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Abstract

We analyse the typical structure of games in terms of the connectivity properties of
their best-response graphs. Our central result shows that almost every game that
is ‘generic’ (without indifferences) and has a pure Nash equilibrium and a ‘large’
number of players is connected, meaning that every action profile that is not a pure
Nash equilibrium can reach every pure Nash equilibrium via best-response paths.
This has important implications for dynamics in games. In particular, we show that
there are simple, uncoupled, adaptive dynamics for which period-by-period play
converges almost surely to a pure Nash equilibrium in almost every large generic
game that has one (which contrasts with the known fact that there is no such
dynamic that leads almost surely to a pure Nash equilibrium in every generic game
that has one). We build on recent results in probabilistic combinatorics for our
characterisation of game connectivity.

1 Introduction

A fundamental question at the heart of the literature on learning in games and dis-
tributed systems is whether there are adaptive dynamics that are guaranteed to lead to
a Nash equilibrium in every game. Examples of adaptive dynamics include better- and
best-response dynamics, fictitious play (Fudenberg and Levine, 1998), adaptive play
(Young, 1993), regret matching (Hart and Mas-Colell, 2000), regret testing (Foster and
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Young, 2006), trial-and-error learning (Young, 2009), and many more.1 Several impor-
tant results have outlined the boundary between the possible and the impossible, i.e.
between classes of adaptive dynamics that are guaranteed to lead to a Nash equilib-
rium in every game and classes that lack such a guarantee (e.g. see Young, 2007 for an
overview). A particularly influential impossibility result due to Hart and Mas-Colell
(2003, 2006) establishes that there is no simple adaptive dynamic that is guaranteed to
lead to a pure Nash equilibrium in every game that has one, where ‘simple’ qualifies
the amount of information that each player has access to.

In this paper, we show that learning pure Nash equilibria via simple adaptive
dynamics is not as hopeless an endeavour as the impossibility result of Hart and
Mas-Colell (2003) might suggest: we look at the space of all (ordinal and generic) 𝑛-
player games that have at least one pure Nash equilibrium, and we show that simple
adaptive dynamics lead to a pure Nash equilibrium in all but a small fraction of
such games when 𝑛 is large compared to the number of actions per player, with
the fraction vanishing exponentially quickly in 𝑛. To establish this result, we study
the ‘connectivity’ properties of games—a concept that we formalize below—and we
show that all but a quantifiably small fraction of games with relatively large 𝑛 have a
connectivity property that is conducive to equilibrium convergence.

What we do can be seen as a ‘beyond the worst-case’ analysis of learning pure
Nash equilibrium in games. If one interprets simple adaptive dynamics as algorithms
whose inputs are games, then Hart and Mas-Colell (2003) have established that simple
adaptive dynamics perform very poorly on their worst-case inputs: they have shown
that there are games (inputs) on which such dynamics (algorithms) do not lead to a
pure Nash equilibrium. But, while algorithms are often assessed in terms of their
worst-case performance, in practice we are often interested in how they perform on
‘typical’ problem instances, and this has given rise to ‘beyond the worst-case’ analysis
of algorithms (Roughgarden, 2021). The simplex algorithm, for example, performs
poorly on worst-case inputs but tends to perform well on typical problem instances. In
this spirit, what we do in our paper is to characterize the structure of ‘typical’ games
and, in contrast with Hart and Mas-Colell (2003), we establish that simple adaptive
dynamics perform very well on typical inputs, i.e. are guaranteed to lead to a pure
Nash equilibrium in ‘typical’ games.

The central argument of our paper is outlined in points (i)-(iv) below.
(i) We classify games according to the connectivity properties of their best-response

graphs. Our interest in such a classification stems from the fact that the behaviors
of many game dynamics are determined by such connectivity properties. A game’s
best-response graph is a directed graph whose vertex set is the set of pure action
profiles and whose directed edges correspond to best-responses (Young, 1993). An

1Hart (2005) distinguishes between three types of dynamics in games: learning, evolutionary, and
adaptive. Learning requires high levels of rationality (e.g. Kalai and Lehrer, 1993) whereas players in
evolutionary dynamics instead mechanically inherit traits (e.g. Weibull, 1997; Hofbauer and Sigmund,
1998; Sandholm, 2010). Adaptive agents fall somewhere in between: they use relatively little information
and take actions that respond to their environment according to basic decision heuristics in a generally
improving way.
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Figure 1: A 3-player 2-action game (left) and its corresponding best-response graph
(right). The • vertices are sinks. The ◦ vertices form a cycle.

example is shown in Figure 1. A game’s pure Nash equilibria correspond to the sinks
of its best-response graph. Well-known classes of games categorized by the connec-
tivity properties of their best-response graphs include weakly acyclic games, i.e. those
for which every vertex of the best-response graph can reach a sink along a directed
best-response path, and acyclic games, i.e. those whose best-response graphs contain
no cycles. We introduce two new classes of games: connected and super-connected
games. We say that a game is connected (super-connected) if its best-response graph
has a sink and the property that every non-sink can reach every sink (non-source) via
best-response paths. The logical relationships between these game classes are shown
below:

acyclic weakly acyclic

connected

super-connected

The game in Figure 1, for example, is not acyclic but it is super-connected (and therefore
connected and weakly acyclic).

(ii) We build on recent results in probabilistic combinatorics to enumerate games and
thereby quantify the relative sizes of the game classes shown above. Throughout,
we take players’ preferences to be encoded ordinally via a preference relation rather
than cardinally via a utility function, thus ensuring that the space of (finite) games is
countable (and finite for a fixed number of players and number of actions per player).
Our central result on game connectivity (Theorem 5) is that:

Almost every large generic game that has a pure Nash equilibrium is connected.

By ‘generic’ we mean that there are no indifferences, by ‘large’ we mean that the
number of players is much bigger than the maximum number of actions available to
each player, and by ‘almost every’ we mean all but an exponentially small proportion
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(in terms of the number of players). Our result even allows the number of actions per
player to grow with the number of players, provided that the latter remains sufficiently
large relative to the former.
Since connectedness is very common among large generic games that have a pure
Nash equilibrium, so is weak acyclicty. In contrast, acyclicity is very rare: we show that
the fraction of generic games with a pure Nash equilibrium that are acyclic vanishes
super-exponentially in the number of players (Proposition 6).2 Finally, we show that
while super-connectedness is very common among large generic 2-action and 3-action
games that have a pure Nash equilibrium, it is vanishingly rare among large generic
𝑘-action games when 𝑘 ≥ 4 (Proposition 7). We also derive analogous results for better-
response graphs. Our characterization of the above game classes gives us insights into
the ‘typical’ structure of large games, and this has important implications for adaptive
dynamics, as we discuss below.
The results above follow from stronger results regarding the connectivity properties of
random subgraphs of directed Hamming graphs, which we present in the appendix,
and these are the main technical contribution of our paper. The proof of our main
technical result (Theorem 15) adapts new work in probabilistic combinatorics regarding
the component structure of random subgraphs of the hypercube (McDiarmid et al.,
2021). Methodologically, our paper contributes to the well-established and growing
literature on random games.3 Within that literature, Amiet et al. (2021) contains results
that are related to our work, and we discuss the relationship of our work to those results
in Sections 4.3 and 4.4.

(iii) Turning to game dynamics, we show that there is a simple adaptive dynamic that is
guaranteed to lead to a pure Nash equilibrium in every connected game. By ‘simple
dynamic’ we mean a dynamic that is uncoupled (i.e. a player’s strategy depends only
on the actions of other players and on their own preferences), stationary (i.e. time-
independent), and 1-recall (i.e. no more than the last period’s play is available to
each player), and when we say that a dynamic is ‘guaranteed to lead to a pure Nash
equilibrium’ we mean that, starting at any action profile, the period-by-period play
reaches a pure Nash equilibrium in finite time and, once there, never leaves it. Young
(2004) shows that the best-response dynamic with inertia, which is a simple adaptive

2Because potential games have acyclic best-response graphs (Monderer and Shapley, 1996), our result
on the prevalence of acyclic games implies that potential games with large numbers of players are very
rare. We are not suggesting that the widely studied class of potential games is somehow unimportant:
they are an appropriate model for certain types of strategic interaction such as congestion (Rosenthal,
1973), and many dynamics are guaranteed to converge to a pure Nash equilibrium in such games (e.g.
Hofbauer and Sandholm, 2002; Roughgarden, 2016). Rather, we are highlighting that our implications
for the convergence of adaptive dynamics are a consequence of the prevalence of connectedness rather
than of acyclicity in large games.

3The distribution of pure Nash equilibria in random games was studied in Goldberg et al. (1968),
Dresher (1970), Powers (1990), and Stanford (1995). Further results relating to the number of Nash
equilibria also appear in McLennan (1997, 2005), Bárány et al. (2007), and Pei and Takahashi (2023).
Alon et al. (2021) show that dominance-solvable games are rare (when the number of actions gets
large for at least one player). Mimun et al. (2024) and Collevecchio et al. (2024) study best-response
dynamics in two-player random games with correlated payoffs and in two-player random potential
games, respectively.
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dynamic, is guaranteed to lead to a pure Nash equilibrium in every weakly acyclic
game.4 It follows immediately that this is also true in connected games.

(iv) Combining our results above, we conclude (Theorem 13) that

There is a simple adaptive dynamic that is guaranteed to lead to a pure Nash equilibrium
in almost every large generic game that has one.

This contrasts with the aforementioned impossibility result of Hart and Mas-Colell
(2003, 2006) which states that there is no simple adaptive dynamic that is guaranteed
to lead to a pure Nash equilibrium in every (generic) game that has one. Our result
does not overturn this impossibility, but it does limit its scope.5
Returning to our analogy of ‘beyond the worst-case’ analysis of algorithms, simple
adaptive dynamics perform poorly (i.e. are not guaranteed to lead to a pure Nash
equilibrium) on worst-case inputs of the type given in the impossibility result of Hart
and Mas-Colell (2003), but they perform very well on ‘typical’ inputs because almost
every large generic game has a property (namely, connectedness) which is conducive
to convergent dynamics. Naturally, the strength of this analogy depends on what we
understand to be a ‘typical’ input in the context of game dynamics. Adaptive dynamics

4Under the best-response dynamic with inertia, in each period, each player 𝑖 independently best-
responds to the current environment with probability 𝑝𝑖 ∈ (0, 1) and does not update their action with
probability 1 − 𝑝𝑖 .

5There is a large literature on possibility and impossibility results for dynamics in games and the
impossibility of Hart and Mas-Colell (2003) is by no means the only one; see Milionis et al. (2023) and
Schipper (2022) for recent examples. Establishing impossibility for a class of dynamics typically consists
of finding collections of games such that no dynamic in the class is guaranteed to lead to equilibrium in
all of them. Naturally, this hinges on the parameters of the problem, namely, (i) the information that is
allowed to determine players’ decisions in the dynamic, (ii) the notion of convergence that is required,
(iii) the type of equilibrium to which the dynamic converges, and (iv) the class of games to which the
dynamic is applied.

There are several possibility results for dynamics that lead to mixed Nash or correlated equilibria. For
example, uncoupled and completely uncoupled dynamics for which the empirical distribution of play
converges almost surely to the set of correlated (or coarse correlated) equilibria in all games (Foster and
Vohra, 1997; Fudenberg and Levine, 1999; Hart and Mas-Colell, 2000, 2001). There are also uncoupled
and completely uncoupled dynamics for which the behavior probabilities converge almost surely to
a mixed Nash equilibrium in all generic games (Foster and Young, 2006; Germano and Lugosi, 2007).
Vlatakis-Gkaragkounis et al. (2020), however, show that a commonly studied regret-based dynamic does
not lead to mixed Nash equilibria.

However, finding completely uncoupled, or even uncoupled, dynamics in which period-by-period
play converges almost surely to a pure Nash equilibrium whenever one exists is demonstrably more
challenging. There are stationary, 2-recall, uncoupled dynamics for which the period-by-period play
converges almost surely to a pure Nash equilibrium in all games that have one (Hart and Mas-Colell,
2006; Cesa-Bianchi and Lugosi, 2006). Jaggard et al. (2014) identify other uncoupled dynamics with this
convergence property in a bounded-recall synchronous setting. But the result of Hart and Mas-Colell
(2003, 2006) shows that there is no stationary, 1-recall, uncoupled dynamic for which the period-by-
period play converges almost surely to a pure Nash equilibrium in all games that have one. Babichenko
(2012) shows that there is no completely uncoupled dynamic for which the period-by-period play
converges almost surely to a pure Nash equilibrium in every generic game that has one, or even in every
large generic game that has one. On the other hand, there is a completely uncoupled dynamic for which
the period-by-period play is at a pure Nash equilibrium ‘most of the time’ in all generic games that have
one (Young, 2009; Pradelski and Young, 2012).
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are often applied in games with a large number of players and in which players select
pure actions (Sandholm, 2010). Moreover, genericity is common; in fact, any utility-
based game for which the utility numbers are perturbed by small random shocks
independently drawn from an atomless distribution will have an ordinal representation
that is almost surely generic in our sense of the term. Viewed in this way, it is reasonable
to take generic games with many players, which are the focus of our paper, as ‘typical’
inputs for adaptive dynamics.6

Unlike much of the literature on learning in games, the focus of our paper is not
on the dynamics (the algorithms) but on the structure of the games themselves (the
inputs). Beyond having a bearing on the impossibility result of Hart and Mas-Colell
(2003), this approach allows us to use our results on game connectivity to quantify the
scope of existing results regarding the convergence properties of adaptive dynamics.
‘Adaptive play’ (Young, 1993), ‘better-reply dynamics with sampling’ (Friedman and
Mezzetti, 2001), and regret-based dynamics (Marden et al., 2007) are guaranteed to lead
to a pure Nash equilibrium in certain classes of games, and payoff-based dynamics lead
to play that is at a pure Nash equilibrium ‘most of the time’ in certain classes of games
(Marden et al., 2009). Our game connectivtiy results allow us to conclude that all
of the these results apply to almost every large generic game that has a pure Nash
equilibrium. More recently, building on our central result regarding the prevalence
of connected games, Newton and Sawa (2024) were able to determine which Nash
equilibria (according to their welfare properties) are selected by different evolutionary
dynamics in large games.

2 Games

In this section we recall some standard definitions from the theory of games and
introduce our notation. For 𝑛 ∈ N, we use [𝑛] as shorthand for the set {1, . . . , 𝑛}. For
each 𝑎 ∈ N𝑛 and 𝑖 ∈ [𝑛], we write 𝑎−𝑖 for the element of N𝑛−1 obtained by deleting the
𝑖th coordinate of 𝑎. In an abuse of notation, for 𝑥 ∈ N and 𝑎−𝑖 ∈ N𝑛−1, we write (𝑥, 𝑎−𝑖)
for the element of N𝑛 obtained by inserting 𝑥 into the 𝑖th coordinate of 𝑎−𝑖 .

A game is a tuple (
[𝑛],

(
[𝑘𝑖]

)
𝑖∈[𝑛], (≿𝑖)𝑖∈[𝑛]

)
,

where 𝑛 ≥ 2 is an integer, 𝑘𝑖 ≥ 2 is an integer for each 𝑖, and for each 𝑖, ≿𝑖 is a total
preorder (i.e. a complete and transitive binary relation) on 𝐴 B

∏
𝑖∈[𝑛] [𝑘𝑖]. We say that

[𝑛] is the player set of the game and that [𝑘𝑖] is the action set of player 𝑖. Elements of

6A condition that is sometimes imposed on games with many players is ‘anonymity’. In anonymous
games, at any action profile, a player’s ranking of their actions depends only on the numbers of other
players selecting particular actions but not on the identities of those other players. Certain interactive
situations may be well-modeled as anonymous games but many large scale distributed interactions can
be messy and idiosyncratic, in which case imposing anonymity becomes a convenient approximation.
The widely studied class of weakly acyclic games, which need not be anonymous, is frequently studied
in the context of adaptive dynamics with many players.
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𝐴 are called action profiles, and ≿𝑖 is known as 𝑖’s preference relation.7 For each 𝑖, let ≻𝑖
denote the asymmetric part of ≿𝑖 .

An action 𝑎𝑖 of player 𝑖 is a best-response to 𝑎−𝑖 if (𝑎𝑖 , 𝑎−𝑖) ≿𝑖 (𝑥, 𝑎−𝑖) for every 𝑥 ∈ [𝑘𝑖].
An action profile 𝑎 ∈ 𝐴 is a pure Nash equilibrium if for each player 𝑖 ∈ [𝑛], 𝑎𝑖 is a
best-response to 𝑎−𝑖 .

3 Notions of game connectivity

The best-response graph of a game is the directed graph (𝐴,→) whose vertex set is the
set of action profiles 𝐴 and whose directed edge set → is defined such that for 𝑎, 𝑏 ∈ 𝐴,

𝑎 → 𝑏 if and only if there exists 𝑖 ∈ [𝑛] such that 𝑎−𝑖 = 𝑏−𝑖 , 𝑏𝑖 is a best-response to
𝑎−𝑖 , and 𝑏 ≻𝑖 𝑎.

In other words, there is a directed edge from 𝑎 to 𝑏 whenever 𝑏𝑖 is a strict best-response
to 𝑎−𝑖 = 𝑏−𝑖 for some player 𝑖.

We now define various classes of games in terms of the connectivity properties of
best-response graphs.8 As part of these definitions we will use standard terminology
from the theory of directed graphs which we briefly recall here. Given a directed
graph (𝑉,→) with vertex set 𝑉 and edge set →, a vertex 𝑣 ∈ 𝑉 is a sink if it has no
outgoing edges, and a non-sink otherwise. Similarly, a vertex 𝑣 ∈ 𝑉 is a source if it has
no incoming edges, and a non-source otherwise. For any pair of vertices 𝑣, 𝑣′ ∈ 𝑉 , we
say that 𝑣 can reach 𝑣′ if there is a sequence (𝑣1, . . . , 𝑣𝑚) of vertices with 𝑣1 = 𝑣 and
𝑣𝑚 = 𝑣′ such that 𝑣 𝑖 → 𝑣 𝑖+1 for all 𝑖 ∈ [𝑚 − 1]; in this case we also say that the vertex 𝑣′
can be reached from 𝑣. Note that every vertex can reach and be reached from itself. A
cycle is a sequence (𝑣1, . . . , 𝑣𝑚) of distinct vertices that has length 𝑚 at least 2 and that
satisfies 𝑣𝑚 → 𝑣1 and 𝑣 𝑖 → 𝑣 𝑖+1 for all 𝑖 ∈ [𝑚 − 1].

Definition 1. A game is acyclic if its best-response graph has no cycles.

Definition 2. A game is weakly acyclic if its best-response graph has the property that
every vertex can reach a sink.

Observe that, by definition, a weakly acyclic game necessarily has at least one sink.
Moreover, acyclic games are weakly acyclic, but the converse need not hold.

Acyclicity and weak acyclicity are standard concepts (see e.g. Fabrikant et al., 2013)
though they sometimes appear under different names in the literature.9 In our paper,
the terms acyclicity and weak acyclicity follow the terminology of Young (1993), who
introduced the concept of weak acyclicity to the literature on dynamics in games.

7In fact, for the dynamics that we will be interested in, the only relevant information about ≿𝑖 is its
restriction to 𝐿(𝑎−𝑖) B {(𝑥, 𝑎−𝑖) : 𝑥 ∈ [𝑘𝑖]} for each 𝑎−𝑖 ∈

∏
𝑗∈[𝑛]\{𝑖}[𝑘 𝑗].

8See Candogan et al. (2011) for a flow-based decomposition of games and Legacci et al. (2024) for an
analysis of dynamics based on this decomposition.

9For example, Takahashi and Yamamori (2002) refer to weak acyclicity as quasi-acyclicity.
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Figure 2: (a) Acyclic but not super-connected because some vertices, like the one shown
in magenta cannot reach every non-source. (b) Super-connected but not acyclic because
every non-sink can reach every non-source but there is a cycle, shown in magenta.

Acyclic games are a superset of the very widely studied class of potential games
(Monderer and Shapley, 1996). Potential games have been the subject of intense re-
search, particularly because many dynamics are guaranteed to converge to a pure
Nash equilibrium in such games (e.g. Hofbauer and Sandholm, 2002; Roughgarden,
2016). Weakly acyclic games are also very widely studied because weak acyclicity is
a necessary condition for the guaranteed convergence of best-response dynamics to
a pure Nash equilibrium from any starting vertex (e.g. see Fabrikant et al., 2013; Apt
and Simon, 2015). Yongacoglu et al. (2024) have recently studied a relaxation of weak
acyclicity.

The next two notions of connectivity are ones that we introduce in this paper.

Definition 3. A game is connected if its best-response graph has at least one sink and
the property that every non-sink can reach every sink.

Definition 4. A game is super-connected if its best-response graph has at least one sink
and the property that every non-sink can reach every non-source.

Super-connectedness implies connectedness, and connectedness implies weak acyclic-
ity but, in each case, the converse need not hold. Moreover, as shown in Figure 2,
super-connectedness neither implies nor is implied by acyclicity.

4 Main results

We quantify the relative sizes of the game classes defined in Section 2 for large generic
games, where ‘large’ means that the number of players is much bigger than the max-
imum number of actions available to each player, and ‘generic’ means that there are
no preference ties. More specifically, a game is generic if for every 𝑖, and distinct action
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profiles 𝑎 and 𝑎′ that differ only in the 𝑖th index, either 𝑎 ≻𝑖 𝑎′ or 𝑎′ ≻𝑖 𝑎.10
Given an integer 𝑛 ≥ 2 and k = (𝑘1, . . . , 𝑘𝑛) ∈ {2, 3, . . . }𝑛 , we use 𝒢(𝑛, k) to denote

the set of all generic games with player set [𝑛] in which, for every 𝑖 ∈ [𝑛], player 𝑖 has
action set [𝑘𝑖]. Since we are working with ordinal games, for a fixed 𝑛 and k, the set
𝒢(𝑛, k) is finite.

The following is our main result on game connectivity.

Theorem 5. There exists 𝑐 > 0 such that for all integers 𝑛 ≥ 2 and all k ∈ {2, 3, . . . }𝑛 , if 𝑛 is
sufficiently large relative to max𝑖 𝑘𝑖 , then

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is connected}|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ≥ 1 − 𝑒−𝑐𝑛 .

This result shows that, strikingly, connectedness is a ubiquitous property among
large generic games that have a pure Nash equilibrium: almost every large generic
game that has a pure Nash equilibrium is connected. Moreover, since connectedness
implies weak acyclicity, the same is true of the latter property as well.

Our condition for 𝑛 to be ‘sufficiently large’ is that

max
𝑖
𝑘𝑖 ≤ 𝛿

√
𝑛/log(𝑛)

for a suitable constant 𝛿 > 0.
While the possible dependence of 𝑘𝑖 on 𝑛 is suppressed in our notation, Theorem 5

allows for the number of actions per player to be growing with 𝑛 provided that the
above condition continues to be met. Of course, if the number of actions per player were
fixed, our ‘sufficiently large’ condition would simplify to 𝑛 exceeding some constant.

Theorem 5 has important implications for adaptive dynamics in games, on which
we elaborate in Section 5.

Our next result, regarding acyclicity, applies to all generic games, not just those that
we consider ‘large’.

Proposition 6. There exists 𝑐 > 0 such that for all integers 𝑛 ≥ 2 and all k ∈ {2, 3, . . . }𝑛 , we
have

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is acyclic}|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ≤ 𝑒−𝑐𝑛2𝑛 .

Together, Theorem 5 and Proposition 6 imply that there is a ‘split’ in large game
properties: among large generic games that have a pure Nash equilibrium, acyclic

10Every game ([𝑛], ([𝑘𝑖])𝑖∈[𝑛] , (≿𝑖)𝑖∈[𝑛]) has a utility-based representation ([𝑛], ([𝑘𝑖])𝑖∈[𝑛] , (𝑢𝑖)𝑖∈[𝑛]) with,
for each player 𝑖, a utility function 𝑢𝑖 : 𝐴 → R representing their preference relation ≿𝑖 . Genericity is
equivalent to the condition that such a utility-based game has no payoff ties, i.e. that for each 𝑖 and any
distinct profiles 𝑎 and 𝑎′ that differ only in the 𝑖th index, 𝑢𝑖(𝑎) ≠ 𝑢𝑖(𝑎′). Note, furthermore, that any
utility-based game for which the utility numbers are perturbed by small random shocks independently
drawn from an atomless distribution is almost surely generic.
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games are very rare, while connected games and weakly acyclic games are very com-
mon. Note that since acyclic games are a superset of potential games, this also implies
that potential games are very rare among large generic games that have a pure Nash
equilibrium.

Our final main result concerns super-connectedness. Let 2 = (2, . . . , 2), and simi-
larly define 3 and 4.

Proposition 7. For k = 2 or k = 3 there exists 𝑐 > 0 such that for all integers 𝑛 ≥ 2,

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is super-connected}|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ≥ 1 − 𝑒−𝑐𝑛 .

However, for each k = (𝑘, . . . , 𝑘) ≥ 4, the fraction above tends to 0 as 𝑛 → ∞.

This shows that almost every large generic 2-action game or 3-action game that has
a Nash equilibrium is super-connected.11 However, this is not true of 𝑘-action games
for 𝑘 ≥ 4. In fact, for 𝑘 ≥ 4, the fraction of generic 𝑘-action games with a pure Nash
equilibrium that are super-connected becomes vanishingly small as 𝑛 → ∞.

This shows two things. First, super-connectedness is too strong to be a typical
property of large games. Unlike connectedness, it is not true that almost every large
generic game that has a pure Nash equilibrium is super-connected. Second, connec-
tivity properties that hold for small k do not necessarily extend to large k. This is
important because one cannot rely on results established for small numbers of actions
as a guide for what to expect when the number of actions is large.

Our main results above are proved as corollaries of stronger results concerning the
likelihood of analogous conditions holding in certain random directed graphs. The
statements of these technical results on random graphs and the proofs themselves are
in the appendix. The appendix also contains a section on the tightness of our main
results. We provide a high-level discussion of our proof approach in Section 4.4 below.

4.1 Better-response graphs

The results above concerned best-response graphs. We now discuss their implications
for better-response graphs.

An action 𝑎𝑖 of player 𝑖 is a better-response than 𝑎′
𝑖

to 𝑎−𝑖 if (𝑎𝑖 , 𝑎−𝑖) ≻𝑖 (𝑎′𝑖 , 𝑎−𝑖). The
better-response graph of a game is the directed graph (𝐴,→) whose vertex set is the set
of action profiles 𝐴 and whose directed edge set → is defined such that for 𝑎, 𝑏 ∈ 𝐴,

𝑎 → 𝑏 if and only if there exists 𝑖 ∈ [𝑛] such that 𝑎−𝑖 = 𝑏−𝑖 and 𝑏𝑖 is a better-response
to 𝑎−𝑖 than 𝑎𝑖 .

For each connectivity property 𝑃 ∈ {acyclic, weakly acyclic, connected, super-
connected}, we say that a game is globally 𝑃 if its better-response graph has that

11For this result we consider only games in which every player has the same number of actions.
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property. For example, a game is globally connected if its better-response graph has a
sink and the property that every non-sink can reach every sink. Observe that gener-
alised ordinal potential games are precisely those that are globally acyclic (Monderer
and Shapley, 1996; Fabrikant et al., 2013).12
Remark 8. Since a game’s best-response graph is a subgraph of its better-response graph,
we obtain the following relationships.

globally acyclic acyclic weakly acyclic globally weakly acyclic

connected globally connected

super-connected globally super-connected

The implications are now straightforward. Among large generic games that have
a pure Nash equilibrium, Theorem 5 implies that connected games, weakly acyclic
games and their global counterparts, are very common, while Proposition 6 implies
that acyclic games and globally acyclic games are very rare. Analogous conclusions
can similarly be drawn for super-connectedness.

4.2 Classes of games with positive asymptotic density

We now show that our results on game connectivity can be extended to any class
of games 𝒳(𝑛, k) ⊆ {𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium} that has positive
asymptotic density, by which we mean that there is a 𝑝 ∈ (0, 1] such that

|𝒳(𝑛, k)|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ≥ 𝑝

for all sufficiently large 𝑛.
The following is a corollary of Theorem 5.

Corollary 9. If 𝒳(𝑛, k) ⊆ {𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium} has positive
asymptotic density then, for sufficiently large 𝑛, almost every game in 𝒳(𝑛, k) is connected.

Here is an example. Rinott and Scarsini (2000) show that for any integer 𝑧 ≥ 0,

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has exactly 𝑧 pure Nash equilibria}|
|𝒢(𝑛, k)| → 𝑒−1

𝑧!

12A game 𝑔 = ([𝑛], ([𝑘𝑖])𝑖∈[𝑛] , (≿𝑖)𝑖∈[𝑛]) is a generalised ordinal potential game if there exists a function
𝜌 : 𝐴 → R such that for each 𝑖 ∈ [𝑛] and each pair of distinct action profiles 𝑎 and 𝑎′ that differ in only
the 𝑖th index, 𝑎 ≻𝑖 𝑎′ implies 𝜌(𝑎) > 𝜌(𝑎′). The game is an ordinal potential game or, simply, a potential
game if, additionally, 𝜌(𝑎) > 𝜌(𝑎′) implies 𝑎 ≻𝑖 𝑎′.
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as 𝑛 → ∞ or as 𝑘𝑖 → ∞ for at least two players 𝑖.13 From this we infer that for any
integer 𝑧 ≥ 1, the set

{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has at least 𝑧 pure Nash equilibria}
has positive asymptotic density, from which we can conclude, for example, that almost
every large generic game that has say at least two pure Nash equilibria is connected.

4.3 Relationship to Amiet et al. (2021)

Our paper is related to Amiet et al. (2021). The focus of that paper is not entirely on
game connectivity, but it contains results that are related to our work and we discuss
this relationship here.

Consider a vertex 𝑣 in the best-response graph of a game in 𝒢(𝑛, k). We say that
the game is 𝑣-connected if its best-response graph has at least one sink and the property
that if 𝑣 is a non-sink, then it can reach every sink. Similarly, we say that the game is
𝑣-super-connected if its best-response graph has at least one sink and the property that
if 𝑣 is a non-sink, then it can reach every non-source.

Expressed in the language of our paper, the arguments of Amiet et al. (2021) imply
that there exists 𝑐 > 0 such that for all integers 𝑛 ≥ 2 and any vertex 𝑣,

|{𝑔 ∈ 𝒢(𝑛, 2) : 𝑔 is 𝑣-super-connected}|
|{𝑔 ∈ 𝒢(𝑛, 2) : 𝑔 has a pure Nash equilibrium}| ≥ 1 − 𝑒−𝑐𝑛 .

This differs from our results in two main ways. First, a game is (super-)connected if it is
𝑣-(super-)connected for every vertex 𝑣, so (super-)connectedness is very much stronger
than 𝑣-(super-)connectedness. Indeed, there are typically almost 2𝑛 vertices that are
non-sinks and connectedness requires 𝑣-connectedness to hold simultaneously for all of
them. Second, the result of Amiet et al. (2021) applies only to two-action games, while
our results apply much more generally. As we have seen, connectivity properties that
hold for games with few actions per player may not extend to games with many actions
per player, and these games are fundamentally different.

4.4 Proof approach

Suppose that a game 𝐺 is drawn uniformly at random from 𝒢(𝑛, k). Then

Pr[𝐺 has property 𝑃 | 𝐺 has a pure Nash equilibrium]
is equal to the fraction

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has property 𝑃}|
|{𝑔 ∈ 𝒢(𝑛, 2) : 𝑔 has a pure Nash equilibrium}| .

13Rinott and Scarsini (2000) build on Arratia et al. (1989) to prove, among other things, that the
distribution of the number of pure Nash equilibria in games drawn uniformly at random from among
all generic games is asymptotically Poisson(1) as the number of players with at least two actions gets
large or as the number of actions gets large for at least two players.
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In other words, rather than directly enumerating games in 𝒢(𝑛, k) that have certain
properties, we instead draw games uniformly at random and work out the probability
that such random drawn games have certain properties. The latter is simpler and yields
our desired quantities of interest.

We now give a high-level explanation of some elements of the proof of Theorem
5. All the proofs for the results presented in Section 4 (and of even stronger results)
are in the appendix. First, draw a game 𝐺 uniformly at random from 𝒢(𝑛, k). At
the heart of our proof is an argument showing the likely existence of a large strongly
connected component in the best-response graph of 𝐺; in other words, we find a large
set of vertices which can all reach each other along directed paths. Indeed, we define
a vertex of the best-response graph of 𝐺 to be good if it has reasonably high in-degree
and reasonably high out-degree, and we then show that with high probability every
good vertex can reach all other good vertices along directed paths. Since most vertices
are good, this connects up a reasonably large proportion of the graph. This part of
our proof is based on work of McDiarmid et al. (2021), who study the component
structure of random subgraphs of the undirected hypercube graph. Once we know
that with high probability all good vertices can reach each other, we are then left with
‘plugging in’ the remaining, unusual, vertices. We plug in these vertices by building
on arguments in Bollobás et al. (1993).

We note that our proof employs different methods from the ones used in Amiet
et al. (2021). For the result that we discussed in Section 4.3, Amiet et al. (2021) also
draw games uniformly at random, in their case from 𝒢(𝑛, 2). Because there are only
two actions per player in every game in 𝒢(𝑛, 2), all edges in the resulting best-response
graphs are independent of each other, and their proofs rely heavily on this feature.
Once there are more than two actions per player, the edges are no longer independent,
and this requires an alternative approach.

5 Implications for adaptive dynamics in games

We now consider the implications of our results regarding game connectivity for games
played over time according to adaptive dynamics. We begin by recalling some standard
notions.

First, a player 𝑖’s observation set at time 𝑡, denoted 𝑜𝑡
𝑖
, is the set of information that 𝑖

can observe at time 𝑡. Precisely what objects enter into this set varies depending on
the regime under consideration, and below it will be made clear which regimes we are
considering. For each integer 𝑘 ≥ 2, let 𝑂𝑘 denote the set of all possible observation
sets (under the given regime) for a player with action set [𝑘]. A strategy for a player
with action set [𝑘] is a function 𝑓 : 𝑂𝑘 → Δ([𝑘]), where Δ([𝑘]) is the probability simplex
over [𝑘]. Let 𝑛 ≥ 2 and 𝑘1, . . . , 𝑘𝑛 ≥ 2 be integers, and write k = (𝑘1, . . . , 𝑘𝑛). A dynamic
on 𝒢(𝑛, k) consists of a specification for what information enters into each player’s
observation set at each time, and a strategy 𝑓𝑖 with action set [𝑘𝑖] for each player 𝑖.

The play of a game 𝑔 ∈ 𝒢(𝑛, k) under a given dynamic begins at time 𝑡 = 0 at an
initial action profile 𝑎0 chosen arbitrarily. This informs each player’s observation set 𝑜1

𝑖
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according to the dynamic. At time 𝑡 = 1, each player updates their action (randomly)
according to 𝑓𝑖(𝑜1

𝑖
), and we denote the new (random) action profile by 𝑎1. The play

continues in this manner, with each player updating their action at 𝑡 = 2 according to
𝑓𝑖(𝑜2

𝑖
) to produce an action profile 𝑎2, and so on.

Definition 10. A dynamic is simple if it is uncoupled, 1-recall, and stationary. Formally,
a dynamic is simple if at each time 𝑡, player 𝑖’s observation set contains (at most) their
own preference relation ≿𝑖 and last period’s action profile 𝑎𝑡−1.

The terms ‘uncoupled’, ‘1-recall’, and ‘stationary’ are standard in the literature. We
informally recall their definitions here: a dynamic is uncoupled if a player’s observation
set consists at most of their own preference relation and of the past history of play, it is
1-recall if the past history of play is restricted to only the last period, and it is stationary
if their strategy is time-independent.14

We consider the following strong notion of convergence to a pure Nash equilibrium.

Definition 11. A dynamic on 𝒢(𝑛, k) converges almost surely to a pure Nash equilibrium
of a game 𝑔 ∈ 𝒢(𝑛, k) if when 𝑔 is played according to the dynamic from any initial
action profile, almost surely there exists 𝑇 < ∞ and a pure Nash equilibrium 𝑎∗ of 𝑔
such that 𝑎𝑡 = 𝑎∗ for all 𝑡 ≥ 𝑇.

5.1 The possibility of convergence to a pure Nash equilibrium

As mentioned in the introduction, the following impossibility result is well-known.

Theorem 12 (Hart and Mas-Colell, 2006; Jaggard et al., 2014). For all 𝑛 ≥ 3 and k ∈ N𝑛
with 𝑘𝑖 ≥ 2 for all 𝑖 (or 𝑘𝑖 ≥ 3 for all 𝑖 if 𝑛 = 3), there is no simple dynamic on 𝒢(𝑛, k) for
which play converges almost surely to a pure Nash equilibrium in every game in 𝒢(𝑛, k) that
has one.

It is instructive to revisit a proof of this result. Figure 3 shows the best-response graph
of a game considered in Hart and Mas-Colell (2006). The graph’s key feature is that
each vertex in magenta has exactly one out-going edge. Any simple dynamic on this
game initiated at one of the magenta vertices cannot get to any vertex other than the

14The definitions are given more formally here. A dynamic is uncoupled if at each time 𝑡, each player
𝑖’s observation set contains (at most) their own preference relation ≿𝑖 and the ordered history of play
𝑎0 , . . . , 𝑎𝑡−1. For an integer 𝑚 ≥ 1, an uncoupled dynamic is 𝑚-recall if at each time 𝑡, each player 𝑖’s
observation set contains (at most) the current time 𝑡, their own preference relation ≿𝑖 , and the ordered
history of play 𝑎𝑡−𝑚 , . . . , 𝑎𝑡−1 for the past 𝑚 steps, or the full history of play if 𝑡 < 𝑚. An uncoupled
and 𝑚-recall dynamic is stationary if at each time 𝑡 each player 𝑖’s observation set consists of their own
preference relation ≿𝑖 and the ordered history of play 𝑎𝑡−𝑚 , . . . , 𝑎𝑡−1 for the past 𝑚 steps, or the full
history of play if 𝑡 < 𝑚. Crucially, for 𝑡 ≥ 𝑚 the only information about the current time 𝑡 available to
the players is that 𝑡 ≥ 𝑚, so their strategies become time-independent after this point.
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Figure 3: Best-response graph of a generic game with a pure Nash equilibrium. Any
simple dynamic initiated at one of the magenta vertices cycles through those vertices
forever. Note: some edges of the graph are omitted to keep the illustration legible.

magenta vertices.15 In particular, any simple dynamic initiated at one of the magenta
vertices cannot reach the pure Nash equilibrium. A game with a feature like this one
can be embedded into a larger game (whether in terms of the number of players or the
number of actions).

In contrast with the above impossibility result, we show below that if 𝑛 grows
(much more quickly than max𝑖 𝑘𝑖), there is simple dynamic on 𝒢(𝑛, k) that converges
almost surely to a pure Nash equilibrium on all but a vanishingly small fraction of
generic games in the class that have one.

Theorem 13. For 𝑛 sufficiently large relative to max𝑖 𝑘𝑖 , there is a simple dynamic on 𝒢(𝑛, k)
for which play converges almost surely to a pure Nash equilibrium in almost every game in
𝒢(𝑛, k) that has one.

The proof is straightforward . The best-response dynamic with inertia is defined as
follows:16 at each step 𝑡, independently of the other players, each player 𝑖 sets 𝑎𝑡

𝑖
to

be a best-response to 𝑎𝑡−1
−𝑖 with some fixed probability 𝑝𝑖 ∈ (0, 1) and sets 𝑎𝑡

𝑖
= 𝑎𝑡−1

𝑖
with complementary probability 1 − 𝑝𝑖 . Young (2004) showed that, for any choice of
parameters 𝑝𝑖 ∈ (0, 1), this dynamic converges almost surely to a pure Nash equilibrium
in every weakly acyclic game. (We include a proof of Young’s result in the case of
generic weakly acyclic games in Appendix H in order to shed light on the link between

15The reason is this. Take a vertex 𝑣 in the magenta cycle whose only outgoing edge is in direction
𝑗. By uncoupledness, changing player 𝑗’s preferences should not affect what 𝑖 ≠ 𝑗 does at 𝑣. So change
𝑗’s preferences so that 𝑣 becomes the unique Nash equilibrium. If the dynamic must converge to a pure
Nash equilibrium, 𝑖 ≠ 𝑗 must not move at 𝑣 in this modified game. But this implies that 𝑖 ≠ 𝑗 must not
move at 𝑣 in the original game either.

16This dynamic is well-known and versions of it appear in, for example, Young (2009) and Swenson
et al. (2018). The manner in which ties might be broken among multiple best-responses in non-generic
games is immaterial for our purposes.
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the connectivity properties of games and the convergence of dynamics.) Since every
connected game is weakly acyclic, from Theorem 5 we obtain that there exists 𝑐 > 0
such that for integers 𝑛 ≥ 2 and k ∈ {2, 3, . . . }𝑛 , if 𝑛 is sufficiently large relative to
max𝑖 𝑘𝑖 , then the proportion of games in

{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}

for which the best-response dynamic with inertia converges almost surely to a pure
Nash equilibrium is at least 1 − 𝑒−𝑐𝑛 .17 Noting that the best-response dynamic with
inertia is simple completes the proof.

5.2 The scope of existing results on adaptive dynamics

Our results on game connectivity allow us to quantify the scope of existing results
regarding the convergence properties of adaptive dynamics.

Consider the following (far from exhaustive) list of results on adaptive dynamics:18

• Young (1993) shows that ‘adaptive play’ (a class of dynamics involving inertia
and finite memory) converges almost surely to a pure Nash equilibrium in all
weakly acyclic games.

• Friedman and Mezzetti (2001) shows that the ‘better-reply dynamic with sam-
pling’ converges almost surely to a pure Nash equilibrium in all globally weakly
acyclic games.

• Marden et al. (2007) shows that a regret-based dynamic converges almost surely
to a pure Nash equilibrium in all (generic) globally weakly acyclic games.

• Marden et al. (2009) show that a purely payoff-based dynamic leads to play that
is at a pure Nash equilibrium in every globally weakly acyclic game ‘most of the
time’.

In all cases, since connected games are (globally) weakly acyclic, it follows from Theo-
rem 5 that all the above results apply to almost every large generic game that has a pure
Nash equilibrium. Observe that this is true even though the notions of convergence
that are used in the aforementioned papers are sometimes different from almost sure
convergence of period-by-period play.19 For example, the notion of convergence in

17This result also holds for variants of the best-response dynamic with inertia. For example, it
straightforwardly holds for the better-response dynamic with inertia. It also holds for a one-at-a-time
version of the best-response dynamic in which, at each step 𝑡, exactly one player 𝑖 is selected at random
from among all players to update their action, and this player plays a best-response to 𝑎𝑡−1

−𝑖 . Convergence
properties of this one-at-a-time version were investigated by Heinrich et al. (2023) via simulation.

18E.g. see Newton (2018) for further examples.
19Almost-sure convergence is a strong notion of convergence since it requires period-by-period play

to eventually settle on, and never leave, a pure Nash equilibrium. We have focused on it, in part,
because this is the notion that the impossibility results of Hart and Mas-Colell (2006) and Jaggard et al.
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Marden et al. (2009) requires the dynamic to be at a pure Nash equilibrium ‘most of
the time’, which is different from almost sure convergence.

Our results also have implications for equilibrium selection in games. When there
are multiple equilibria, it is natural to ask which of these equilibria will be played. An
approach taken in evolutionary game theory is to determine at which of the equilibria
perturbed dynamics will spend most of their time; these are adaptive dynamics in
which players’ choices are subject to random errors parametrised by some 𝜀 > 0.20 The
‘stochastically stable’ states of such a dynamic – the states at which the dynamic spends
most of its time – are the action profiles that are assigned positive probability as 𝜀 → 0
in the invariant distribution of the Markov process induced by the dynamic. Applying
commonly used methods for determining stochastic stability such as the minimum-
cost tree technique or the radius-coradius technique (Kandori et al., 1993; Kandori and
Rob, 1995; Young, 1993; Freidlin et al., 2012; Ellison, 2000) can be complicated because
they require checking global properties: a stochastically stable state must be ‘hard’
to leave (requiring many mutants to exit) and ‘easy’ to enter (requiring few mutants
from other points in the game). Newton and Sawa (2024) observe that, in connected
games, because it is very easy to move from a non-equilibrium point to any equilibrium
point, the problem reduces to checking only ‘one-shot deviations’ from equilibrium,
which is a local property regarding the likelihood only of exiting an equilibrium point.
Combined with our results, Newton and Sawa (2024) conclude that in almost every
large generic game that has a pure Nash equilibrium, stochastic stability is determined
by a very simple ‘one-shot’ property. This implication for equilibrium selection requires
our notion of connectivity. It does not follow from the connectivity result of Amiet et al.
(2021), and it does not apply in weakly acyclic games that are not also connected. Using
the ‘one-shot’ property, Newton and Sawa (2024) are able to determine which Nash
equilibria (according to their welfare properties) are selected by different evolutionary
dynamics in large games.

6 Open questions

We have approached the problem of finding adaptive dynamics that converge to pure
Nash equilibria by studying connectivity properties of games rather than studying
the properties of the dynamics themselves. We hope to have demonstrated that this

(2014) pertain to. Weaker notions of convergence (for examples, see Young, 2004) allow for possibility
results that are different from ours. For example, Young (2009) shows that so-called ‘trial-and-error
learning’ is an uncoupled (in fact, completely uncoupled) dynamic that, for any 𝜀 > 0, is at a pure Nash
equilibrium for a 1 − 𝜀 proportion of time steps in any generic game that has one. This is a powerful
result because it applies to every generic game (rather than almost every large generic game) but the
notion of convergence there is weaker than almost-sure convergence of period-by-period play. With the
latter, once a pure Nash equilibrium is reached, it is never left, whereas trial-and-error learning requires
constant experimentation so there is always a positive probability of leaving a pure Nash equilibrium
and wandering before settling on one again.

20A perturbed version of the best-response dynamic with inertia might specify that, at each time, any
updating player plays a best-response with probability 1−𝜀 and, with complementary probability 𝜀 > 0,
selects an action uniformly at random.
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approach can deliver interesting conclusions, but many open questions still remain.
We outline some of them below.

(i) We have worked in the regime in which the number of players is much bigger than the
maximum number of actions per player. One could alternatively consider the setting
where the number of players is fixed (or growing slowly) and the number of actions
gets large. Results in this regime are, so far, limited. One implication of Heinrich et al.
(2023) is that almost no generic two-player game that has a pure Nash equilibrium is
weakly acyclic as the number of actions gets large (for both players). On the other
hand, Amiet et al. (2021) show that almost every generic two-player game that has a
pure Nash equilibrium is globally weakly acyclic as the number of actions gets large
(again, for both players). However there are, to our knowledge, no results where the
number of players is fixed above two. This ‘large number of actions’ regime behaves
very differently from the ‘large number of players’ regime that we consider here. In
the latter, each vertex of the best-response graph is incident to at least 𝑛 edges, so 𝑛
being large is likely to contribute to greater connectivity. If instead it is the number
of actions that is large, then most vertices remain incident to a fixed number of edges.
Characterising the ‘large number of actions’ regime remains an open question, which
will require different arguments from those employed in our proof of Theorem 15. We
will return to this question in a future paper.

(ii) General interest in uncoupled dynamics stems from the question of whether there are
informationally undemanding dynamics that are guaranteed to lead to a pure Nash
equilibrium when there is one. Completely uncoupled dynamics have even lower in-
formational requirements than uncoupled ones: a dynamic is completely uncoupled if, at
each time 𝑡, each player’s observation set contains only their own realised utility pay-
offs and their own past actions. Babichenko (2012) showed that there is no completely
uncoupled dynamic for which the period-by-period play converges almost surely to a
pure Nash equilibrium in every generic game that has one, and moreover that there
exist obstructions with arbitrarily large numbers of players and numbers of actions per
player. We have not considered completely uncoupled dynamics here since they rely
intrinsically on games with utility functions, which is outside the scope of this paper.
Nevertheless, further analysis of game connectivity properties, either those we have
studied here or others, may yield positive results on completely uncoupled dynamics.

(iii) Since our focus is not on any specific dynamic, we have not addressed the question of
the speed of convergence to equilibrium (Arieli and Young, 2016).21 It is known that
adaptive dynamics can take a very long time to converge (Hart and Mansour, 2010),
but greater knowledge of connectivity properties may help to establish general results
on the speed of convergence in some classes of games.22

(iv) It would be fruitful to investigate the connectivity properties of specific classes of games
featuring local interactions, such as graphical games (Kearns, 2007; Kearns et al., 2013)
or action-graph games (Jiang et al., 2011).

21We expect convergence to take exponential time for the best-response dynamic with inertia.
22Convergence can be fast in potential games (e.g. see Awerbuch et al., 2008) and in anonymous games

(e.g. see Babichenko, 2013).

18



(v) Amiet et al. (2021) and Collevecchio et al. (2024) derive some connectivity properties
of non-generic games with two actions per player but there are, to our knowledge, no
results for non-generic games with more than two actions per player.

(vi) Our analysis of convergence to pure Nash equilibrium did not consider the ‘quality’
of these equilibria. Pradelski and Young (2012), for example, describe a completely
uncoupled dynamic that leads to a Pareto optimal equilibrium most of the time. Again,
further analysis of game connectivity properties may help to more broadly address the
question of convergence to efficient equilibria.

(vii) It might, more generally, be fruitful to investigate the prevalence of games with other
types of connectivity properties. For example, it may be worth considering graphs that
correspond to deviations by non-singleton coalitions of players.
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A Connectivity of directed grids

Theorem 15, the main result of this section and the central technical contribution of our
paper, is about the connectivity properties of random subgraphs of directed Hamming
graphs. We first introduce our notation and then state the theorem, before explaining
how Theorem 5 follows.

For 𝑛 ∈ N and k = (𝑘1, . . . , 𝑘𝑛) ∈ {2, 3, . . . }𝑛 , the Hamming graph𝐻(𝑛, k) is the graph
with vertex set 𝑉(𝑛, k) B ∏𝑛

𝑖=1[𝑘𝑖] and edges between 𝑛-tuples precisely when they
differ in exactly one coordinate. For 𝑖 ∈ [𝑛], a line of𝑉(𝑛, k) in coordinate 𝑖 is a subset of
𝑉(𝑛, k) of size 𝑘𝑖 whose elements pairwise differ in exactly the 𝑖th coordinate. A line
of 𝑉(𝑛, k) is a subset which is a line of 𝑉(𝑛, k) in coordinate 𝑖 for some 𝑖. Note that
a line induces a complete subgraph of 𝐻(𝑛, k). The directed Hamming graph #»

𝐻(𝑛, k) is
the simple directed graph formed by replacing each edge 𝑢𝑣 of 𝐻(𝑛, k) with directed
edges 𝑢 → 𝑣 and 𝑣 → 𝑢.

Let #»

𝐿 (𝑛, k) be the random subgraph of the directed Hamming graph defined by
independently and uniformly at random choosing a winner among the vertices of each
line of #»

𝐻(𝑛, k), and within that line keeping only those edges 𝑢 → 𝑣whose endpoint, 𝑣,
is the winner. Observe that in this random subgraph, each line induces a directed star
in which all edges are oriented towards the winner. Our interest in #»

𝐿 (𝑛, k) stems from
the following.

Remark 14. The graph #»

𝐿 (𝑛, k) has the same distribution as the best-response graph of
a game drawn uniformly at random from amongst all games in 𝒢(𝑛, k).

As in Theorem 5, we will study these objects when 𝑛 is large relative to max𝑖(𝑘𝑖);
our proof breaks down when this is not the case. We now state our main theorem.

Theorem 15. For all 𝜀 > 0 there exist 𝑐, 𝛿 > 0 such that for all integers 𝑛 ≥ 2 and all
k ∈ {2, 3, . . . }𝑛 , if 𝐾 ≔ max𝑖(𝑘𝑖) satisfies 𝐾 ≤ 𝛿

√
𝑛/log(𝑛), then with failure probability at

most
∏𝑛

𝑖=1 𝑘𝑖
−𝑐 , every vertex of #»

𝐿 (𝑛, k) can either be reached from at most𝑁 B (1+𝜀)𝐾 log(𝐾)
vertices, or from every non-sink.

The full proof of Theorem 15 is postponed to Appendices B, C, D, and E. In Ap-
pendix F we examine the tightness (or lack thereof) of various aspects of Theorem 15.
In particular, we show that neither the failure probability nor the value of 𝑁 can be
significantly improved in general.

We use the remainder of this subsection to explain how Theorem 5 follows from
Theorem 15. To this end, we highlight the following corollary of Theorem 15, in which
we denote by 𝑅𝑛,k the event that every non-sink in #»

𝐿 (𝑛, k) can reach every sink, and
by 𝑆𝑛,k the event that #»

𝐿 (𝑛, k) has at least one sink.

Corollary 16. There exist 𝑐0, 𝑐1 > 0 and 𝛿 ∈ (0, 1] such that for all integers 𝑛 ≥ 2 and all
k ∈ {2, 3, . . . }𝑛 , if 𝐾 ≔ max𝑖(𝑘𝑖) is such that 𝐾 ≤ 𝛿

√
𝑛/log(𝑛), then

(a) P(𝑅𝑛,k) ≥ 1 − 𝑒−𝑐0𝑛 ,
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(b) P(𝑅𝑛,k | 𝑆𝑛,k) ≥ 1 − 𝑒−𝑐1𝑛 .

Proof. Let 𝑐 and 𝛿′ be as given by Theorem 15 in the case 𝜀 = 1, and let 𝛿 be the
minimum of 1 and 𝛿′. Then for 𝑛, k, and 𝐾 as in the statement of the corollary, we
have that with failure probability at most

∏𝑛
𝑖=1 𝑘

−𝑐
𝑖

every vertex of #»

𝐿 (𝑛, k) can either
be reached from at most 2𝐾 log(𝐾) vertices or from every non-sink. However, we have
2𝐾 log(𝐾) ≤ 𝐾2 log(𝐾) ≤ 𝑛, so if this event holds then every non-sink can reach every
sink, because all sinks can be reached from at least 𝑛 + 1 vertices. Finally, note that∏𝑛

𝑖=1 𝑘
−𝑐
𝑖

≤ 2−𝑐𝑛 ≤ 𝑒−𝑐0𝑛 for some 𝑐0 > 0, which proves part (a).
Next,

P(𝑅𝑛,k | 𝑆𝑛,k) =
P(𝑅𝑛,k ∩ 𝑆𝑛,k)
P(𝑆𝑛,k)

≥ P(𝑅𝑛,k) − (1 − P(𝑆𝑛,k))
P(𝑆𝑛,k)

≥ 1 − 𝑒−𝑐0𝑛

P(𝑆𝑛,k)
,

where we used part (a) in the final step. It follows from work in Rinott and Scarsini
(2000) that there exists a positive universal constant which lower bounds P(𝑆𝑛,k) for all
𝑛 ≥ 2 and all k ∈ {2, 3, . . . }𝑛 , completing the proof of part (b). □

As remarked above, #»

𝐿 (𝑛, k) has the same distribution as the best-response graph
of a game drawn uniformly at random from among all games in 𝒢(𝑛, k). Because our
draws are uniform, we have that

P(𝑅𝑛,k | 𝑆𝑛,k) =
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is connected}|

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ,

so Theorem 5 follows immediately from part (b) of Corollary 16.

Proof of Corollary 9. Replace 𝑆𝑛,k in the proof of Corollary 16 part (b) by the event that
#»

𝐿 (𝑛, k) is in 𝒳(𝑛, k). □

A.1 Outline of the proof of Theorem 15

We detail the proof of Theorem 15 in Appendices B, C, D, and E. We first start by
providing a high-level overview of our arguments that is a bit more technical than the
one we provided in the main text.

At the heart of our proof is an argument showing the likely existence of a certain
large strongly connected component in #»

𝐿 (𝑛, k); in other words, we find a large set
of vertices which can all reach each other along directed paths. Indeed, we define a
vertex of #»

𝐿 (𝑛, k) to be good if the number of lines that it wins is close to the expected
number, and then show that with high probability every good vertex can reach all
other good vertices along directed paths. Since most vertices win close to the expected
number of lines, this connects up a good proportion of the graph and it remains to
‘plug in’ the remaining, unusual, vertices. This part of our proof is based on work of
McDiarmid et al. (2021), who study the component structure of random subgraphs of
the undirected hypercube graph.
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Once we know that all good vertices are in the same strongly connected component,
it is sufficient to show that every non-sink 𝑥 can reach some good vertex 𝑢, and every
vertex 𝑦 which can be reached from more than 𝑁 = (1 + 𝜀)𝐾 log(𝐾) vertices can be
reached from some good vertex 𝑣. Indeed, this yields a directed path from 𝑥 to 𝑦 via
𝑢 and 𝑣, where we utilise the strongly connected component to get from 𝑢 to 𝑣. The
first step towards this is to ‘establish a foothold’ by showing that with high probability
(a) every non-sink can in fact reach at least 𝑛/2 vertices, and (b) every vertex that can
be reached from more than 𝑁 vertices can in fact be reached from at least 𝑛/2 vertices.
The inspiration for considering such an event comes from the work of Bollobás et al.
(1993). The final step in the proof is then to show that if a vertex can reach or be reached
from at least 𝑛/2 vertices, then it is very unlikely that none of these vertices is good.

B Proof of Theorem 15: preliminaries

Throughout the proof of Theorem 15, i.e. throughout Appendices B, C, D, and E,
we will take 𝑛 ≥ 2 to be an integer, we will take k ∈ {2, 3, . . . }𝑛 , and we will let
𝐾 B max𝑖(𝑘𝑖). We will describe a probability 𝑝𝜀(𝑛, k) with parameters 𝜀 > 0, 𝑛,
and k as being very small if for all 𝜀 there exist 𝑐𝜀 , 𝛿𝜀 > 0 depending only on 𝜀 such
that 𝑝𝜀(𝑛, k) ≤ ∏𝑛

𝑖=1 𝑘
−𝑐𝜀
𝑖

for all 𝐾 ≤ 𝛿𝜀
√
𝑛/log(𝑛). For a probability 𝑝(𝑛, k) with no

dependence on 𝜀, the constants 𝑐𝜀 and 𝛿𝜀 should be replaced by universal constants.
Furthermore, we will say that 𝑝(𝑛, k) is extremely small if there exist 𝑐, 𝛿0 > 0 such that
for all 𝛿 ∈ (0, 𝛿0), if 𝐾 ≤ 𝛿

√
𝑛/log(𝑛), then 𝑝(𝑛, k) ≤ 𝑒−𝑐𝑛 log(𝐾)/𝛿. Observe that every

extremely small probability is also very small.
If 𝑝𝜀(𝑛, k) or 𝑝(𝑛, k) is very or extremely small, we will say that the complementary

probability is very or extremely high, respectively. We say that an event 𝐹𝜀(𝑛, k) or
𝐹(𝑛, k) occurs with very high probability (wvhp) or with extremely high probability (wehp)
if the probability that it occurs is very or extremely high respectively.

Given this terminology, Theorem 15 is equivalent to the statement that wvhp,
every vertex of #»

𝐿 (𝑛, k) can either be reached from at most (1 + 𝜀)𝐾 log(𝐾) vertices or
from every non-sink. This motivates our definition of very small probabilities. Our
definition of extremely small probabilities is motivated by the following lemma, which
demonstrates that such probabilities are amenable to union bounds over 𝑉(𝑛, k).

Lemma 17. If 𝑝(𝑛, k) is an extremely small probability, then for all fixed 𝑎 > 0 the probability
𝐾𝑎𝑛 · 𝑝(𝑛, k) is also extremely small.

Proof. Let 𝑐 and 𝛿0 witness the fact that 𝑝(𝑛, k) is extremely small. Then for all 𝛿 ∈
(0, 𝛿0), if 𝐾 ≤ 𝛿

√
𝑛/log(𝑛), then

𝐾𝑎𝑛 · 𝑝(𝑛, k) ≤ 𝑒 𝑎𝑛 log(𝐾)−𝑐𝑛 log(𝐾)/𝛿 = 𝑒𝑛 log(𝐾)(𝑎−𝑐/𝛿).

Let 𝛿′0 ∈ (0, 𝛿0) be small enough that 𝑐/(2𝛿′0) > 𝑎, then for all 𝛿 ∈ (0, 𝛿′0) we have
𝑎 − 𝑐/𝛿 < −𝑐/(2𝛿), so letting 𝑐′ = 𝑐/2 we see that 𝑐′, 𝛿′0 witness the fact that 𝐾𝑎𝑛 · 𝑝(𝑛, k)
is extremely small. □
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We will also make frequent use of the following simple result which follows from
elementary analyses of the various cases.

Lemma 18. The sum of two very small probabilities is very small and the sum of two extremely
small probabilities is extremely small.

Before starting the proof Theorem 15 in earnest, we record the following two stan-
dard results which will be useful at various points. For a discussion of these results
(and much more), we refer the reader to Frieze and Karoński (2015).

Lemma 19 (Chernoff bound). Let 𝑋1, . . . , 𝑋𝑛 be independent Bernoulli random variables,
let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , and let 𝜇 = E[𝑋]. Then for all 𝜀 ≥ 0 we have

P(𝑋 ≤ (1 − 𝜀)𝜇) ≤ 𝑒−𝜀
2𝜇/2.

Lemma 20 (Application of Markov’s inequality). Let 𝑍1, . . . , 𝑍𝑚 be non-negative integer
valued random variables, and suppose that

∑𝑚
𝑖=1 E[𝑍𝑖] ≤ 𝑝 for some 𝑝 ∈ [0, 1]. Then the

probability that 𝑍1 = · · · = 𝑍𝑚 = 0 is at least 1 − 𝑝.

Proof. Let 𝑍 =
∑𝑚
𝑖=1 𝑍𝑖 and note that E[𝑍] = ∑𝑚

𝑖=1 E[𝑍𝑖] ≤ 𝑝. By Markov’s inequality,
P(𝑍 ≥ 1) ≤ E[𝑍] ≤ 𝑝, and the complement of the event {𝑍 ≥ 1} is {𝑍1 = · · · = 𝑍𝑚 =

0}. □

C Proof of Theorem 15: establishing a foothold

Throughout this section we let 𝜀 > 0 and set 𝑁 = (1+ 𝜀)𝐾 log(𝐾), as in the statement of
Theorem 15. We will also assume (without loss of generality) that 𝑘1 ≤ 𝑘2 ≤ · · · ≤ 𝑘𝑛 .
Recall from Section A.1 that one step in our proof of Theorem 15 will be to show that,
wvhp, in #»

𝐿 (𝑛, k) all non-sinks can reach more than 𝑛/2 vertices, and all vertices which
can be reached from more than 𝑁 vertices can be reached from more than 𝑛/2 vertices.
We write 𝐴𝜀 for the event that this condition holds in #»

𝐿 (𝑛, k).

Definition 21 (Event 𝐴𝜀). Let 𝐴𝜀 be the event that the following two conditions are
satisfied:

• all non-sinks can reach more than 𝑛/2 vertices; and

• every vertex that can be reached from more than 𝑁 vertices can be reached from
more than 𝑛/2 vertices.

This section is devoted to establishing the following lemma.

Lemma 22. The event 𝐴𝜀 occurs with very high probability.

23



Our proof of Lemma 22 follows the approach used by Bollobás et al. (1993) to study
a random subgraph of #»

𝐻(𝑛, 2) with a similar distribution to that of #»

𝐿 (𝑛, 2). Imitating
those authors, for each 1 ≤ 𝑚 ≤ ∏𝑛

𝑖=1 𝑘𝑖 , define the random variable 𝑋𝑚 to be the
number of vertices of #»

𝐿 (𝑛, k) which can reach exactly 𝑚 vertices (recall that every
vertex can reach and be reached from itself). Analogously, let 𝑌𝑚 be the number of
vertices which can be reached from exactly𝑚 vertices. Observe that𝐴𝜀 can equivalently
be defined as the event that 𝑋𝑚 = 0 for all 2 ≤ 𝑚 ≤ 𝑛/2 and𝑌𝑚 = 0 for all𝑁 < 𝑚 ≤ 𝑛/2.

Given a set 𝑆 ⊆ 𝑉(𝑛, k), we say that a line of 𝑉(𝑛, k) in coordinate 𝑖 is an incomplete
line of 𝑆 if its intersection with 𝑆 has size other than 0 or 𝑘𝑖 . If 𝑣 can reach exactly 𝑚
vertices, then running a depth first search from 𝑣 gives a tree 𝑇 with 𝑚 vertices, in
which all edges are oriented away from 𝑣 and the winner of every incomplete line of 𝑇
is in𝑇. Similarly, if 𝑣 can be reached from exactly𝑚 vertices, then we may build a tree𝑇
with 𝑚 vertices where all the edges are oriented towards 𝑣 and the winner of every
incomplete line of 𝑇 is outside of 𝑇. It follows that 𝑋𝑚 and 𝑌𝑚 are bounded above by
the number of pairs (𝑣, 𝑇), where 𝑇 is an appropriate tree with 𝑚 vertices rooted at 𝑣.

We will use the following folklore result to upper bound the numbers of such trees
in 𝐻(𝑛, k). A short combinatorial proof is given in McDiarmid et al. (2021).

Lemma 23. If 𝐺 is a graph with maximum degree Δ, then for each 𝑚 ∈ N there are at most
(𝑒Δ)𝑚−1 trees of order 𝑚 in 𝐺 that contain a given vertex.

When applied to 𝐻(𝑛, k), Lemma 23 gives that there are at most (𝑒𝑛𝐾)𝑚−1 trees of
order 𝑚 in 𝐻(𝑛, k) that contain a given vertex. Lemma 22 follows from the next two
lemmas, which handle the 𝑋𝑚 and 𝑌𝑚 parts of the statement respectively.

Lemma 24. With very high probability, 𝑋𝑚 = 0 for all 2 ≤ 𝑚 ≤ 𝑛/2.

Proof. We need to show that there exist universal 𝑐, 𝛿 > 0 such that if 𝐾 ≤ 𝛿
√
𝑛/log(𝑛),

then 𝑋𝑚 = 0 for all 2 ≤ 𝑚 ≤ 𝑛/2 with probability at least 1 − ∏𝑛
𝑖=1 𝑘

−𝑐
𝑖

. Thus, let 𝛿 > 0
be small and assume that 𝐾 ≤ 𝛿

√
𝑛 log(𝑛).

Fix 2 ≤ 𝑚 ≤ 𝑛/2 and let 𝑇 be a tree of order 𝑚 in 𝐻(𝑛, k). Given the discussion
preceding Lemma 23, we wish to upper bound the probability that the winner of every
incomplete line of 𝑇 is in 𝑇. To this end, it will be helpful to lower bound the number
of lines containing exactly one vertex of 𝑇. Each vertex of 𝑇 is in 𝑛 lines, so there
are 𝑚𝑛 pairs (𝑢, 𝑙) consisting of a vertex 𝑢 in 𝑇 and a line 𝑙 containing it. For each pair
of distinct vertices 𝑢 and 𝑣 in 𝑇, if 𝑢 and 𝑣 are contained in some common line 𝑙, then
delete the pairs (𝑢, 𝑙) and (𝑣, 𝑙) from this set. Since any pair of vertices have at most
one common line, this process removes at most 2

(𝑚
2
)

pairs from the set, and we deduce
that there are at least 𝑚𝑛 − 𝑚2 lines of 𝑉(𝑛, k) which contain exactly one vertex of 𝑇.

The winner of each of these lines is in 𝑇 independently. Since we want to upper
bound the probability that the winner of all of these lines is in 𝑇, we may assume that
they are all in as low a coordinate direction as possible (recall that 𝑘1 ≤ · · · ≤ 𝑘𝑛 by
assumption). At most 𝑚 incomplete lines are in any given coordinate direction, so the
probability that the winner of every incomplete line of 𝑇 is in 𝑇 is at most

∏𝑛−𝑚
𝑖=1 𝑘−𝑚

𝑖
.
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By Lemma 23, the number of pairs (𝑣, 𝑇)where 𝑣 ∈ 𝑉(𝑛, k) and𝑇 is a tree of order𝑚
in 𝐻(𝑛, k) containing 𝑣 is at most (𝑒𝑛𝐾)𝑚−1 · ∏𝑛

𝑖=1 𝑘𝑖 , so by the discussion before that
lemma we have

E[𝑋𝑚] ≤
(𝑒𝑛𝐾)𝑚−1 · ∏𝑛

𝑖=1 𝑘𝑖∏𝑛−𝑚
𝑖=1 𝑘𝑚

𝑖

≤
𝐾𝑚(𝑒𝑛𝐾)𝑚−1 · ∏𝑛−𝑚

𝑖=1 𝑘𝑖∏𝑛−𝑚
𝑖=1 𝑘𝑚

𝑖

≤ (𝑒𝑛𝐾2)𝑚∏𝑛−𝑚
𝑖=1 𝑘𝑚−1

𝑖

.

Applying the fact that 𝑚 − 1 ≥ 𝑚/2 (since 𝑚 ≥ 2), we obtain

E[𝑋𝑚] ≤
(𝑒𝑛𝐾2)𝑚∏𝑛−𝑚
𝑖=1 𝑘

𝑚/2
𝑖

≤
(

𝑒𝑛𝐾2∏𝑛−𝑚
𝑖=1 𝑘

1/2
𝑖

)𝑚
≤

𝑛−𝑚∏
𝑖=1

𝑘
−𝑚/3
𝑖

where the final inequality follows by taking 𝛿 small enough that 𝑒𝑛𝐾2 ≤ 2𝑛/12, which
is at most

∏𝑛−𝑚
𝑖=1 𝑘

1/6
𝑖

since 𝑚 ≤ 𝑛/2.

Claim 1. If 𝛿 is small enough, then
∏𝑛−𝑚

𝑖=1 𝑘
−𝑚/3
𝑖

≤ ∏𝑛
𝑖=1 𝑘

−1/2
𝑖

for all 2 ≤ 𝑚 ≤ 𝑛/2.

Proof. After rearranging, we need to show that
∏𝑛

𝑖=𝑛−𝑚+1 𝑘
1/2
𝑖

≤ ∏𝑛−𝑚
𝑖=1 𝑘

𝑚/3−1/2
𝑖

for all
2 ≤ 𝑚 ≤ 𝑛/2. The left-hand side of this inequality is at most 𝐾𝑚/2 and the right-hand
side is at least 2(𝑛−𝑚)(𝑚/3−1/2). Raising both sides to the power of 2/𝑚, it is sufficient
that 𝐾 ≤ 2(𝑛−𝑚)(2/3−1/𝑚). The right-hand side of this inequality is at least 2𝑛/12, and we
can take 𝛿 small enough that 𝐾 ≤ 2𝑛/12, so the claim is proved. □

Applying the claim, we have

𝑛/2∑
𝑚=2
E[𝑋𝑚] ≤

𝑛

2 ·
𝑛∏
𝑖=1

𝑘
−1/2
𝑖

.

By taking 𝛿 to be sufficiently small we can ensure that this is at most
∏𝑛

𝑖=1 𝑘
−𝑐
𝑖

for some
𝑐 > 0. Lemma 20 now yields that 𝑋𝑚 = 0 for all 2 ≤ 𝑚 ≤ 𝑛/2 with failure probability
at most

∏𝑛
𝑖=1 𝑘

−𝑐
𝑖

, as required. □

The next lemma deals with the 𝑌𝑚 part of Lemma 22. Note that Lemma 22 follows
immediately from Lemma 18, Lemma 24, and Lemma 25.

Lemma 25. With very high probability, 𝑌𝑚 = 0 for all 𝑁 < 𝑚 ≤ 𝑛/2.

Proof. We need to show that there exist 𝑐𝜀 , 𝛿𝜀 > 0 depending only on 𝜀 such that if
𝐾 ≤ 𝛿𝜀

√
𝑛/log(𝑛), then 𝑌𝑚 = 0 for all 𝑁 < 𝑚 ≤ 𝑛/2 with failure probability at most∏𝑛

𝑖=1 𝑘
−𝑐𝜀
𝑖

. In fact, we will show a stronger failure probability of at most 𝑒−𝑐𝜀𝑛 log(𝐾).
Thus, let 𝛿𝜀 > 0 be small and assume that 𝐾 ≤ 𝛿𝜀

√
𝑛/log(𝑛).

We will employ a similar strategy to that used to prove Lemma 24. Fix𝑁 < 𝑚 ≤ 𝑛/2
and let 𝑇 be a tree of order 𝑚 in 𝐻(𝑛, k). We will upper bound the probability that the
winner of every incomplete line of 𝑇 is not in 𝑇 using the lower bound of 𝑚𝑛 − 𝑚2 on
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the number of incomplete lines of 𝑇 (from the proof of Lemma 24). The winner of each
of these lines is in 𝑇 independently, so the probability that all the winners are outside 𝑇
is at most (1 − 1/𝐾)𝑚(𝑛−𝑚).

Hence, by Lemma 23 and the discussion preceding it, we have

E[𝑌𝑚] ≤ 𝐾𝑛 · (𝑒𝑛𝐾)𝑚−1 ·
(
1 − 1

𝐾

)𝑚(𝑛−𝑚)

≤
[
𝑒𝑛𝐾2 ·

(
𝐾1/𝑚

(
1 − 1

𝐾

))𝑛−𝑚]𝑚
.

Using that 𝑚 > 𝑁 = (1 + 𝜀)𝐾 log(𝐾) and 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 we have

𝐾1/𝑚
(
1 − 1

𝐾

)
≤ 𝐾1/(1+𝜀)𝐾 log(𝐾)𝑒−1/𝐾 = exp

(
−𝜀

(1 + 𝜀)𝐾

)
. (1)

Assuming that 𝛿𝜀 ≤ 1/2, we have that 𝐾2 ≤ 𝑛. Applying this and 𝑚 ≤ 𝑛/2 yields

E[𝑌𝑚] ≤
[
𝑒𝑛2 · exp

(
−𝜀(𝑛 − 𝑚)
(1 + 𝜀)𝐾

)]𝑚
≤

[
𝑒𝑛2 · exp

(
−𝜀𝑛

2(1 + 𝜀)𝐾

)]𝑚
.

By making 𝛿𝜀 small enough that 𝜀𝑛/(4(1 + 𝜀)𝐾) ≥ log(𝑒𝑛2) and using the fact that
𝑚 ≥ 𝐾 log(𝐾), we have

E[𝑌𝑚] ≤ exp
(

−𝜀𝑚𝑛
4(1 + 𝜀)𝐾

)
≤ exp

(−𝜀𝑛 log(𝐾)
4(1 + 𝜀)

)
.

Thus, ∑
𝑁<𝑚≤𝑛/2

E[𝑌𝑚] ≤
𝑛

2 · exp
(−𝜀𝑛 log(𝐾)

4(1 + 𝜀)

)
≤ exp

(
− 𝜀

8(1 + 𝜀)𝑛 log(𝐾)
)

for sufficiently large (depending only on 𝜀) 𝑛. By making 𝛿𝜀 sufficiently small relative
to 𝜀, we can ensure that we only need to consider values for 𝑛 which are sufficiently
large, and we find that

∑
𝑁<𝑚≤𝑛/2 E[𝑌𝑚] is at most 𝑒−𝑐𝜀𝑛 log(𝐾) for some 𝑐𝜀 > 0 depending

only on 𝜀. Lemma 20 now yields that 𝑌𝑚 = 0 for all 𝑁 < 𝑚 ≤ 𝑛/2 with failure
probability at most 𝑒−𝑐𝜀𝑛 log(𝐾), as required. □

D Proof of Theorem 15: a strongly connected component

The next step in the proof of Theorem 15 will be to find a large strongly connected
component in #»

𝐿 (𝑛, k). To this end, we make the following two definitions.

Definition 26 (Good vertex). A vertex of #»

𝐿 (𝑛, k) is good if it wins at least 𝑛/3𝐾 but at
most 3𝑛/4 of its lines.
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Definition 27 (Event 𝐵). Let 𝐵 be the event that every good vertex of #»

𝐿 (𝑛, k) can reach
all other good vertices along directed paths, that is, all good vertices are in the same
strongly connected component of #»

𝐿 (𝑛, k).

The main result of this section is that 𝐵 occurs wehp.

Lemma 28. The event 𝐵 occurs with extremely high probability.

Our proof of Lemma 28 is based on an approach taken by McDiarmid et al. (2021),
and will proceed via the following two auxiliary lemmas.

Lemma 29. With extremely high probability, every vertex in𝑉(𝑛, k) has an𝐻(𝑛, k)-neighbour
which is good in #»

𝐿 (𝑛, k).

Lemma 30. With extremely high probability, every good vertex in #»

𝐿 (𝑛, k) can reach all good
vertices within 𝐻(𝑛, k)-distance 3 of it.

Given Lemmas 29 and 30, Lemma 28 follows easily. This proof and the proof of
Lemma 29 are straightforward generalisations of work in McDiarmid et al. (2021), but
we include them for completeness.

Proof of Lemma 28. Let #»

𝐹 be any realisation of #»

𝐿 (𝑛, k) for which the conclusions of
Lemma 29 and Lemma 30 both hold, and note that this happens wehp by those two
lemmas and Lemma 18. That is, let #»

𝐹 be any outcome of #»

𝐿 (𝑛, k) in which every good
vertex can reach all other good vertices at distance at most 3 from it in 𝐻(𝑛, k), and
in which every vertex has a neighbour in 𝐻(𝑛, k) which is good. To prove Lemma 28,
it suffices to show that for all good vertices 𝑥 and 𝑦, there exists a directed path in #»

𝐹

from 𝑥 to 𝑦.
Let 𝑥 and 𝑦 be good vertices of #»

𝐹 and choose a path 𝑃 = 𝑝0𝑝1 . . . 𝑝𝑡 in 𝐻(𝑛, k)
where 𝑝0 = 𝑥 and 𝑝𝑡 = 𝑦. If 𝑡 ≤ 3, then there exists a directed path from 𝑥 to 𝑦 in
#»

𝐹 . Otherwise 𝑝2, 𝑝3, . . . , 𝑝𝑡−2 have good 𝐻(𝑛, k)-neighbours 𝑞2, . . . , 𝑞𝑡−2 respectively.
Then 𝑥 and 𝑞2 are at distance at most 3, 𝑞𝑖 and 𝑞𝑖+1 are at distance at most 3 for all
2 ≤ 𝑖 ≤ 𝑡 − 3, and 𝑞𝑡−2 and 𝑦 are at distance at most 3, so #»

𝐹 contains a path from 𝑥 to 𝑦
via 𝑞2, . . . , 𝑞𝑡−2. □

Proof of Lemma 29. For a vertex 𝑣 ∈ 𝑉(𝑛, k), let 𝑋 be the number of lines that 𝑣 wins
in #»

𝐿 (𝑛, k) and note that 𝑣 is good if and only if 𝑛/3𝐾 ≤ 𝑋 ≤ 3𝑛/4. Since 𝑋 is a sum
of 𝑛 independent Bernoulli random variables and has mean 𝜇 =

∑𝑛
𝑖=1 1/𝑘𝑖 ≥ 𝑛/𝐾, by

Lemma 19 we have

P
(
𝑋 <

𝑛

3𝐾

)
≤ P

(
𝑋 ≤

𝜇

3

)
≤ 𝑒−2𝜇/9 ≤ 𝑒−2𝑛/(9𝐾).

Similarly, 𝑛 − 𝑋 is a sum of 𝑛 independent Bernoulli random variables and has mean
𝜇′ ≥ 𝑛/2, so by Lemma 19 again we have

P
(
𝑋 > 3𝑛/4

)
= P

(
𝑛 − 𝑋 < 𝑛/4

)
≤ P

(
𝑛 − 𝑋 ≤

𝜇′

2

)
≤ 𝑒−𝜇

′/8 ≤ 𝑒−𝑛/16.

27



It follows (using 𝐾 ≥ 2) that 𝑣 is good with failure probability at most 𝑒−𝑛/(10𝐾).
Now fix 𝑢 ∈ 𝑉(𝑛, k) and pick one vertex other than 𝑢 from each of the 𝑛 lines

containing it, say 𝑣1, . . . , 𝑣𝑛 . The 𝑣𝑖 are distinct and no two of them share a line, so
they are good independently of one another. Hence, the probability that 𝑢 has no good
𝐻(𝑛, k)-neighbour is at most 𝑒−𝑛2/(10𝐾), so by a union bound over 𝑢, the probability
that there exists a vertex with no good 𝐻(𝑛, k)-neighbour is at most 𝐾𝑛 · 𝑒−𝑛2/(10𝐾). For
0 < 𝛿 ≤ 1, if 𝐾 ≤ 𝛿

√
𝑛/log(𝑛), then 𝐾2 log(𝐾) ≤ 𝛿𝑛 and 𝑛/𝐾 ≥ 𝐾 log(𝐾)/𝛿 ≥ log(𝐾)/𝛿,

so 𝑒−𝑛2/(10𝐾) is extremely small. By Lemma 17, the same is true of 𝐾𝑛 · 𝑒−𝑛2/(10𝐾), which
completes the proof of the lemma. □

It remains to give the (slightly more involved) proof of Lemma 30.

Proof of Lemma 30. In this proof we will relabel 𝑉(𝑛, k) as
∏𝑛

𝑖=1{0, . . . , 𝑘𝑖 − 1} in the
natural way and will consider these vertices as elements of the vector space R𝑛 . We
will write e1, . . . , e𝑛 for the standard basis of this space.

We need to show that if 𝛿 > 0 is sufficiently small, then whenever 𝐾 ≤ 𝛿
√
𝑛/log(𝑛),

the probability that there exists a good vertex that cannot reach some other good vertex
within 𝐻(𝑛, k)-distance 3 of it is at most 𝑒−𝑐𝑛 log(𝐾)/𝛿 for some universal 𝑐 > 0. Thus, let
𝛿 > 0 be small and assume that 𝐾 ≤ 𝛿

√
𝑛/log(𝑛). Note that since 𝑛 ≥ 2, by choosing

𝛿 small enough we may assume that 𝑛/𝐾2 ≥ log(𝑛)/𝛿2 (and hence also 𝑛 and 𝑛/𝐾) is
large in absolute terms.

Our proof will focus on pairs of vertices at distance exactly 3 from one another, and
it will be clear how to adapt the argument to pairs at distance 1 or 2. Let 𝑢 and 𝑣 be
vertices of 𝐻(𝑛, k) at distance 3 from each other. After relabelling, we may assume
that 𝑢 = 0 and 𝑣 = e1 + e2 + e3. Fix subsets 𝐴′, 𝐵′ ⊆ [𝑛] of sizes at least 𝑛/4 and 𝑛/3𝐾
respectively; later we will assume that 𝑢 and 𝑣 are good vertices and take these to be the
sets of coordinate directions in which 𝑢 and 𝑣 do not win and, respectively, win their
lines. For each 𝑖 ∈ 𝐴′ fix some 𝛼𝑖 ∈ [𝑘𝑖 −1]; later we will take 𝛼𝑖 to be the 𝑖th coordinate
of the winner of the line through 𝑢 in direction 𝑖. Now pick any 𝐴 ⊆ 𝐴′ \ {1, 2, 3} and
𝐵 ⊆ 𝐵′ \ {1, 2, 3} such that |𝐴| = ⌈𝑛/5⌉ and |𝐵| = ⌈𝑛/4𝐾⌉. Relabelling again, we may
assume that 𝐴, 𝐵 ⊆ [⌊𝑛/2⌋].

Having fixed 𝐴, 𝐵, and the 𝛼𝑖 , we will now define a certain type of path in #»

𝐻(𝑛, k).
First, let 𝑖 , 𝑗 ∈ [𝑛] be distinct with 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵, then let 𝛽 ∈ [𝑘 𝑗 − 1]. A directed
path in #»

𝐻(𝑛, k) from 𝛼𝑖e𝑖 + 𝛽e𝑗 to 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝑣 will be called an (𝑖 , 𝑗 , 𝛽)-path if it has
the following form: the path starts at 𝛼𝑖e𝑖 + 𝛽e𝑗 then follows a path of length 3 to
𝛼𝑖e𝑖 + 𝛽e𝑗 + e1 in which the first and third edges are in a coordinate direction taken
from the interval of integers [⌊𝑛/2⌋ + 1, ⌊2𝑛/3⌋]. That is, the path starts

𝛼𝑖e𝑖 + 𝛽e𝑗 , 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝛾eℓ , 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝛾eℓ + e1, 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1,

for some ℓ ∈ [⌊𝑛/2⌋ + 1, ⌊2𝑛/3⌋] and 𝛾 ∈ [𝑘ℓ − 1]. Next, the path follows a path of
length 3 to 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1 + e2 in which the first and third edges are in a coordinate
direction taken from [⌊2𝑛/3⌋ + 1, ⌊5𝑛/6⌋], before finally following a path of length 3
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to 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1 + e2 + e3 = 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝑣 in which the first and third edges are in a
coordinate direction taken from [⌊5𝑛/6⌋ + 1, 𝑛].

Let 𝐸(1)
(𝑖 , 𝑗 ,𝛽) be the event that there exists in #»

𝐿 (𝑛, k) a path of length 3 from 𝛼𝑖e𝑖+𝛽e𝑗 to
𝛼𝑖e𝑖+𝛽e𝑗+e1 in which the first and third edges are in a coordinate direction taken from
[⌊𝑛/2⌋ +1, ⌊2𝑛/3⌋]. That is, 𝐸(1)

(𝑖 , 𝑗 ,𝛽) is the event that there is some ℓ ∈ [⌊𝑛/2⌋ +1, ⌊2𝑛/3⌋]
and some 𝛾 ∈ [𝑘ℓ − 1] such that all of the edges in the directed path

𝛼𝑖e𝑖 + 𝛽e𝑗 , 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝛾eℓ , 𝛼𝑖e𝑖 + 𝛽e𝑗 + 𝛾eℓ + e1, 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1

are present in #»

𝐿 (𝑛, k). Define 𝐸(2)
(𝑖 , 𝑗 ,𝛽) and 𝐸

(3)
(𝑖 , 𝑗 ,𝛽) analogously for the second and third

parts of the (𝑖 , 𝑗 , 𝛽)-path. Note that there exists an (𝑖 , 𝑗 , 𝛽)-path in #»

𝐿 (𝑛, k) if and only if
all three of these events occur.

The event that #»

𝐿 (𝑛, k) contains a path of length 3 from 𝛼𝑖e𝑖 + 𝛽e𝑗 to 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1
in which the first and third edges are in a given coordinate direction ℓ has probability(

1 − 1
𝑘ℓ

)
1
𝑘1

1
𝑘ℓ

≥ 1
2𝐾2 .

Indeed, the probability that 𝛼𝑖e𝑖 + 𝛽e𝑗 does not win its line in direction ℓ is 1 − 1/𝑘ℓ ;
the probability that 𝛼𝑖e𝑖 + 𝛽e𝑗 + e1 wins its line in direction ℓ is 1/𝑘ℓ , the probability
that the required edge in the direction 1 is present is 1/𝑘1, and these three events occur
independently. Since the existence of such a path is independent for different ℓ , the
failure probability of 𝐸(1)

(𝑖 , 𝑗 ,𝛽) is at most

⌊2𝑛/3⌋∏
ℓ=⌊𝑛/2⌋+1

(
1 − 1

2𝐾2

)
≤

(
1 − 1

2𝐾2

)𝑛/7
≤ 𝑒−𝑛/(14𝐾2) <

1
2 ,

where we have used that 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ∈ R and that 𝑛/𝐾2 is large.
Similarly, 𝐸(2)

(𝑖 , 𝑗 ,𝛽) and 𝐸(3)
(𝑖 , 𝑗 ,𝛽) each occur with probability at least 1/2. Moreover, it is

not difficult to see that the sets of lines on whose presence each of these three events
depend are pairwise disjoint, from which it follows that the events are independent.
We deduce that #»

𝐿 (𝑛, k) contains an (𝑖 , 𝑗 , 𝛽)-path with probability at least 1/8.
Next, we will call a path in #»

𝐻(𝑛, k) an extended (𝑖 , 𝑗 , 𝛽)-path if it is an (𝑖 , 𝑗 , 𝛽)-path
extended by one vertex at the end to 𝛽e𝑗+𝑣. The line containing 𝛽e𝑗+𝑣 and 𝛼𝑖e𝑖+𝛽e𝑗+𝑣
could never be used in any (𝑖 , 𝑗 , 𝛽)-path, so the probability that #»

𝐿 (𝑛, k) contains an
extended (𝑖 , 𝑗 , 𝛽)-path is at least 1/(8𝑘𝑖).

To conclude our definitions, a path in #»

𝐻(𝑛, k) will be called an (𝑖 , 𝑗)-path if there
exists 𝛽 ∈ [𝑘 𝑗 − 1] for which it is an extended (𝑖 , 𝑗 , 𝛽)-path extended by one vertex at
the start to 𝛼𝑖e𝑖 . Note that the line through 𝛼𝑖e𝑖 in coordinate 𝑗 cannot be used in an
extended (𝑖 , 𝑗 , 𝛽)-path for any 𝛽 ∈ [𝑘 𝑗 − 1]. Hence, the probability that #»

𝐿 (𝑛, k) contains
an (𝑖 , 𝑗)-path is the probability that the winner of the line through 𝛼𝑖e𝑖 in coordinate 𝑗
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is some 𝛼𝑖e𝑖 + 𝛽e𝑗 with 𝛽 ∈ [𝑘 𝑗 − 1], multiplied by the probability that #»

𝐿 (𝑛, k) contains
an extended (𝑖 , 𝑗 , 𝛽)-path for this 𝛽. By the above, this probability is at least

1
8𝑘𝑖

(
1 − 1

𝑘 𝑗

)
≥ 1

16𝑘𝑖
.

Next, observe that every line that could possibly be used in an (𝑖 , 𝑗)-path identifies
the set {𝑖 , 𝑗}. There are at least |𝐴| (|𝐵| − 1)/2 ≥ 𝑛2/(50𝐾) ways to choose {𝑖 , 𝑗}, so the
probability that #»

𝐿 (𝑛, k) does not contain an (𝑖 , 𝑗)-path for any (𝑖 , 𝑗) is at most(
1 − 1

16𝑘𝑖

)𝑛2/(50𝐾)
≤ 𝑒−𝑛

2/(800𝐾2)

Observe also that the event that there exists an (𝑖 , 𝑗)-path in #»

𝐿 (𝑛, k) for some (𝑖 , 𝑗) is
independent of the behaviour of any lines of 𝑉(𝑛, k) containing 𝑢 or 𝑣.

This analysis holds for any choice of 𝐴′ and 𝐵′ containing at least 𝑛/4 and 𝑛/3𝐾
directions respectively, so if 𝑢 and 𝑣 are good vertices, then we may take 𝐴′ to be the
set of coordinate directions in which 𝑢 does not win its line, and 𝐵′ to be the set of
directions in which 𝑣 does win its line. For each 𝑖 ∈ 𝐴′, let 𝛼𝑖 ∈ [𝑘𝑖 − 1] be the 𝑖th
coordinate of the winner of the line through 𝑢 in direction 𝑖. This means that the edges
from 𝑢 to 𝛼𝑖e𝑖 and from 𝛽e𝑗 + 𝑣 to 𝑣 are both present for any choice of 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵,
and 𝛽 ∈ [𝑘 𝑗 − 1], so if there is no path from 𝑢 to 𝑣 in #»

𝐿 (𝑛, k), then there is no (𝑖 , 𝑗)-path
in #»

𝐿 (𝑛, k) for any (𝑖 , 𝑗). We have shown that this happens with probability at most
𝑒−𝑛

2/(800𝐾2).
By a similar argument, the same holds for every pair of vertices at distance 1 or 2

from each other. A union bound yields that the probability that there exists a good
vertex which cannot reach in #»

𝐿 (𝑛, k) some other good vertex within 𝐻(𝑛, k)-distance
3 of it is at most 𝐾2𝑛 · 𝑒−𝑛2/(800𝐾2). Clearly 𝑒−𝑛2/(800𝐾2) is extremely small, so Lemma 17
implies that 𝐾2𝑛 · 𝑒−𝑛2/(800𝐾2) is also extremely small, which completes the proof of the
lemma. □

E Proof of Theorem 15: accessing good vertices

Recall that in Section A.1 and Appendix D we defined a vertex of #»

𝐿 (𝑛, k) to be good
if it wins at least 𝑛/3𝐾 but at most 3𝑛/4 of its lines. We will start by considering the
following event.

Definition 31 (Event 𝐶). Let 𝐶 be the event that every vertex in 𝑉(𝑛, k) that can be
reached from more than 𝑛/2 vertices in #»

𝐿 (𝑛, k) can be reached from a good vertex.

We show that 𝐶 is very likely.

Lemma 32. The event 𝐶 occurs with extremely high probability.
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Proof. We need to show that if 𝛿 > 0 is sufficiently small, then whenever 𝐾 ≤
𝛿
√
𝑛/log(𝑛), we have P(𝐶𝑐) ≤ 𝑒−𝑐𝑛 log(𝐾)/𝛿 for some 𝑐 > 0. To this end, let 𝛿 > 0

be small and assume that 𝐾 ≤ 𝛿
√
𝑛/log(𝑛). For each 𝑦 ∈ 𝑉(𝑛, k), define 𝐶𝑦 to be the

event that either 𝑦 can be reached from at most 𝑛/2 vertices in #»

𝐿 (𝑛, k), or 𝑦 can be
reached from a good vertex in #»

𝐿 (𝑛, k)
Let 𝑀 = ⌊𝑛/3⌋. Fix 𝑦 and let 𝑆 be the set of trees of order 𝑀 in 𝐻(𝑛, k) that contain

𝑦. For a tree 𝑇 ∈ 𝑆, let 𝐶𝑇 be the event that all the edges of 𝑇 are oriented towards 𝑦 in
#»

𝐿 (𝑛, k) (so in particular, if 𝐶𝑇 holds, then all vertices of 𝑇 can reach 𝑦). If (𝐶𝑦)𝑐 holds,
then 𝑦 can be reached from more than 𝑛/2 ≥ 𝑀 vertices, so 𝐶𝑇 occurs for some 𝑇 ∈ 𝑆.
Hence, by a union bound

P
(
(𝐶𝑦)𝑐

)
= P

(
(𝐶𝑦)𝑐 ∩

(⋃
𝑇∈𝑆

𝐶𝑇

))
≤

∑
𝑇∈𝑆
P
(
(𝐶𝑦)𝑐 ∩ 𝐶𝑇

)
. (2)

For fixed 𝑇 ∈ 𝑆, if (𝐶𝑦)𝑐 and 𝐶𝑇 both hold, then no vertex in 𝑇 is good. Since 𝑇
contains exactly 𝑀 vertices, each of its vertices can be assigned a set of 𝑛 −𝑀 = ⌈2𝑛/3⌉
lines which contain that vertex and no other vertex of 𝑇 (so that the number of lines
that each vertex of 𝑇 wins out of the ⌈2𝑛/3⌉ assigned to it is independent). For a fixed
vertex 𝑣 of 𝑇, let 𝑋 be the number of the ⌈2𝑛/3⌉ lines assigned to 𝑣 in which 𝑣 is the
winner, so that 𝑋 is a sum of ⌈2𝑛/3⌉ independent Bernoulli random variables and has
mean 𝜇 ≥ 2𝑛/3𝐾.

By Lemma 19,

P
(
𝑋 ≤ 𝑛

3𝐾

)
≤ P

(
𝑋 ≤

𝜇

2

)
≤ 𝑒−𝜇/8 ≤ 𝑒−𝑛/(12𝐾).

Meanwhile, the number of the lines assigned to 𝑣 in which 𝑣 is not the winner, ⌈2𝑛/3⌉ −
𝑋, is a sum of ⌈2𝑛/3⌉ independent Bernoulli random variables with mean 𝜇′ ≥ 𝑛/3.
Hence, by Lemma 19 again,

P
(
𝑋 >

5𝑛
12

)
≤ P

(⌈2𝑛
3

⌉
− 𝑋 ≤ 𝑛

4

)
≤ P

(⌈2𝑛
3

⌉
− 𝑋 ≤

3𝜇′

4

)
≤ 𝑒−𝜇

′/32 ≤ 𝑒−𝑛/96.

If 𝑛/3𝐾 < 𝑋 ≤ 5𝑛/12, then in total 𝑣 wins at least 𝑛/3𝐾 and at most 5𝑛/12+ ⌊𝑛/3⌋ ≤
3𝑛/4 of its lines, and hence is a good vertex. It follows that each vertex of 𝑇 is good
with failure probability at most 𝑒−𝑛/(50𝐾) (for 𝑛 ≥ 101), so at least one of these vertices
is good with failure probability at most 𝑒−𝑀𝑛/(50𝐾) ≤ 𝑒−𝑛

2/(200𝐾) (by choosing 𝛿 small
enough, we can ensure 𝑀 ≥ 𝑛/4). This is therefore an upper bound on P((𝐶𝑦)𝑐 ∩ 𝐶𝑇).
It follows from Lemma 23 that |𝑆 | ≤ (𝑒𝑛𝐾)𝑀−1, so by (2) we have

P
(
(𝐶𝑦)𝑐

)
≤ (𝑒𝑛𝐾)𝑀−1 · 𝑒−𝑛2/(200𝐾)

≤ exp
(
𝑛 log(𝑒𝑛𝐾)

3 − 𝑛2

200𝐾

)
= exp

(
𝑛2

𝐾

(
𝐾 log(𝑒𝑛𝐾)

3𝑛 − 1
200

))
.
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If 𝛿 is small enough, then 𝑛 is large relative to 𝐾 log(𝑒𝑛𝐾), so this probability is at most
𝑒−𝑛

2/(300𝐾).
Finally, since 𝐶 =

⋂
𝑦 𝐶𝑦 , by a union bound we have

P(𝐶𝑐) ≤ 𝐾𝑛 · 𝑒−𝑛2/(300𝐾).

Clearly 𝑒−𝑛2/(300𝐾) is extremely small, so by Lemma 17 the same is true of 𝐾𝑛 · 𝑒−𝑛2/(300𝐾),
and the lemma follows. □

Next, we prove a very similar result for vertices that can reach more than 𝑛/2 vertices
rather than can be reached from more than 𝑛/2 vertices.

Definition 33 (Event 𝐷). Let 𝐷 be the event that every vertex in #»

𝐿 (𝑛, k) that can reach
more than 𝑛/2 vertices can reach a good vertex.

By an argument similar to that used to prove Lemma 32, we obtain the following.

Lemma 34. The event 𝐷 occurs with extremely high probability.

We are now ready to put everything together to prove the main theorem.

Proof of Theorem 15. Let 𝑛 ≥ 2 be an integer, let k ∈ {2, 3, . . . }𝑛 , and let 𝜀 > 0. Define
𝐾 = max𝑖(𝑘𝑖) and 𝑁 = (1 + 𝜀)𝐾 log(𝐾). Let 𝐸𝜀 be the event that every vertex of #»

𝐿 (𝑛, k)
can either be reached from at most 𝑁 vertices or can be reached from every non-sink;
we want to show that 𝐸𝜀 occurs wvhp.

Let events 𝐴𝜀, 𝐵, 𝐶, and 𝐷 be as above, and suppose that they all occur simulta-
neously in #»

𝐿 (𝑛, k). Let 𝑥, 𝑦 ∈ 𝑉(𝑛, k) where 𝑥 is a non-sink and 𝑦 can be reached
from more than 𝑁 vertices. Since 𝐴𝜀 occurs, 𝑥 and 𝑦 can reach and be reached from
more than 𝑛/2 vertices respectively. Thus, since 𝐶 occurs, there exists a good vertex
𝑣 ∈ 𝑉(𝑛, k) which can reach 𝑦 in #»

𝐿 (𝑛, k). Next, since 𝐷 occurs, there exists a good
vertex 𝑢 ∈ 𝑉(𝑛, k) which can be reached from 𝑥 in #»

𝐿 (𝑛, k). Since 𝐵 occurs, all good
vertices of #»

𝐿 (𝑛, k) are in the same strongly connected component, so in particular 𝑢
can reach 𝑣. It follows that there is a directed walk from 𝑥 to 𝑦 in #»

𝐿 (𝑛, k) via 𝑢 and 𝑣,
that is, 𝑥 can reach 𝑦. In other words, if 𝐴𝜀, 𝐵, 𝐶, and 𝐷 occur, then so does 𝐸𝜀. By
Lemmas 28, 32, and 34, each of 𝐵, 𝐶, and 𝐷 occurs wehp, so in particular wvhp, and
𝐴𝜀 occurs wvhp by Lemma 22. Hence, by (repeated applications of) Lemma 18, we
conclude that 𝐸𝜀 occurs wvhp, as required. □

F On the tightness of Theorems 5 and 15

In this section we discuss to what extent various aspects of Theorem 5 and Theorem 15
are tight. First, with regards to the relationship between 𝑛 and 𝐾, it is entirely possible
that this condition could be weakened considerably while still allowing results in the
spirit of Theorem 5 and Theorem 15. However, the condition given in Theorem 15
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seems to be at the limit of our methods, and a new approach would be needed to
improve it. See also point (i) in Section 6.

Next, with regards to the tightness of the failure probability in the theorems, first
note that the failure probability in Theorem 15 carries through to Theorem 5 by the
proof of Corollary 16. The following theorem shows that this slightly stronger lower
bound is tight up to the value of the exponent 𝑐. In fact, the theorem shows that
even if Theorem 5 were weakened to only consider weakly acyclic games rather than
connected games, the probability inherited from Theorem 15 would still be tight up to
the value of the constant in the exponent.

Theorem 35. There is a constant 𝑐′ > 0 such that

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is weakly acyclic}|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is has a pure Nash equilibrium}| ≤ 1 −

𝑛∏
𝑖=1

𝑘−𝑐
′

𝑖

for all integers 𝑛 ≥ 4 and all k ∈ {2, 3, . . . }𝑛 .

Proof. Let 𝑛 and k be as in the statement of the theorem. Define a 4-cycle in a subgraph
of #»

𝐻(𝑛, k) to be sticky if each of its vertices can only reach the other vertices of the 4-cycle.
The probability that a given sticky 4-cycle (where the edges in the cycle are the first and
second coordinate directions, say) appears in #»

𝐿 (𝑛, k) is 𝑘−2
1 𝑘−2

2
∏𝑛

𝑖=3 𝑘
−4
𝑖

≥ ∏𝑛
𝑖=1 𝑘

−4
𝑖

.
Since 𝑛 ≥ 4, there is a vertex none of whose lines intersect this sticky 4-cycle. The
event that this vertex is a sink, which occurs with probability

∏𝑛
𝑖=1 𝑘

−1
𝑖

, is therefore
independent of whether or not the sticky 4-cycle appears, so with probability at least∏𝑛

𝑖=1 𝑘
−5
𝑖

there is both a sink and a sticky 4-cycle in #»

𝐿 (𝑛, k).
The vertices of a sticky 4-cycle cannot reach a sink, so the result now follows from

arguments similar to those used to prove Corollary 16. □

One might ask whether taking a larger value for 𝑁 in the statement of Theorem 15
would allow a significantly smaller failure probability, but a similar argument to the
proof of Theorem 35 shows that it would not. Indeed, there is some 𝑐′ > 0 such that if 𝑛
is large relative to max𝑖(𝑘𝑖), then with probability at least 1−∏𝑛

𝑖=1 𝑘
−𝑐′
𝑖

there is a vertex
in #»

𝐿 (𝑛, k) which can be reached from
∏𝑛−1

𝑖=1 𝑘𝑖 vertices but not from every non-sink.
This follows from an argument similar to the above: suppose that the desired sticky

4-cycle has vertices (1, 1, 1, . . . , 1), (1, 2, 1, . . . , 1), (2, 1, 1, . . . , 1), and (2, 2, 1, . . . , 1), then
the subgraph 𝐺 of #»

𝐿 (𝑛, k) induced on
∏𝑛−1

𝑖=1 [𝑘𝑖] × {2} has the same distribution as
#»

𝐿 (𝑛 − 1, (𝑘1, . . . , 𝑘𝑛−1)), and behaves independently of whether the desired sticky 4-
cycle appears or not. Applying Theorem 15 to 𝐺 and using work of Rinott and Scarsini
(2000), one can show that there exists 𝑝 > 0 such that if 𝑛 is large enough relative to
max𝑖(𝑘𝑖), then with probability at least 𝑝, 𝐺 contains exactly one sink and this can be
reached from every vertex in 𝐺. It follows that there exists 𝑐′ > 0 such that if 𝑛 is large
relative to max𝑖(𝑘𝑖), then with probability at least

∏𝑛
𝑖=1 𝑘

−𝑐′
𝑖

there is a vertex in #»

𝐿 (𝑛, k)
which can be reached from

∏𝑛−1
𝑖=1 𝑘𝑖 vertices but not from every non-sink.
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Finally, to what extent is it possible to take a smaller 𝑁 in the statement of Theo-
rem 15? It turns out that, for large𝐾, the value of𝑁 cannot be substantially improved as
a function of 𝐾: it is possible to take 𝑟 not much smaller than log(𝐾−1) in the following
theorem,23 so one cannot hope for a value of 𝑁 any better than 𝐾 log(𝐾) − 𝑂(log(𝐾)).
Here we let K = (𝐾, . . . , 𝐾) denote the all 𝐾’s vector of the appropriate length.

Theorem 36. There is a constant 𝑐 > 0 such that for all integers 𝑛 ≥ 2, 2 ≤ 𝐾 ≤
√
𝑛, and

1 ≤ 𝑟 ≤
log(𝐾 − 1)

(𝐾 − 1)(log(𝐾) − log(𝐾 − 1)) ,

the probability that there is a vertex in #»

𝐿 (𝑛,K) which can be reached from exactly 𝑟(𝐾 − 1) + 1
vertices is at least 1 − 𝑐/𝑛.

Proof. Let 𝑓 (𝐾) denote the expression upper bounding 𝑟 in the theorem. One can show
that this is increasing for 𝐾 ≥ 2 and that 𝑓 (

√
𝑛) ≤ 𝑛 for 𝑛 ≥ 2, so letting 𝑛, 𝐾, and 𝑟 be

as in the statement, we have 𝑟 ≤ 𝑛. Let 𝑋𝑎 be the indicator random variable of the event
that 𝑎 ∈ 𝑉(𝑛,K) wins exactly 𝑟 of its lines and every vertex on those 𝑟 lines except 𝑎
is a source, and write 𝑋 =

∑
𝑎∈[𝐾]𝑛 𝑋𝑎 . We wish to upper bound the probability that

𝑋 = 0, for which we will use a second moment calculation.
First, note that 𝑋𝑎 and 𝑋𝑏 are independent if the Hamming distance between 𝑎

and 𝑏 (i.e. the number of coordinates on which 𝑎 and 𝑏 differ), denoted by 𝑑(𝑎, 𝑏), is at
least four. It follows that

E[𝑋2] =
∑
𝑎∈[𝐾]𝑛

∑
𝑏∈[𝐾]𝑛

P(𝑋𝑎𝑋𝑏 = 1)

≤
∑
𝑎∈[𝐾]𝑛

∑
𝑏∈[𝐾]𝑛

P(𝑋𝑎 = 1)P(𝑋𝑏 = 1) +
∑
𝑎∈[𝐾]𝑛

∑
𝑏∈[𝐾]𝑛 :𝑑(𝑎,𝑏)≤3

P(𝑋𝑎 = 1)

≤ E[𝑋]2 + 𝐾3𝑛3 E[𝑋]
≤ E[𝑋]2 + 𝑛9/2 E[𝑋].

Hence, to apply Chebyshev’s inequality, we need to show thatE[𝑋] grows more quickly
than 𝑛9/2. We have

E[𝑋] = 𝐾𝑛
(
𝑛

𝑟

)
1
𝐾𝑟

(
1 − 1

𝐾

)𝑛−𝑟+𝑟(𝑛−1)(𝐾−1)

≥
( 𝑛
𝐾𝑟

) 𝑟 [
𝐾

(
1 − 1

𝐾

)1+(𝐾−1)𝑟]𝑛
≥

(√
𝑛

𝑟

) 𝑟 [
𝐾

(
1 − 1

𝐾

)1+(𝐾−1)𝑟]𝑛
,

where we have used
(𝑛
𝑟

)
≥ (𝑛/𝑟)𝑟 in the second line and 𝐾 ≤

√
𝑛 in the last line.

23By applying the mean value theorem to log one can show that log(𝐾) − log(𝐾 − 1) = 1/𝐾 +𝑂(1/𝐾2).
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We will analyse the two terms in this product separately. For fixed 𝑛, the first term,
(
√
𝑛/𝑟)𝑟 , is increasing for 𝑟 ∈ [0,

√
𝑛/𝑒]. Since 𝑓 (

√
𝑛) ≤

√
𝑛/𝑒 for all 𝑛 ≥ 2, it follows

that this term is always at least
√
𝑛 ≥ 1, and if 𝑟 ≥ 11, then it is at least 𝑛11/2/1111.

Turning to the second term, it is straightforward to check that if 𝑓 (𝐾) = 𝑟, then the
expression in square brackets is equal to 1, and that for fixed 𝐾 ≥ 2 this expression
is strictly decreasing for 𝑟 ∈ [1, 𝑓 (𝐾)]. It follows that the second term is always at
least 1. There are no integer solutions 𝐾 to 𝑓 (𝐾) = 𝑟 for any 𝑟 ∈ [10], so for 𝑟 ≤ 10 the
expression in square brackets is always strictly greater than 1. Moreover, for fixed 𝑟 we
have 𝐾(1 − 1/𝐾)1+𝑟(𝐾−1) → ∞ as 𝐾 → ∞, so in fact there exists some universal 𝜀 > 0
such that the second term is at least (1 + 𝜀)𝑛 whenever 𝑟 ≤ 10.

Combining, we have E[𝑋] ≥ min
{
(1+𝜀)𝑛 , 𝑛11/2/1111} for all admissible 𝑛, 𝐾, and 𝑟.

By Chebyshev’s inequality, this yields

P
(
|𝑋 − E[𝑋]| ≥ 1

2E[𝑋]
)
≤ 4 · E[𝑋

2] − E[𝑋]2
E[𝑋]2 ≤ 4𝑛9/2

min
{
(1 + 𝜀)𝑛 , 𝑛11/2/1111} ,

and since E[𝑋] > 0 this is, in turn, an upper bound on P(𝑋 = 0). There is a constant
𝑐′ > 0 such that this upper bound is at most 𝑐′/𝑛 for all sufficiently large 𝑛, and we can
choose 𝑐 > 0 large enough to accommodate the (finitely many) remaining cases. □

If, however, we are prepared to allow the exponent in the failure probability to
depend on 𝐾, then we can adapt the proof of Theorem 15 to slightly improve the value
of 𝑁 .

Theorem 37. For all integers 𝐾 ≥ 2, there exists 𝑐𝐾 > 0 such that for all integers 𝑛 ≥ 2 and
all k ∈ {2, 3, . . . 𝐾}𝑛 , every vertex of #»

𝐿 (𝑛, k) can either be reached from at most

𝑁′ =
log(𝐾)

log(𝐾) − log(𝐾 − 1)

vertices or from every non-sink, with failure probability at most 𝑒−𝑐𝐾𝑛 .

Proof. Note first that it is sufficient to show that the result holds when 𝑛 is large relative
to 𝐾, since this covers all but finitely many cases for each 𝐾, and 𝑐𝐾 can be chosen to
handle these.

By the 𝜀 = 1 case of Theorem 15, there exists 𝑐 > 0 such that if 𝑛 is large relative
to 𝐾, then for all k ∈ {2, . . . , 𝐾}𝑛 , the failure probability of the event that every vertex of
#»

𝐿 (𝑛, k) can either be reached from at most 2𝐾 log(𝐾) vertices, or from every non-sink,
is at most 𝑒−𝑐𝑛 . Hence, to prove the theorem it is enough to show that for all 𝐾 there
exists 𝑐′

𝐾
> 0 such that if 𝑛 is large enough relative to 𝐾, then for all k ∈ {2, . . . , 𝐾}𝑛 ,

with failure probability at most 𝑒−𝑐′𝐾𝑛 , no vertices of #»

𝐿 (𝑛, k) can be reached from more
than 𝑁′ vertices but at most 2𝐾 log(𝐾) vertices.

This can be achieved by modifying the proof of Lemma 25. Defining 𝑌𝑚 as in
Appendix C, we need to show that 𝑌𝑚 = 0 for all 𝑁′ < 𝑚 ≤ 2𝐾 log(𝐾) with failure
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probability 𝑒−𝑐′𝐾𝑛 . Fix such an 𝑚, then as in the proof of Lemma 25 we have

E[𝑌𝑚] ≤
[
4𝑛𝐾2 ·

(
𝐾1/𝑚

(
1 − 1

𝐾

))𝑛−𝑚]𝑚
.

In place of (1), it is not difficult to check that𝑚 > 𝑁′ ensures that 𝐾1/𝑚(1−1/𝐾) < 1−𝜂𝐾
for some 𝜂𝐾 ∈ (0, 1). Thus, for 𝑛 large in terms of 𝐾 (uniformly in 𝑚), we have

E[𝑌𝑚] ≤
(
4𝑛𝐾2(1 − 𝜂𝐾)𝑛−𝑚

)𝑚
≤

(
1 − 𝜂2

𝐾

)𝑚(𝑛−𝑚)
≤ 𝑒−𝑐

′′
𝐾
𝑛 ,

for some 𝑐′′
𝐾
> 0. Then, if 𝑛 is large relative to 𝐾,∑

𝑁<𝑚≤2𝐾 log(𝐾)
E[𝑌𝑚] ≤ 2𝐾 log(𝐾) · 𝑒−𝑐′′𝐾𝑛 ≤ 𝑒−𝑐

′
𝐾
𝑛 ,

for some 𝑐′
𝐾
> 0, so by Lemma 20 we have that 𝑌𝑚 = 0 for all 𝑁′ < 𝑚 ≤ 2𝐾 log(𝐾) with

failure probability at most 𝑒−𝑐′𝐾𝑛 , as required. □

Together, Theorem 36 and Theorem 37 essentially determine the ‘correct’ value
for 𝑁 as a function of 𝐾. Indeed, if we ignore the fact that 𝑟 must be an integer in
Theorem 36, then that theorem implies that when 𝑛 is much larger than 𝐾, #»

𝐿 (𝑛,K)
typically contains a vertex that can be reached from ‘exactly’ log(𝐾)/(log(𝐾)−log(𝐾−1))
vertices. Meanwhile Theorem 37 implies that typically every vertex which can be
reached from more than this many vertices can be reached from every non-sink.

Although the improvement to the value of 𝑁 represented by Theorem 37 is modest,
it has the following consequence for #»

𝐿 (𝑛, 2) and #»

𝐿 (𝑛, 3) which is of independent
interest.

Corollary 38. There exists a constant 𝑐 > 0 such that with failure probability at most 𝑒−𝑐𝑛 ,
every non-sink in #»

𝐿 (𝑛, 2) can reach every non-source. If 𝑛 ≥ 2, the same is true for #»

𝐿 (𝑛, 3).
Conversely, for each 𝐾 ≥ 4, the probability that there is a non-sink in #»

𝐿 (𝑛,K) which cannot
reach every non-source tends to 1 as 𝑛 → ∞.

Corollary 38 is restated as Proposition 7 in the main text.
The positive direction of the corollary follows straightforwardly from Theorem 37

and the observation that every non-source in #»

𝐿 (𝑛, k) can be reached from at least
min𝑖(𝑘𝑖) vertices, and the negative direction follows immediately from setting 𝑟 = 1 in
Theorem 36. While the k = 2 case of the corollary follows from Theorem 15, the k = 3
case does not.

G Acyclicity of directed grids

Using the terminology and notation of Section A we state the following strengthening
of Proposition 6.
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Proposition 39. There exists 𝑐 > 0 such that for all integers 𝑛 ≥ 2 and all k ∈ {2, 3, . . . }𝑛 ,
the probability that #»

𝐿 (𝑛, k) is acyclic is at most exp(−𝑐𝑛𝑘𝑛−2), where 𝑘 B min𝑖(𝑘𝑖).

The proof below actually yields a slightly better upper bound on the probability
that #»

𝐿 (𝑛, k) is acyclic, but for clarity we have not included this in the statement.
For distinct 𝑖 , 𝑗 ∈ [𝑛], we define an {𝑖 , 𝑗}-plane of 𝑉(𝑛, k) to be a subset of 𝑉(𝑛, k)

of size 𝑘𝑖𝑘 𝑗 whose elements pairwise differ in at most their 𝑖th and 𝑗th coordinates. A
subset of𝑉(𝑛, k) will be called a plane of 𝑉(𝑛, k) if it is an {𝑖 , 𝑗}-plane for some 𝑖 and 𝑗.

Proof of Proposition 39. We begin with the following claim.

Claim 2. Let 𝑘1, 𝑘2 ≥ 2 be integers, then #»

𝐿 (2, (𝑘1, 𝑘2)) contains a cycle with probability at
least 1/8.

Proof. We will define a random process X = (𝑋0, 𝑋1, 𝑋2, . . . ) coupled to #»

𝐿 (2, (𝑘1, 𝑘2)).
Let 𝑋0 = (1, 1) and for each 𝑡 ≥ 1, given 𝑋𝑡−1 ∈ [𝑘1] × [𝑘2], if 𝑡 is odd, let 𝑋𝑡 be the
winner of the line in coordinate 1 which contains 𝑋𝑡−1. If 𝑡 is even, let 𝑋𝑡 be the winner
of the line in coordinate 2 which contains 𝑋𝑡−1. Thus, X is a random walk on [𝑘1] × [𝑘2]
starting at (1, 1), which at odd time steps traverses the available edge of #»

𝐿 (2, (𝑘1, 𝑘2))
in the first coordinate direction (if there is one), and at even time steps traverses the
available edge in the second.

Let 𝑇 be the least time 𝑡 at which there exists 1 ≤ 𝑖 < 𝑡 such that 𝑋𝑖 and 𝑋𝑡 have
the same first coordinate if 𝑡 is odd, or the same second coordinate if 𝑡 is even. It is
not difficult to check (bearing in mind that we do not explore from 𝑋0 in the second
dimension at the start of the process) that for each 𝑡 < 𝑇, when we explore from 𝑋𝑡 we
do so in an unexplored line.

Once we reach 𝑋𝑇 , we already know the winner in the line we want to explore: it is
the 𝑋𝑖 with 1 ≤ 𝑖 < 𝑇 that has the same first or second coordinate (depending on the
parity of 𝑇) as 𝑋𝑇 . Hence, 𝑋𝑇+1 = 𝑋𝑖 for this 𝑖 and the process is deterministic from
here, with 𝑋𝑇+2 = 𝑋𝑖+1 and so on. The process either becomes stationary at this point
or enters a (non-trivial) cycle. It is straightforward to see that the process is stationary
exactly when 𝑋𝑇 = 𝑋𝑇−1, so if 𝑋𝑇 ≠ 𝑋𝑇−1, then #»

𝐿 (2, (𝑘1, 𝑘2)) contains a cycle. Hence,
let 𝐴 be the event that 𝑋𝑇 ≠ 𝑋𝑇−1. We will show that P(𝐴) ≥ 1/8.

Given 𝑇 and 𝑋𝑇−1, 𝑋𝑇 is chosen uniformly at random from among those vertices
in the unexplored line through 𝑋𝑇−1 that also belong to a previously explored line.
There are ⌊𝑇/2⌋ such vertices to choose from. Writing 𝜏 = 𝜏(𝑘1, 𝑘2) for the maximum
possible value of 𝑇, it follows that, for each 𝑡 ∈ {2, . . . , 𝜏}, we have P(𝐴 | 𝑇 = 𝑡) =

(⌊𝑡/2⌋ − 1)/⌊𝑡/2⌋. This is at least 1/2 for 𝑡 ≥ 4, so

P(𝐴) =
𝜏∑
𝑡=2
P(𝐴 | 𝑇 = 𝑡)P(𝑇 = 𝑡) ≥ P(𝑇 ≥ 4)

2 .

We have 𝑇 ≥ 4 exactly when 𝑋1 does not win its line in the second dimension and
𝑋2 does not win its line in the first dimension. This event occurs with probability
(1 − 1/𝑘1)(1 − 1/𝑘2) ≥ 1/4, so P(𝐴) ≥ 1/8, as required. □
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Let 𝑛 ≥ 2 be an integer and let k ∈ {2, 3, . . . }𝑛 . By the claim, any given plane of
𝑉(𝑛, k) induces a cyclic subgraph of #»

𝐿 (𝑛, k) with probability at least 1/8. In a family
of planes which pairwise intersect in at most one vertex, each plane induces a cyclic
subgraph of #»

𝐿 (𝑛, k) independently. The collection consisting of all {1, 2}-planes, all
{3, 4}-planes, and so on, up to the {2 ⌊𝑛/2⌋ − 1, 2 ⌊𝑛/2⌋}-planes, is such a family. For
distinct 𝑖 , 𝑗 ∈ [𝑛], the number of {𝑖 , 𝑗}-planes in 𝑉(𝑛, k) is

∏
𝑎∈[𝑛]\{𝑖 , 𝑗} 𝑘𝑎 , so this family

has size at least ⌊𝑛/2⌋ min(𝑘𝑖)𝑛−2, and the proposition follows. □

Proposition 6 follows from Proposition 39 by the same reasoning with which we
deduced Theorem 5 from Theorem 15: since #»

𝐿 (𝑛, k) has the same distribution as the
best-response graph of a game drawn uniformly at random from all games in 𝒢(𝑛, k),
we have that P

( #»

𝐿 (𝑛, k) is acyclic
)
/P(𝑆𝑛,k) is equal to

|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 is acyclic}|
|{𝑔 ∈ 𝒢(𝑛, k) : 𝑔 has a pure Nash equilibrium}| ,

where 𝑆𝑛,k is the event that #»

𝐿 (𝑛, k) contains a sink, as in Section A. Thus, since 𝑘𝑖 ≥ 2
for all 𝑖, Proposition 6 follows from Proposition 39 and the fact that P(𝑆𝑛,k) is at least a
positive constant for all 𝑛 and k under consideration, as noted in Section A.

H Best-response dynamics with inertia

In this section we recap the proof by Young (2004) to show that the best-response
dynamic with inertia converges almost surely to a pure Nash equilibrium in every
generic weakly acyclic game.

Theorem 40 (Young, 2004). For any choice of parameters 𝑝𝑖 ∈ (0, 1), the best-response
dynamic with inertia converges almost surely to a pure Nash equilibrium in every generic
weakly acyclic game.

Proof. Let 𝑔 be a generic weakly acyclic game and let 𝐴 be its set of action profiles.
Fix some 𝑎 ∈ 𝐴 which is not a pure Nash equilibrium, let 𝑡 be an arbitrary time, and
condition on the event that 𝑎𝑡 = 𝑎. The vertex corresponding to 𝑎 in the best-response
graph of 𝑔 is not a sink, so let 𝑖 be a coordinate direction in which it has an outgoing
edge. Then there exists some 𝜀 > 0 which is independent of 𝑎, 𝑡 and 𝑖, such that with
probability at least 𝜀, at time 𝑡 + 1 player 𝑖 changes their action by playing the best-
response to 𝑎−𝑖 , while all other players 𝑗 repeat their existing action. In other words,
after conditioning on 𝑎𝑡 = 𝑎 for some non-sink 𝑎, the probability that at time step 𝑡 + 1
we move along any given out-edge of 𝑎 in the best-response graph is at least 𝜀.

Since 𝑔 is weakly acyclic, for each 𝑎 ∈ 𝐴 there is a path of length at most |𝐴|
from 𝑎 to a sink in the best-response graph. After fixing such a path for each 𝑎, we
can repeatedly apply the above to lower bound the probability that at each step we
move along the next edge in that path. Using the fact that the dynamic never leaves
a pure Nash equilibrium once it arrives at one, this yields that for all times 𝑡 and all
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𝑎 ∈ 𝐴, conditioned on 𝑎𝑡 = 𝑎, the probability that 𝑎𝑡+|𝐴| is a pure Nash equilibrium
is at least 𝜀|𝐴|. For each 𝑚 ∈ {0, 1, 2, . . . }, denote by 𝐵𝑚 the event that 𝑎𝑚 |𝐴| is not a
sink. It follows from the above that P(𝐵𝑚 | 𝐵𝑚−1) ≤ 1 − 𝜀|𝐴| for each 𝑚 ≥ 1, and so an
inductive argument gives P(𝐵𝑚) ≤ (1− 𝜀|𝐴|)𝑚 . If the dynamic does not eventually settle
at a pure Nash equilibrium, then 𝐵𝑚 occurs for all 𝑚, but this has probability 0 since
(1 − 𝜀|𝐴|)𝑚 → 0 as 𝑚 → ∞. This completes the proof of the theorem. □
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