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Abstract

The Erdős-Hajnal conjecture says that, for every graph H, there exists c > 0 such that every H-free
graph on n vertices has a clique or stable set of size at least nc. In this paper we are concerned with
the case when H is a path. The conjecture has been proved for paths with at most five vertices, but
not for longer paths. We prove that the conjecture is “nearly” true for all paths: for every path H,
all H-free graphs with n vertices have cliques or stable sets of size at least 2(logn)

1−o(1)
.



1 Introduction

A graph is H-free if it has no induced subgraph isomorphic to H. A famous conjecture of Erdős and
Hajnal [6, 7] from 1977 says:

1.1 The Erdős-Hajnal Conjecture: For every graph H there exists c > 0 such that every H-free
graph G has a stable set or clique of size at least |G|c.

This remains open, and has been proved only for a very limited set of graphs H (although see [12, 14]
for a variety of new graphs H that satisfy 1.1).

If H is a graph, for each n > 0 let fH(n) be the largest integer such that every H-free graph
with at least n vertices has a stable set or clique with size at least fH(n). Thus, the Erdős-Hajnal
conjecture says that

1.2 Conjecture: For every graph H there exists c > 0 such that fH(n) ≥ nc for all n ≥ 0.

What can we actually prove about fH(n)? Erdős and Hajnal [7] proved (logarithms are to base two,
throughout the paper):

1.3 For every graph H, there exists c > 0 such that fH(n) ≥ 2c
√
logn for all n > 0.

In [3], with Bucić, we improved this, showing:

1.4 For every graph H, there exists c > 0 such that fH(n) ≥ 2c
√
logn log logn for all n > 0.

For general graphs H, this is the best bound known.
The case when H is a path is of particular interest. Paths are very simple graphs, and yet

until recently, the Erdős-Hajnal conjecture was open when H is the five-vertex path P5. This was
the smallest graph for which the conjecture was open, and was therefore a focus of attention. In
a substantial breakthrough for the case H = P5, Blanco and Bucić [1] improved the power in the
exponent from 1/2 to 2/3:

1.5 There exists c > 0 such that fP5(n) ≥ 2c(logn)
2/3

for all n > 0.

Their argument uses a complex structural analysis of P5-free graphs, and does not appear to extend
to longer paths. However, more recently, using completely different methods, we fully resolved the
case H = P5, showing in [14] that P5 satisfies the Erdős-Hajnal conjecture:

1.6 There exists c > 0 such that fP5(n) ≥ nc for all n > 0.

But the Erdős-Hajnal conjecture for general paths remains open, and it is natural to ask whether it
is possible to obtain an improvement in the exponent such as 1.5 for general paths.

In the present paper, we do better than that: we show that paths of any length have the “near
Erdős-Hajnal” property, that is, for every d < 1 and every path H, there exists c > 0 such that
every H-free graph G has a clique or stable set of size at least 2(c log |G|)

d
(note that d = 1 is the

Erdős-Hajnal conjecture itself). In other words:

1.7 For every path P , fP (n) ≥ 2(logn)
1−o(1)

.
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We prove a stronger form of this (1.10 below), showing that P -free graphs contain large induced
subgraphs which are very sparse or very dense. Before stating this, we need some further discussion
about dense and sparse subgraphs.

For ε > 0, a subset S ⊆ V (G) is

• ε-sparse if the induced subgraph G[S] has maximum degree at most ε|S|;

• (1− ε)-dense if G[S] is ε-sparse, where G is the complement graph of G; and

• ε-restricted if S is either ε-sparse or (1− ε)-dense.1

Note that if |S| ≤ 2 then S is trivially ε-restricted.
An important result of Rödl [16] shows that, for fixed ε > 0, H-free graphs have ε-sparse or

(1− ε)-dense subsets of linear size:

1.8 For all 0 < ε ≤ 1/2, there exists δ > 0 such that for every H-free graph G, there is an
ε-restricted subset S ⊆ V (G) with |S| ≥ δ|G|.

This does not imply the Erdős-Hajnal conjecture, as the dependence of δ on ε could be very poor.
Indeed, Rödl’s proof used Szemerédi’s Regularity Lemma, which leads to tower-type dependence.
However, Fox and Sudakov [8] conjectured that a polynomial version of Rödl’s theorem should hold,
where δ depends polynomially on ε. More exactly:

1.9 Fox-Sudakov Conjecture: For every graph H there exists c > 0 such that for every ε with
0 < ε ≤ 1/2 and every H-free graph G, there exists S ⊆ V (G) with |S| ≥ εc|G| such that S is
ε-restricted.

Let us say that a graph H is polynomial Rödl if it satisfies 1.9. It is straightforward to show that if
H is polynomial Rödl then H also satisfies the Erdős-Hajnal conjecture. Indeed, the Fox-Sudakov
conjecture interpolates between Rödl’s theorem and the Erdős-Hajnal conjecture: taking ε to be
a constant gives 1.8, and taking ε to be a small negative power of n yields 1.1. Recently, Bucić,
Fox and Pham [2] showed the reverse implication: the Erdős-Hajnal conjecture and the Fox-Sudakov
conjecture are in fact equivalent.

Both conjectures are currently out of reach. But the bound on δ in 1.8 has been strengthened:
Fox and Sudakov [8] proved that 1.8 holds with

δ = εcH log(1/ε),

and this was improved in [3] to

δ = ε
cH

log(1/ε)
log log(1/ε) .

In order to prove 1.7, we will show that a much better bound than this holds when H is a path:
we will prove that every path “nearly” satisfies the Fox-Sudakov conjecture. Here is our main result:

1Note that we are using ‘local’ density conditions: for ε-sparse sets, we demand that every vertex has degree at most
ε|S|, rather than the ‘global’ condition that there are at most ε

(|S|
2

)
edges; and similarly for (1 − ε)-dense sets. It is

straightforward to move between the two, at the cost of a constant factor in the value of ε and the size of S.
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1.10 For every path P and every α > 0, there exists c > 0 such that for all 0 < ε ≤ 1/2, every
P -free graph G contains an ε-restricted subset S ⊆ V (G) with |S| ≥ δ|G|, where

δ = εc(log
1
ε
)α .

Let us show that 1.10 implies 1.7.

1.11 Let G be a graph with |G| ≥ 2, let a > 0 and c := (2a+ 2)−1. Let α ≥ 0, and assume that, for
every ε ∈ (0, 1/2), there is an ε-restricted S ⊆ V (G) with

|S| ≥ εa(log
1
ε
)α |G|.

Then G contains a clique or stable set of size at least 2c(log |G|)
β
, where β = 1/(1 + α).

Proof. Since G has a clique or stable set of size two, we may assume that 2c(log |G|)
β
> 2. Set

ε := 2−2c(log |G|)
1/(1+α)

and let
δ = εa(log

1
ε
)α = 2−a(log

1
ε
)1+α = 2−a(2c)

1+α log |G| ≥ |G|−2ac.

From the hypothesis, there is an ε-restricted S ⊆ V (G) with

|S| ≥ δ|G| ≥ |G|1−2ac = |G|2c = 22c log |G| ≥ 22c(log |G|)
β

= ε−1.

Thus, since S is ε-restricted, G[S] or its complenent has maximum degree at most ε|S| and so contains
a clique or stable set of size at least

|S|
ε|S|+ 1

≥ 1

2ε
≥ ε−1/2 = 2c(log |G|)

β
.

This proves 1.11.

Note that if the Fox-Sudakov conjecture held, then we could take α = 0 in 1.10. We could then
choose ε to be some small negative power of |G| (so that log(1/ε) ≈ log |G|), and applying 1.10
would then give an ε-restricted subset of polynomial size. By Turán’s theorem or a greedy argument,
this would yield a clique or stable set of polynomial size, giving the Erdős-Hajnal theorem for P -free
graphs. However we do not quite have this: since we must take α > 0 we do not quite get polynomial
dependence, as if we take log(1/ε) ≈ log n then the set S given by 1.10 is too small. Instead, we
need to take log(1/ε) ≈ (log n)β in the proof of 1.11, where β = 1/(1 + α) is slightly less than 1.

The rest of the paper is organized as follows. In section 2, we discuss the relationship between
dense or sparse multipartite structures (blockades) and dense or sparse subgraphs. We discuss first
the (realtively straightforward) sparse case and then the (harder) dense case in section 3, and we put
the proof of 1.10 together in section 4. We conclude with some further discussion in section 5.

We use standard terminology throughout. If G is a graph, G[X] denotes the induced subgraph
with vertex set X; |G| denotes the number of vertices of G; and G is the complement graph of G.
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2 Blockades

Recall that a graph H is polynomial Rödl if there exists c > 0 such that for all ε ∈ (0, 1/2), every
H-free graph G contains an ε-restricted subset S ⊆ V (G) with |S| ≥ δ|G|, where

δ = εc|G|.

We will say that a graph H is near-polynomial Rödl if for every α > 0, there exists c > 0 such that
for every ε ∈ (0, 12), every H-free graph G contains an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|, where

δ = εc(log(1/ε))
α
.

Thus, our main theorem 1.10 says that every path is near-polynomial Rödl.
In order to prove 1.10, we will need to find dense or sparse multipartite structures which we

refer to as blockades. A blockade in a graph G is a finite sequence (B1, . . . , Bn) of (possibly empty)
disjoint subsets of V (G); its length is n and its width is mini∈[n]|Bi|. For k,w ≥ 0, (B1, . . . , Bn) is a
(k,w)-blockade if its length is at least k and its width is at least w.

We will need certain density conditions to hold. If A,B ⊆ V (G) are disjoint, we say A is x-sparse
to B if every vertex in A has at most x|B| neighbours in B, and A is (1 − x)-dense to B if every
vertex in A has at least (1−x)|B| neighbours in B. For x ∈ (0, 12), a blockade (B1, . . . , Bn) is x-sparse
if Bj is x-sparse to Bi for all i, j ∈ [n] with i < j, and (1− x)-dense if Bj is (1− x)-dense to Bi for
all i, j ∈ [n] with i < j (note the asymmetry: vertices in sets of the blockade are dense or sparse to
earlier sets in the blockade, but not necessarily to later sets). We say that a blockade is complete if,
for all i 6= j, every vertex of Bi is adjacent to every vertex of Bj ; anticomplete if (for all i 6= j) every
vertex of Bi is nonadjacent to every vertex of Bj ; and x-restricted if it is x-sparse or (1− x)-dense.

There are three parameters we care about: the length, width, and sparsity (or density). It is
easier to prove that certain graphs contain blockades with some desired combination of the three
parameters, than to prove directly that they contain large ε-restricted sets. But the reason blockades
are useful for us is that there is a transference theorem (2.1 below), that says that if a graph G and
all its large induced subgraphs admit blockades with certain parameters, then G must contain a large
ε-restricted set.

A function h : (0, 12) → R+ is subreciprocal if it is nonincreasing and 1 < h(x) ≤ 1/x for all
x ∈ (0, 12). For a subreciprocal function h, a graph H is h-dividing2 if there are c ∈ (0, 12) and
d > 1 such that for every x ∈ (0, c) every H-free graph G contains an x-sparse or (1 − x)-dense
(h(x), bxd|G|c)-blockade in G. Here is the transference theorem that we will use (see [3], or [12] for
an alternative proof of a weaker statement).3

2.1 Let h be subreciprocal, and let H be an h-dividing graph. Then there exists C > 0 such that for
every ε ∈ (0, 12), every H-free graph G contains an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|, where

δ = εC log( 1
ε
)/ log h(ε).

2In previous papers, we use the term h-divisive to refer to graphs having this property when a few copies of H are
allowed. In this paper, we work with the slightly simpler property of being h-dividing. Bucić, Fox and Pham [2] showed
that these two properties are equivalent.

3The version in [3] uses edge density rather than ε-restricted subsets. However, it is straightforward to adjust for
this by changing the constants.
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This result allows us to move between dense or sparse multipartite substructures (blockades) and
dense or sparse subsets. This approach has been used a number of times: the challenge is to find
blockades that are both long and wide, and satisfy strong restriction properties. For general graphs
H, it is possible to find blockades that very restricted but not very long:

• Erdős and Hajnal [7] proved that for every graph H, there exists d > 0 such that for all
x ∈ (0, 1/2], every H-free graph admits disjoint sets A,B of size at least bxd|G|c such that
B is x-sparse or (1 − x)-dense to A; in other words, an x-sparse or (1 − x)-dense (2, bxd|G|c)
blockade. From this they deduced their result 1.3.

• In [3], we (with Bucić) proved a strengthening: for every graph H, there exists d > 0 such that
for all x ∈ (0, 1/2], every H-free graph admits an x-sparse or (1−x)-dense (log(1/x), bxd|G|c)-
blockade. This allowed us to deduce 1.4.

To prove results with polynomial dependence, blockades with much better parameters are re-
quired. In general, it is a very hard challenge to find suitable blockades, but there has been some
progress. Let G be a class of graphs that is closed under taking induced subgraphs.

• If we can find complete or anticomplete pairs of linear size, then we can obtain polynomial-size
cliques or stable sets. More precisely, we say that G has the strong Erdős-Hajnal property if
there is c > 0 such that every G ∈ G admits a complete or anticomplete (2, bc|G|c)-blockade.
It is not hard to show that this is enough to give cliques or stable sets of polynomial size.
Unfortunately, for almost all H, the class of H-free graphs does not have the strong Erdős-
Hajnal property, but there are interesting classes where it does hold (for example if we exclude
both a forest and the complement of a forest [4]).

• It may be possible to trade off between length and width. Suppose that there is some d > 0
such that every G ∈ G with at least two vertices admits a (k, |G|/kd)-blockade for some k ≥ 2
(which may be different for different G) . This is the “quasi-Erdős-Hajnal property” [15, 17],
and is again sufficient to give cliques or stable sets of polynomial size. It was shown in [5]
that the class of C5-free graphs has the quasi-Erdős-Hajnal property, proving the Erdős-Hajnal
conjecture for C5.

• We can sometimes also use the density of G. Suppose that every G ∈ G contains either a
suitable blockade or a large induced subgraph with much better density parameters: say, every
y-restricted G ∈ G contains either a suitably restricted (poly(1/y), bpoly(y)|G|c)-blockade, or
a λy-restricted subset of size at least poly(λ)|G|, where λ ∈ (0, 1) may depend on G. Iterating
this, we can pass to a succession of ever more restricted subgraphs until we reach either a
polynomial size clique or stable set or a suitable blockade. This is the method of iterative
sparsification (introduced in [12], and further developed in [13, 14]).

In all these results, the main obstacle is proving the existence of blockades that are sufficiently long,
wide and restricted.

In this paper we are interested in P -free graphs, where P is a path. If we could show that P is
h∗-dividing, where

h∗(x) = (1/x)c = 2c log
1
x ,
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then 2.1 would yield the polynomial Rödl property. However, the blockades that we obtain are
not sufficiently long to show this. Instead, we will will work with a sequence of non-polynomial
approximations to h∗. For each integer s ≥ 0, let hs : (0, 12)→ R+ be the function defined by

hs(x) := 2(log
1
x
)
s
s+1

for all x ∈ (0, 12). (Thus hs is subreciprocal.) We will show that:

2.2 Every path P is hs-dividing for all integers s ≥ 0.

Let us first deduce our main result 1.10.

Proof of 1.10 (assuming 2.2). We must show that for all α > 0, there exists c > 0 such that
for all ε ∈ (0, 1/2), every H-free graph G contains an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|, where

δ = εc(log
1
ε
)α .

Choose an integer s such that 1
s+1 ≤ α. Since P is hs-dividing, by 2.1 there exists C > 0 such

that for every ε ∈ (0, 12), every H-free graph G contains an ε-restricted S ⊆ V (G) with |S| ≥ η|G|,
where

η = εC log( 1
ε
)/ log(hs(ε)) = εC log( 1

ε
)/(log 1

ε
)
s
s+1

= εC(log( 1
ε
))

1
s+1 ≥ εC(log( 1

ε
))α .

Taking c = C, we have η ≥ δ, and the result follows. This proves 1.10.

As noted in the previous section, 1.10 implies that every path is near-polynomial Rödl.
The proof of 2.2 will run by induction on s: to show that P is hs-dividing, we first use the fact

that P is hs−1-dividing to find a large restricted subset, and then work inside this to obtain the
required blockade. We will need to deal with two cases: an easier sparse case and a harder dense
case. We address these separately in the next section. The main argument is then given in section
4.

3 Sparse and dense graphs

The proof of 2.2 proceeds by induction on s. Every graph is h0-dividing, so we may assume that
s > 0 and that the path P is hs−1-dividing. We are given a P -free graph G, and to show that P is
hs-dividing we need to find a blockade in G with certain parameters. By 2.1, we know that every
large subset of V (G) includes a somewhat smaller subset S that is either very dense or very sparse.

There is no symmetry between the dense and sparse cases, because we are excluding a path but
not its complement. As usual with problems about excluding a path, our task is easier if the host
graph is sparse (see, for example, [4]). We first prove a result that will allow us to win if ever the
subset S provided by 2.1 turns out to be sparse.

3.1 Let P be a path with k ≥ 2 vertices, and let 0 < y ≤ 1/(60k). Let G be a y2-sparse graph. Then
either:

• G contains a copy of P , or

• G contains an anticomplete (1/y, by2|G|c)-blockade in G.
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Proof. We may assume that |G| ≥ 1/y2 or the result is trivial. Let µ = 1/(12y).
Let us say that a set A of vertices in a graph G is poorly expanding (in G) if |NG(A)| ≤ µ|A|,

where NG(A) is the set of vertices u 6∈ A that have a neighbour in A. We repeatedly remove
poorly expanding sets together with their neighbourhoods, as follows: let G0 = G and, for i ≥ 0,
if Gi contains a set Ai+1 of vertices of size at most y2|G| that is poorly expanding in Gi, then let
Bi+1 = NGi(Ai+1) and set Gi+1 = Gi \ (Ai+1 ∪ Bi+1). The process terminates with some induced
subgraph Gt that has no poorly expanding set of size at most y2|G|.

Suppose first that |Gt| ≤ |G|/2. Let A =
⋃t
i=1Ai and B =

⋃t
i=1Bi, so Gt = G \ (A ∪ B) and

|B| ≤ µ|A|. Since |A ∪ B| ≥ |G|/2, it follows that |A| ≥ |G|/(2 + 2µ) > 3y|G|. The sets Ai are
pairwise anticomplete, so each component of G[A] has size at most y2|G|. We group the components
together into as many sets as possible such that each contains between y2|G| and 2y2|G| vertices. If
we get at least 1/y sets then we have found our blockade. If not, then there are at most y2|G| unused
vertices and so |A| ≤ (1/y)2y2|G|+ y2|G| < 3y|G|, giving a contradiction.

Otherwise, |Gt| > |G|/2 and Gt contains no poorly expanding set of size at most y2|G|. We work
inside Gt for the rest of the argument. We define sets of vertices R1, . . . , Rk−1 and S0, . . . , Sk−1 as
follows: let S0 ⊆ V (Gt) be any set of by2|G|c vertices of Gt; for i ≥ 1, let Ri be a minimal subset
of Si−1 such that |NGt(Ri) \

⋃
j<i Sj | ≥ y2|G|; and let Si = NGt(Ri) \

⋃
j<i Sj . If we can do this

successfully, then we can find an induced copy v1- · · · -vk of P : let vk be any vertex of Sk−1 and, for
i = k − 1, . . . , 1, let vi be any neighbour of vi+1 in Ri.

It is therefore enough to show that we can find sets Ri and Si at each stage. Suppose that
1 ≤ i ≤ k − 1 and we have defined S0, . . . , Si−1. Let T ⊆ Si−1 be any subset of size by2|G|c. Then,
by our assumption on poorly expanding sets, |NGt(T )| ≥ µby2|G|c ≥ y|G|/24. By the minimality
of Rj and since G is y2-sparse, each set Sj has size at most 2y2|G| and so |N(T ) \

⋃
0≤j<i Sj | ≥

y|G|/24− 2ky2|G| ≥ y2|G|. It follows that we can pick Ri and Si. This proves 3.1.

The dense case is much more difficult. This is handled by the next lemma, which will allow us
either to extract a dense blockade, or to move to a reasonably large induced subgraph with no large,
dense parts.

3.2 Let P be a path with |P | ≥ 1, let a = 3|P |, and let 0 < x ≤ y ≤ 1/100. For every P -free graph
G, either:

(a) there is S ⊆ V (G) with |S| ≥ xa|G| such that every S′ ⊆ S with |S′| ≥ x|S| has density at most
(1− y3); or

(b) there is a (1− x)-dense (1/y, bxa|G|c)-blockade in G.

Proof. Let us assume that neither (a) nor (b) holds. It follows that xa|G| ≥ 1, since otherwise (b)
holds. A non-neighbour of a vertex v means a vertex different from and nonadjacent to v, and the
antidegree of v is the number of its non-neighbours. We claim first:

(1) For every S ⊆ V (G) with |S| ≥ 2xa−1|G|, there exists C ⊆ S with |C| ≥ x(1 + y)|S|/2, such that

• C is (1− 2y3)-dense; and

• for all disjoint X,Y ⊆ C with |X| ≥ (1− y/4)|C| and |Y | ≥ xa|G|, at least y|X|/4 vertices in
X have at least x|Y | non-neighbours in Y .
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Since |S| ≥ xa|G|, and (a) does not hold, there exists S′ ⊆ S with |S′| ≥ x|S| such that S′ is (1−y3)-
dense. Choose a (1 − x)-dense blockade (B1, . . . , Bn−1, C) in G[S′] with n maximum such that
|B1|, . . . , |Bn−1|, |C| ≥ xa|G| and |C| ≥ (1 − (n − 1)y/2)|S′|. (This is possible because |S′| ≥ xa|G|,
and so we can take n = 1 and C = S′.) We may assume that n < 1/y, and so

|C| ≥ (1− (n− 1)y/2)|S′| = (1 + y/2− ny/2)|S′| ≥ (1 + y)|S′|/2 ≥ x(1 + y)|S|/2.

In particular, |C| ≥ |S′|/2, and consequently C is (1− 2y3)-dense.

S S′ B1 Bn−1 C

Figure 1: For step (1) of the proof of 3.2.

Suppose that X,Y ⊆ C are disjoint, with |X| ≥ (1− y/4)|C| and |Y | ≥ xa|G|. It follows that

|X| ≥ (1− y/4)(1 + y)|S′|/2 ≥ |S′|/2.

Since |Y | ≥ xa|G|, and (1− ny/2)|S′| ≥ |S′|/2 ≥ xa|G|, fewer than (1− ny/2)|S′| vertices in X are
(1 − x)-dense to Y , from the maximality of n. Since |C| ≥ (1 − (n − 1)y/2)|S′|, it follows that at
least y|S′|/2 − |Y | vertices in X have at least x|Y | non-neighbours in Y . But |Y | ≤ y|C|/4, since
X ∩ Y = ∅, and so y|S′|/2− |Y | ≥ y|S′|/2− y|C|/4 ≥ y|C|/4 ≥ y|X|/4. This proves (1).

Next we use a new version of the “Gyárfás path” argument, originally used to find induced paths
in graphs with large chromatic number (see [9, 10]). The usual form of the argument grows a path
v1- · · · -vk one vertex at a time, walking towards some part of the graph with large chromatic number:
at each stage, vi has neighbours in some connected part of the graph with large chromatic number
that is nonadjacent to {v1, . . . , vi−1}, and we choose vi+1 from this part. If the neighbourhood of
every vertex has small chromatic number, this can be made to work. However, the current setup is
rather different: we are dealing with cardinality rather than chromatic number, and we are working
inside a graph that is very dense. There is no problem arranging that the last vertex of the path
has many neighbours; the issue is to arrange that there are many vertices with no neighbours in the
path, and to maintain this as we grow the path.

Let k := |P |, so a = 3k. Define a1 := x/2, and b1 := x2y/8; and for 2 ≤ t ≤ k, define
at := x2t−1y/2t+2 = (x/2)bt−1 and bt := x2ty/2t+2 = (x2/2)bt−1. For 1 ≤ t ≤ k let us say a t-
brush is an induced path of G with vertices v1- · · · -vt in order, such that there exist subsets A,B ⊆
V (G) \ {v1, . . . , vt} with the following properties:

• every vertex in A is adjacent to vt and is nonadjacent to v1, . . . , vt−1;

• every vertex in B has no neighbours in {v1, . . . , vt};

• |A| ≥ at|G| and |B| ≥ bt|G|;

• for every Y ⊆ B with |Y | ≥ xa|G|, there are at least y|A|/4 vertices in A that have at least
x|Y | non-neighbours in Y ; and
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• every vertex in B has at most 3y3|A| non-neighbours in A.

(2) There is a 1-brush.

Since |G| ≥ 2xa−1|G|, (1) implies that there exists C ⊆ V (G) with |C| ≥ x(1 + y)|G|/2, such
that C is (1−2y3)-dense, and and for all disjoint X,Y ⊆ C with |X| ≥ (1−y/4)|C| and |Y | ≥ xa|G|,
at least y|X|/4 vertices in X have at least x|Y | non-neighbours in Y .

Suppose first that no vertex of C has at least b1|G| nonneighbours in C. Let Y ⊆ C be a set of
dxa|G|e vertices and let X = C \Y . Then the total number of nonedges between X and Y is at most
the sum of antidegrees of vertices in Y , which is at most b1|G||Y |/2 = x2y|G||Y |/8. On the other
hand,

|Y | ≤ xa|G|+ 1 ≤ 2xa|G| ≤ 4xa−1|C| ≤ (x/4)|C| ≤ (y/4)|C|,

so by our choice of C the number of nonedges is at least (y|X|/4)x|Y |. It follows that

(y|X|/4)x|Y | ≤ x2y|G||Y |/8,

and so |X| ≤ x|G|/2, which gives a contradiction as |X| ≥ (1− y/4)|C| > x|G|/2.
So let v1 be a vertex of C with at least b1|G| nonneighbours in C. Let A be the set of its

nonneighbours in C, and let B = C \A. As C is (1− 2y3)-dense, we have

|A| ≥ (1− 2y3)|C| ≥ x|G|/2 = a1|G|;

and we clearly have |B| ≥ b1|G|. Since A and B are subsets of C, the last two bullets in the definition
of a 1-brush are also satisfied. This proves (2).

(3) Let 1 ≤ t ≤ k − 1, and let v1- · · · -vt be a t-brush. Then there is a vertex v such that v1- · · · -vt-v
is a (t+ 1)-brush.

Choose A,B satisfying the five bullets in the definition of “t-brush”. Since bt = (x2/2)ty/4, and
t ≤ k − 1, and a ≥ 3k, it follows that

|B| ≥ bt|G| = (x2/2)ty|G|/4 ≥ x3k−4|G| ≥ 2xa−1|G|.

By (1), there exists C ⊆ B with |C| ≥ x(1 + y)|B|/2, such that C is (1 − 2y3)-dense, and for all
disjoint X,Y ⊆ C with |X| ≥ (1 − y/4)|C| and |Y | ≥ xa|G|, at least y|X|/4 vertices in X have at
least x|Y | non-neighbours in Y .

Since v1- · · · -vt is a t-brush, each vertex in C has at most 3y3|A| non-neighbours in A, and so at
most y|A|/8 vertices in A have at least 24y2|C| non-neighbours in C. On the other hand, there are
at least y|A|/4 vertices in A that have at least x|C| non-neighbours in C; and so there is a set D ⊆ A
with |D| ≥ y|A|/8, such that for each v ∈ D, the number of its non-neighbours in C is between x|C|
and 24y2|C|.
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v1

v2

vt

A

B

D v

A′ B′

Figure 2: For step (3). C = A′ ∪B′.

Let v ∈ D. We claim that v1- · · · -vt-v is a (t+ 1)-brush. Let A′ be the set of all neighbours of v
in C, and let B′ = C \ A′. We will show that A′, B′ satisfy the five conditions in the definition of a
(t+ 1)-brush. The first two are immediate. For the third,

|A′| ≥ (1− 24y2)|C| ≥ (1− 24y2)x(1 + y)|B|/2 ≥ (x/2)bt|G| = at+1|G|,

and
|B′| ≥ x|S| ≥ x(x/2)|B| ≥ (x2/2)bt|G| = bt+1|G|.

For the fourth condition, suppose that Y ⊆ B′ with |Y | ≥ xa|G|. From the choice of C, since
|A′| ≥ (1− 24y2)|C| ≥ (1− y/4)|C|, there are at least y|A′|/4 vertices in A′ that have at least x|Y |
non-neighbours in Y . Finally, for the fifth condition, since C is (1 − 2y3)-dense, each vertex in B′

has at most 2y3|C| ≤ 3y3|A′| non-neighbours in A′. This proves (3).

The result now follows by induction: (2) shows that there is a 1-brush, and (3) provides the
inductive step. Thus there is a k-brush, as required. This proves 3.2.

4 Decreasing density

We remind the reader that if h is subreciprocal, a graph H is h-dividing if there are c ∈ (0, 12) and
d > 1 such that for every x ∈ (0, c) and every H-free graph G admits an x-sparse or (1 − x)-dense
(h(x), bxd|G|c)-blockade in G. Also, for each integer s ≥ 0, hs : (0, 12) → R+ is the function defined
by

hs(x) := 2(log
1
x
)
s
s+1

for all x ∈ (0, 12). In this section we use the results of the previous two sections, together with 2.1,
to prove 2.2, which we restate:

4.1 Every path P is hs-dividing for all integers s ≥ 0.

Proof. The proof is by induction on s. The key part of the argument is the inductive step, where
we bootstrap from hs−1-dividing to hs-dividing. Our goal is to find a large blockade that is suitably
dense or sparse. As P is hs−1-dividing, we can use the transference lemma 2.1 to obtain a large
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subset S that induces subgraph that is either dense or sparse. If the induced subgraph is sparse,
then we can use 3.1 to obtain the required blockade; otherwise, S induces a large dense subgraph.
In fact, we can apply this argument to any large induced subgraph: thus either we win, or we find
that every large induced subgraph of G contains a large, dense part. This will allow us to use 3.2 to
obtain a dense blockade.

So let G be a P -free graph. For s = 0, we need to find disjoint sets B1 and B2 of size at least
bxd|G|c such that B2 is x-sparse or (1− x)-dense to B1. This follows from a strengthened version of
a result of Erdős and Hajnal [7] given by Fox and Sudakov [8] (see their Lemma 2.1). So, we may
assume that s ≥ 1, and P is hs−1-dividing.

By 2.1, with h = hs−1, we deduce that there exists C > 0 such that for every ε ∈ (0, 12), every
P -free graph G′ contains an ε-restricted S ⊆ V (G′) with |S| ≥ δ|G|′, where

δ = ε
C log 1

ε
log(hs−1(ε)) = εC(log 1

ε
)1/s .

Let b = 31+1/sC. We deduce:

(1) Let 0 < x ≤ 1/2 and let y := 1/hs(x). Then every P -free graph G′ contains a y3-restricted
subset S ⊆ V (G′) with |S| ≥ xb|G′|.

Since x ≤ 1/2, it follows that hs(x) ≥ 2 and so y3 ≤ y ≤ 1/2. Moreover,

log
1

y
= log(hs(x)) =

(
log

1

x

)s/(s+1)

.

Setting ε = y3, we deduce that every P -free graph G′ contains a y3-restricted S ⊆ V (G′) with
|S| ≥ δ|G′|, where

δ = εC(log 1
ε
)1/s = 2−C(log 1

ε
)1+1/s

= 2
−31+1/sC(log 1

y
)1+1/s

= 2
−b(log 1

y
)1+1/s

= xb.

This proves (1).

Now, let d = 3b|P |+ b+ 5, and choose c > 0 with c ≤ 1/2, and sufficiently small that

cb ≤ 1

hs(c)
≤ min

(
1

60|P |
,

1

100

)
.

Let x ∈ (0, c) and let G be a P -free graph. We will show that there is an x-sparse or x-dense
(hs(x), bxd|G|c)-blockade in G, and therefore that P is hs-dividing. Suppose (for a contradiction)
that there is no such blockade. As before, let y := 1/hs(x). We note that y ≤ x ≤ c ≤ 1/100.

(2) For every S ⊆ V (G) with |S| ≥ xd−b−5|G|, there exists a (1 − y3)-dense subset S′ ⊆ S with
|S′| ≥ xb|S|.

Suppose not. By (1) applied to G[S], there is an y3-sparse subset S′ ⊆ S with |S′| ≥ xb|S|.
By 3.1 applied to G[S′], there is an x-sparse (1/y, bx5|S′|c)-blockade in G[S′]. But then G admits
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an anticomplete (1/y, bxb+2y2|G|c)-blockade: this is an x-sparse (1/y, bxd|G|c)-blockade, giving a
contradiction. This proves (2).

In particular, (1) implies that for every S ⊆ V (G) with |S| ≥ x3b|P ||G|, there is a (1− y3)-dense
subset S′ ⊆ S with |S′| ≥ xb|S|, since x3b|P | = xd−b−5. But now, by 3.2 with x replaced by xb, we
deduce that there is a (1− xb)-dense, and hence (1− x)-dense, (1/y, bx3b|P ||G|c)-blockade in G. As
d ≥ 3b|P |, this proves 4.1.

5 Concluding remarks

We have proved that all paths are near-polynomial Rödl; can we do the same for any other graphs?
A caterpillar is a tree in which there is a path that contains at least one end of every edge of the tree;
and the proof of this paper for paths can be adapted without difficulty to show that all caterpillars
are near-polynomial Rödl. This leads naturally to asking whether all trees are near-polynomial Rödl,
but we have not been able to prove that; we cannot handle the tree obtained from the 3-claw K1,3

by subdividing each edge once (this is the unique minimal tree that is not a caterpillar). But there
are four further graphs (two complementary pairs) that we can prove are near-polynomial Rödl, all
with six vertices and shown in the figure 3. The method of proof is similar. We omit all these proofs,
which will appear in Tung Nguyen’s thesis [11].

Figure 3: Four near-polynomial Rödl six-vertex graphs.

Another way to strengthen the current result is by looking at ordered graphs. An ordered graph
G is a pair (G\,≤G), where G\ is a graph and ≤G is a linear order of its vertex set. Induced subgraph
containment for ordered graphs is defined in the natural way, respecting the orders of both graphs.
A zigzag path is an ordered graph (G\,≤G) where G\ is a path and the ordering is as in figure 4. The
proof of this paper works for ordered graphs, with minor adjustments, showing that every zigzag
path is near-polynomial Rödl (defining “near-polynomial Rödl” for ordered graphs in the natural
way). We omit the details.

Figure 4: A zigzag path

Note. For the purpose of Open Access, the authors have applied a CC BY public copyright licence
to any Author Accepted Manuscript (AAM) version arising from this submission.
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[1] P. Blanco and M. Bucić, “Towards the Erdős-Hajnal conjecture for P5-free graphs”, Res. Math.
Sci., 11 (2024), arXiv:2210.10755.
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[3] M. Bucić, T. Nguyen, A. Scott, and P. Seymour, “Induced subgraph density. I. A loglog step
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