ur).

Proof. Let U := U1 ∪ · · · ∪ Ur. We proceed by induction on n. If n ⩽ r + m, then
the partition (U1, . . . , Ur, V (G) \ U) is the desired partition H where H = Kr+1 has
treewidth r ⩽ s. Now assume that n > r + m. Note that if n ⩽ t − 1, then n ⩽ m in all
cases and so we may assume that n > t − 1. Let Ai := NG(Ui) \ U for each i.

By the same argument used in the proof of Lemma 13, we may assume that Ai is
non-empty for all i and that G − U is connected.

If r ⩽ s − 1 and there is some Ur+1 of size at most m such that (U1, . . . , Ur+1) is
a Kr+1-model in G, then Lemma 23 for U1, . . . , Ur+1 would imply it is also true for
U1, . . . , Ur (with the same partition). In particular, if r ⩽ s − 1, then we may assume
there is no Ur+1 of size at most m such that (U1, . . . , Ur+1) is a Kr+1-model in G. Call
this property the ‘maximality of r’.
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We now show there exists a set Y ⊆ V (G) \ U of size at most m such that

no component of G − U − Y meets every Ai. (‡)

First suppose that s = 1 and so U = U1. Suppose that |A1| ⩾ t. Let v1, . . . , vt be
distinct vertices in A1. Since G − U is connected, it is possible to partition V (G) \ U

into vertex-sets Q1, . . . , Qt such that for all i, vi ∈ Qi and G[Qi] is connected. Now
contract each Qi into a single vertex qi and U1 into a single vertex u1 to get a graph
G′ on vertex-set {u1, q1, . . . , qt}. Since G − U is connected, G′[{q1, . . . , qt}] is connected
and so G′ ∈ J1,t, a contradiction. Hence |A1| ⩽ t − 1 ⩽ m. Then Y = A1 satisfies (‡).

Next suppose that s = 2. If r = 1, then for any x ∈ A1, the pair (U1, {x}) is a K2-model
in G, which contradicts the maximality of r. Hence r = 2 and U = U1 ∪ U2. Suppose
G − U contains t pairwise vertex-disjoint paths P1, . . . , Pt from A1 to A2. Since G − U is
connected, there is a partition of V (G) \ U into vertex-sets Q1, . . . , Qt such that, for all
i, V (Pi) ⊆ Qi and G[Qi] is connected. Now contract each Qi to a single vertex qi and
each Ui to a single vertex ui to get a graph G′ on vertex-set {u1, u2, q1, . . . , qt}. Since
G−U is connected, G′[{q1, . . . , qt}] is connected and so G′ ∈ J2,t, a contradiction. Thus,
by Menger’s theorem, there is a set Y ⊆ V (G) \ U of size at most t − 1 ⩽ m such that
there is no path from A1 to A2 in G − U − Y . In particular, no component of G − U − Y

meets both A1 and A2 and so Y satisfies (‡). Thus we may assume that s ⩾ 3.

Suppose that r ⩽ s − 1. Apply Lemma 10 to G − U with x =
√

(s − 2)n ⩾ 1 and
k = r. If (a) occurs, then there is a tree T on at most x ⩽ m vertices intersecting each
Ai. Then (U1, . . . , Ur, T ) is a Kr+1-model in G with all parts of size at most m, which
contradicts the maximality of r. Hence, (b) occurs. That is, there is a vertex-set Y of
size at most (r − 1)n/x ⩽ (s − 2)n/x = x ⩽ m such that no component of G − U − Y

meets every Ai. This Y satisfies (‡).

Now assume that r = s. For t = 1 we are done: since G−U is connected, contracting each
of U1, . . . , Us, G − U to a single vertex gives a Ks+1-minor in G, which is a contradiction
since Ks+1 ∈ Js,1. Thus t ⩾ 2. Apply Lemma 11 to G − U with ℓ = t, k = r = s and
x =

√
s−1
t−1 n > 1. Suppose (a) occurs. Then there are pairwise disjoint trees T1, . . . , Tt

in G − U such that each Tj meets each Ai. Since G − U is connected, it is possible to
partition V (G) \ U into vertex-sets Q1, . . . , Qt such that, for all i, V (Ti) ⊆ Qi and G[Qi]
is connected. Now contract each Qi to a single vertex qi and each Ui to a single vertex
ui to get a graph G′ on vertex-set {u1, . . . , us, q1, . . . , qt}. Since G − U is connected,
G′[{q1, . . . , qt}] is connected and so G′ ∈ Js,t, a contradiction. Hence, (b) occurs: there
is a vertex-set Y of size at most (t − 1)x + (s − 1)n/x = m such that no component of
G − U − Y meets every Ai. This Y satisfies (‡).

We have shown in all cases that there exists Y ⊆ V (G) \ U satisfying (‡). We may
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now finish exactly as in the proof of Lemma 13 (with width instead of W-width, so the
argument is even simpler).

Since K∗
2,t is planar and so K∗

2,t-minor-free graphs have bounded treewidth, one would
expect a good bound (independent of n) on the blow-up factor. Campbell et al. [7]
showed that every K∗

2,t-minor-free graph is isomorphic to a subgraph of H ⊠ KO(t3)

where tw(H) ⩽ 2. They state as an open problem whether this O(t3) bound can be
improved to O(t). Theorem 22 for s = 2 gives an affirmative answer to this question.

Theorem 24. For every integer t ⩾ 2, every K∗
2,t-minor-free graph G is isomorphic to

a subgraph of H ⊠ Kt−1, where tw(H) ⩽ 2.

Note that Theorem 24 implies K∗
2,t-minor-free graphs have treewidth O(t), which was

first proved by Leaf and Seymour [31, (4.4)].

6 Concluding Remarks

In the arXiv version of this paper [29] we show that Theorem 2(a), Theorem 3, Theorem 5,
Corollary 6, Theorem 18, Theorem 20, and Theorem 24 can be slightly strengthened by
replacing the bound on the treewidth of H by the same bound on the simple treewidth
of H. In particular, in Theorem 24, H is outerplanar and, in Corollary 6, H is planar
with treewidth at most 3.

We conclude the paper by first discussing some possible ways in which Theorem 2 might
be strengthened. Similar questions can be asked for Ks,t-minor-free graphs. Consider
the following meta-theorem:

Every Kt-minor-free graph G is isomorphic to a subgraph of H ⊠ Km(G)

for some function m and some graph H of treewidth at most f(t). (⋆)

Note that Theorem 2 says that (⋆) holds for m(G) = 2
√

(t − 3)n where n := |V (G)| and
f(t) = t − 2 while Theorem 4 says it holds for m(G) = tw(G) + 1 and f(t) = t − 2.

Q1. Is it possible to improve f(t) in Theorem 2 (possibly sacrificing some dependence
on t in m(G))? In particular, can (⋆) be proved with m(G) = Ot(n1/2) and f(t) = c

for some constant c independent of t? It follows from a result of Linial, Matoušek,
Sheffet, and Tardos [32] that, even for planar graphs, c ⩾ 2. On the other hand, (⋆)
holds with H a star (c = 1) and m(G) = Ot(n2/3), and for any ε > 0 there exists c such
that (⋆) holds with f(t) ⩽ c and m(G) = Ot(n1/2+ε); see [20]. The real interest is when
m(G) = Ot(n1/2).
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As noted in Section 1, there is no corresponding improvement to Theorem 4 since
f(t) = t − 2 is best possible when m(G) is a function of tw(G).

Q2. We highlight the t = 5 case of Q1: is every K5-minor-free n-vertex graph G

isomorphic to a subgraph of H ⊠ KO(
√

n) for some graph H of treewidth at most 2?
Having treewidth at most 2 is equivalent to being K4-minor-free, so this problem is
particularly appealing. It is open even when G is planar.

Q3. Optimising the dependence on t in Theorem 2 is an interesting question. Note that
Kawarabayashi and Reed [30] proved that Kt-minor-free graphs have balanced separators
of order O(t

√
n), which is best possible. Does (⋆) hold with f(t) · m(G) = O(t

√
n)?

Finally we mention a connection to row treewidth. Bose et al. [6] defined the row
treewidth of a graph G to be the minimum treewidth of a graph H such that G is
isomorphic to a subgraph of H ⊠ P for some path P . For example, Theorem 7(a)
says that planar graphs have row treewidth at most 8, which was improved to 6 by
Ueckerdt, Wood, and Yi [40]. It is easily seen that ltw(G) ⩽ rtw(G) + 1 for every graph
G. The next result, which provides a partial converse, follows from Theorem 17 since
tw(H ⊠ Km) ⩽ (tw(H) + 1)m − 1.

Corollary 25. For every Kt-minor-free graph G,

rtw(G) ⩽ (t − 1) ltw(G) − 1.

Corollary 25 is in marked contrast to a result of Bose et al. [6] who constructed graphs
with layered treewidth 1 and arbitrarily large row-treewidth. Thus the Kt-minor-free
(or some other sparsity) assumption in Corollary 25 is necessary.

Q4. For what other graph classes G (beyond those defined by an excluded minor) is
row treewidth bounded by a function of layered treewidth for graphs in G?
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Note Added in Proof

Following the initial release of this paper, there has been significant progress on some
of the above questions. Distel, Dujmović, Eppstein, Hickingbotham, Joret, Micek,
Morin, Seweryn, and Wood [9] answered Q1 in the affirmative by proving (⋆) with
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f(t) = 4 and m(G) = Ot(n1/2). They also solved Q2 for planar graphs, and indeed for
K3,t-minor-free graphs. In particular, they showed that every n-vertex K3,t-minor-free
graph is isomorphic to a subgraph of H ⊠ KO(t

√
n) for some graph H of treewidth 2.
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