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Abstract. We show that the chromatic number of the n-dimensional associ-
ahedron grows at most logarithmically with n, improving a bound from and
proving a conjecture of Fabila-Monroy et al. (2009).

1. Introduction

The associahedron An is an (n − 3)-dimensional convex polytope that arises
in numerous branches of mathematics, including algebraic combinatorics [6, 11,
14, 26] and discrete geometry [2, 19, 20]. Associahedra are also called Stasheff
polytopes after the work of Stasheff [26], following earlier work by Tamari [27].
We are only interested in the 1-skeleton of the associahedron, so we consider it as
a graph, defined as follows.

The elements of the associahedron An are triangulations T of the convex n-
gon with vertices labeled by {0, . . . , n − 1} in clockwise order. For any such
triangulation T , we always denote triangles of T by the sequence ABC of their
vertices, ordered so that A < B < C. We write E(T ) for the set of edges contained
in T . Every triangulation T of An contains the edges 01, 12, . . . , (n−1)0; we refer
to these as boundary edges. For T in An, each non-boundary edge e ∈ E(T ) is
contained in a unique quadrilateral Q = QT (e) = ABCD with A < B < C < D;
we always list the vertices of quadrilaterals in increasing order. Flipping the edge
e means replacing e by the other diagonal of Q; see Figure 1. Two triangulations
T, T ′ in An are adjacent in An if they may be obtained from one another by a
single flip.

Graph-theoretic properties of associahedra have been well-studied. For exam-
ple, it is easily seen that An is (n − 3)-regular. Lucas [15] and Hurtado and
Noy [12] both proved that An is Hamiltonian. Hurtado and Noy [12] also showed
that An has connectivity n − 3, as well as determining its automorphism group.
Parlier and Petri proved bounds on the genus of An. The diameter of An and
several related questions have been studied extensively [1, 3–5, 7, 8, 16, 21–24].
Sleator et al. [24] proved that the diameter equals 2n− 10 for sufficiently large n,
and recently Pournin [21] showed that 2n− 10 is the answer for n > 12. Several
authors [9, 17, 18] studied random walks in An.
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Figure 1. Portions of two adjacent triangulations of an n-gon.

This paper studies the chromatic number of An, a quantity which was first con-
sidered by Fabila-Monroy et al. [10]. That work gave an explicit ⌈n2 ⌉-colouring of
An, and observed that χ(An) ∈ O(n/ log n), based on the result of Johansson [13]
which says that every triangle-free graph with maximum degree ∆ is O(∆/ log∆)-
colourable. No non-constant lower bound on χ(An) is known. Indeed, the best
known lower bound is χ(A10) ⩾ 4 [private communication, Ruy Fabila-Monroy].
Fabila-Monroy et al. [10] conjectured a O(log n) upper bound. We prove this
conjecture.

Theorem 1. χ(An) ∈ O(log n).

2. The Proof

We prove Theorem 1 by tracking how several carefully chosen properties of
triangulations change when an edge is flipped. To see how this yields a route
to bounding the chromatic number of An, first recall that if f is a graph homo-
morphism from An to some graph G, which is to say that f : V (An) → V (G) is
adjacency-preserving, then χ(An) ⩽ χ(G). This fact may be generalized as fol-
lows. Suppose that (Gi)i∈I is a finite set of graphs and (fi : V (An) → V (Gi))i∈I
are functions such that for all adjacent triangulations T, T ′ in An, there exists
i ∈ I for which fi(T ) and fi(T

′) are adjacent in Gi. For each i ∈ I, let κi be
a proper colouring of Gi with χ(Gi) colours, and colour each T in An with the
vector (κi(fi(T )))i∈I . If T and T ′ are adjacent in An, then (κi(fi(T )))i∈I and
(κi(fi(T

′)))i∈I differ in at least one coordinate. Thus this is a proper colouring
of An, and χ(An) ⩽

∏
i∈I χ(Gi). The remainder of the paper is devoted to defin-

ing the five functions that we use (see (3)), and showing they have the requisite
properties.

Two fundamental notions that we use are the type of a quadrilateral and the
scale of an edge. For a quadrilateral Q = QT (e) = ABCD contained within tri-
angulation T , we say Q is type-1 if e = AC, and otherwise say Q is type-2 ; we say
that an edge e is type-1 or type-2 according to the type of the quadrilateral QT (e).
For example, in Figure 1(A), QT = ABCD is typ]e-1 and QT (BC) = ABEC is
type-2, and in Figure 1(B), QT ′(BC) = BECD is type-1 and QT ′(BD) = ABCD
is type-2.



A LOGARITHMIC BOUND FOR THE CHROMATIC NUMBER OF THE ASSOCIAHEDRON 3

Fix an integer α ⩾ 3 to be chosen later (in fact we end up taking α = 3). For
an edge e = UV , define the scale of e to be

σe := ⌈logα |U − V |⌉ ∈ {0, 1, . . . , ⌈logα(n− 1)⌉}.
Note that σe = 0 if and only if e is a boundary edge. The scales of the edges
incident to triangles within a fixed quadrilateral Q are a key input to the functions
we define.

We first consider the effect of edge flips on triangles ABC, where two of the
three incident edges have the same scale. If AB (resp. BC, AC) is the unique
edge whose scale is different from the others, then we say ABC is a type-ℓ (resp.
type-m, type-r) triangle. If all three edges have the same scale, then we say ABC
is a type-z triangle. Let (ℓT ,mT , rT , zT ) be the vector counting the number of
type-ℓ, type-m, type-r and type-z triangles in T .

For the remainder of the paper, we fix a triangulation T , and consider the effect
of flipping an edge e = AC within a type-1 quadrilateral QT (e) = ABCD, to form
another triangulation T ′.

Proposition 2. If σAC , σBD and σBC are all different, then (ℓT ′ ,mT ′ , rT ′ , zT ′) ̸=
(ℓT ,mT , rT , zT ).

Proof. By assumption, σBD ̸= σAC and σBC < min(σAC , σBD). We argue by
contradiction. To this end, suppose that (ℓT ′ ,mT ′ , rT ′ , zT ′) = (ℓT ,mT , rT , zT ).
Since α ⩾ 3,

logα(D−A) ⩽ logα(3max(B−A,C−B,D−C)) ⩽ 1+logαmax(B−A,C−B,D−C).
Taking ceilings, it follows that

σAD ⩽ 1 + max(σAB, σBC , σCD). (1)

The preceding equation requires one of three inequalities to hold; the next three
paragraphs treat the possibilities one at a time.

Suppose that σAB = max(σAB, σBC , σCD). Using (1) and the fact that σAB ⩽
σAC ⩽ σAD, we find that either σAC = σAB or σAC = σAB + 1 = σAD.

If σAC = σAB, as in Figure 2(A), then ABC is a type-m triangle so, since we
assume the triangle type vector is unchanged by flipping edge AC, either ABD
or BCD is also type-m. BCD is not type-m, as σBC < σBD by assumption,
so ABD is type-m and hence σAB = σAD. But then ABC and ACD are both
type-m, which gives a contradiction as BCD is not.

If σAC = σAB + 1, as in Figure 2(B), then ACD is type-m or type-z, so either
ABD or BCD is type-m or type-z. But BCD is neither, as σBC < σBD, and
ABD is neither as σAB ̸= σAD.

Next suppose that σBC = max(σAB, σBC , σCD), as in Figure 2(C). Since σBC ̸=
σAC and σBC ̸= σBD by assumption, and all scales are at most σAD, it must be
that σAC = σBD = σAD; but this is ruled out by assumption.

Finally, suppose that σCD = max(σAB, σBC , σCD). This case is the same as the
first case, as we can apply the argument to a reversed copy of the associahedron
(which exchanges type-ℓ and type-m triangles, while leaving the other two types
invariant). □

Proposition 3. If σAC = σBD = σBC and (ℓT ′ ,mT ′ , rT ′ , zT ′) = (ℓT ,mT , rT , zT ),
then either σAD = σBC or σAB = σBC = σCD.
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Figure 2. Writing σ = max(σAB, σBC , σCD), the subfigures cor-
respond to possible configurations arising in the proof of Proposi-
tion 2.

Proof. In this case ABC is type-ℓ or type-z, and BCD is type-m or type-z. If
ABC is type-ℓ then since the triangle type vector does not change when flipping,
it must be that ABD is type-ℓ, which implies that σAD = σBD, yielding the result
in this case since σBD = σBC . Similarly, if BCD is type-m then it must be that
ACD is type-m, which implies that σAD = σAC . Otherwise, both ABC and BCD
are type-z, in which case we indeed have σAB = σBC = σCD. □

For each triangulation T in An and k ∈ {1, 2} and i ∈ {0, 1, . . . , ⌈logα(n− 1)⌉},
let

ski (T ) := #{e ∈ E(T ) : Q(e) is type-k, σe = i} .
Assign an integer label c(T ) to T given by

c(T ) :=

⌈logα(n−1)⌉∑
i=0

2is1i (T ) +

⌈logα(n−1)⌉∑
i=0

3is2i (T )

 mod (3⌈logα n⌉) .

The utility of such a labelling rule is explained by the following fact. We continue
to work with triangulations T and T ′ related by an edge flip within quadrilateral
ABCD with AC ∈ E(T ) and BD ∈ E(T ′), as above.

Proposition 4. If exactly two of σAC , σBD and σBC are equal, then c(T ′) ̸= c(T ).

Proof. First suppose that BC is not a boundary edge, and let V be the unique
vertex of T with B < V < C adjacent to both B and C. Note that ABCD =
QT (AC) is type-1 in T and ABCD = QT ′(BD) is type-2 in T ′. Also, QT (BC) =
ABV C is type-2 in T and QT ′(BC) = BV CD is type-1 in T ′. It is not hard to
check that no other quadrilaterals change type when moving from T to T ′. Thus

c(T ′)− c(T ) = 3σBD − 2σAC + 2σBC − 3σBC mod (3⌈logα n⌉)
= 3σBD − 2σAC − σBC mod (3⌈logα n⌉) .

It follows that if σBC < σBD = σAC , then

c(T ′)− c(T ) = σBD − σBC mod (3⌈logα n⌉) ̸= 0 ;

the difference is non-zero modulo (3⌈logα n⌉) since all scales are at most ⌈logα n⌉.
Similarly, if σBC = σBD < σAC then

c(T ′)− c(T ) = 2(σAC − σBD) mod (3⌈logα n⌉) ̸= 0 .
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Finally, if σAC = σBC < σBD then (since BD and AC are non-boundary edges)

c(T ′)− c(T ) = 3(σBD − σAC) mod (3⌈logα n⌉) ̸= 0

Since σBC ⩽ min(σAC , σBD), these are the only possibilities. Here we use that
σBD ⩾ 1 and σAC ⩾ 1 (since D −B ⩾ 2 and C −A ⩾ 2).

The case when BC is a boundary edge is very similar, but easier. In this case,

c(T ′)− c(T ) = 3σBD − 2σAC mod (3⌈logα n⌉) .
Since BC is a boundary edge, AC and BD are not, so σBC = 0 and σAC ̸= 0 and
σBD ̸= 0. It follows by assumption that σAC = σBD, so

c(T ′)− c(T ) = σAC mod (3⌈logα n⌉) ̸= 0 . □

Propositions 2, 3 and 4 imply that the label c(T ) and the type vector (ℓT ,mT , rT , zT )
together distinguish T from T ′ except in the following cases.

(a) AC, BD, BC, and AD have the same scale and AB, CD have smaller scales.
(b) AC, BD, BC, AD and AB have the same scale and CD has a smaller scale.
(c) AC, BD, BC, AD and CD have the same scale and AB has a smaller scale.
(d) AC, BD, BC, AB and CD have the same scale and AD has a larger scale.
(e) All six edges AB, AC, AD, BC, BD and CD have the same scale.

To handle cases (a), (b) and (c) we track two additional parameters, and show
that the parity of one or both parameters is different for T and T ′. In case
(d) we again prove there is a change of parity, but of a third, more complicated
parameter. For case (e) we use induction.

Figure 3(A) should make the following definitions clear. Orient the edges of
the triangulation T so that the head of each edge has larger label. The root edge

of T is the edge ρ = (0, n−1). Now construct the following oriented tree T̂ . First,
augment T by adding a vertex v to the unbounded face, and join it to all vertices

of the polygon. Let T̂0 be the planar dual of the augmented graph; then T̂ is

0

1

2

3

4

5

6

7ρ̂

ρ

(A) The dual tree of a triangulation of an
8-gon.

0

(B) The subgraph Ŝ of T̂ corresponding to
a subgraph S of a triangulation T .

Figure 3. The dual trees of an 8-gon and of a sub-triangulation
of a 12-gon
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formed from T̂0 by removing all edges of T̂0 lying entirely within the unbounded

face of T . For each edge e of T there is a unique edge ê of T̂ crossing e. Orient

ê from the left to the right of e (when following e from tail to head). Root T̂ at

the edge ρ̂, whose head is the unique node of T̂ with out-degree 0. Note that T̂
is a tree, which we call the dual tree of T .

Given an edge e = UV of T with e ̸= ρ, the triangle containing the head of
ê is incident to both U and V ; let W be its third node. By the above choice of
orientation for ê, either W < min(U, V ) or W > max(U, V ). In the first case, ê is
a left turn, and in the second case it is a right turn.

Given a subgraph S of triangulation T , as illustrated in Figure 3(B), let Ŝ be

the “dual” subgraph of T̂ with the same vertex set as T̂ and with edge set

E(Ŝ) := {ê : e ∈ E(S)}.

A node of Ŝ is a leaf if it has degree 1. For each node v of Ŝ, let gS(v) and dS(v)
be defined as follows. Write r for the root (the unique node of out-degree 0) of

the tree component of Ŝ containing v. Then gS(v) and dS(v) are the number
of left- and right-turns on the path from v to r, respectively; see Figure 4(A).
(Figure 4(B) is used later in the section.)

Recall that T ′ is obtained from T by flipping edge AC within quadrilateral
ABCD. For each i ∈ {1, 2, . . . , ⌈logα n⌉}, let Si be the subgraph of T with edge
set E(Si) = {e ∈ E(T ) : σe = i}, and let S′

i be the subgraph of T ′ with edge set

E(S′
i) = {e ∈ E(T ′) : σe = i}. Define Ŝi and Ŝ

′
i as in the preceding paragraph (so

(0, 0)

(1, 0)

(2, 0)

(2, 1)

(0, 1)r

0
(0, 2)

(2, 2)

(1, 1)

(1, 2)

(2, 2)

(1, 3)(1, 1)

(A) The left-turn and right-turn labelling

of a component Ĥ of Ŝ with root node r.
Labels are given in the form (g(v), d(v)) for

all nodes v of Ŝ.

r

r̃

(B) The reduced tree H̃ corresponding to

the component Ĥ, together with the trian-
gulation of a polygon to which H̃ is dual.
The root edge of H̃ is dashed.

Figure 4. In both subfigures, left-turn edges are red and right-
turn edges are blue.
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Ŝi is a subgraph of T̂ and Ŝ′
i is a subgraph of T̂ ′). Let

G(T ) :=

⌈logα n⌉∑
i=1

∑
v∈V (Ŝi)

gSi(v) and D(T ) :=

⌈logα n⌉∑
i=1

∑
v∈V (Ŝi)

dSi(v) .

The following proposition implies that in cases (a), (b) and (c), flipping edge
AC yields a change in parity of at least one of G and D.

Proposition 5. If the scales of the edges AB, AC, AD, BC, BD and CD are
as in cases (a), (b) or (c) above, then G(T ′) = G(T ) − 1 or D(T ′) = D(T ) + 1
(or both).

Proof. Let σ = σAC . We first claim that for all i ̸= σ, the contributions to G(T )
and to D(T ) from scale-i nodes are unchanged by the edge flip operation; that is,∑
i ̸=σ

∑
v∈V (Ŝi)

gSi(v) =
∑
i ̸=σ

∑
v∈V (Ŝ′

i)

gS′
i
(v) and

∑
i ̸=σ

∑
v∈V (Ŝi)

dSi(v) =
∑
i ̸=σ

∑
v∈V (Ŝ′

i)

dS′
i
(v) .

(2)
We prove these equalities in case (a); the other two cases are similar but easier.

The triangle containing the head of the edge êAB dual to AB is ABC in T and
is ABD in T ′. The case (a) assumptions on the scales of the edges then imply

that the head of êAB has out-degree 0 and in-degree 1 in ŜσAB . In particular, it

is the root of its component of ŜσAB . Moreover, êAB is a right-turn edge in both
T and T ′, since C and D are both larger than A and B.

Similarly, the triangle containing the head of the edge êCD dual to CD is ACD
in T and is BCD in T ′. The assumptions on the scales of edges again imply that

the head of êCD has in-degree 1 and out-degree 0 within ŜσCD , so is the root of

its component of ŜσCD . Moreover, êCD is a left-turn edge in both T and T ′, since
A and B are both smaller than C and D.

Since the structures of T and of T ′ are unaffected outside of the quadrilateral
ABCD, the equalities in (2) follow in case (a).

We now restrict our attention to the scale σ. We write g(·) = gSσ(·) and
d(·) = dSσ(·), and likewise g′(·) = gS′

σ
(·) and d′(·) = dS′

σ
(·). Note that all nodes

not lying within the quadrilateral ABCD either belong to both Sσ and S′
σ or

belong to neither of Sσ and S′
σ.

The remainder of the proof boils down to inspection of Figures 5, 6 and 7. In
case (a), observe (see Figure 5) that g(u) = g′(u) = a+1 and d(u) = d′(u) = b+1,
which implies that (g(q), d(q)) = (g′(q), d′(q)) for all nodes q not lying within
ABCD. Since g(v) + g(x) = 2a + 1 = g(p) + g(z) + 1 and d(v) + d(z) = 2b =
d(p) + d(z)− 1, it follows that G(T ) = G(T ′) + 1 and D(T ′) = D(T )− 1.

Figure 6 depicts the situation in case (b). In this case d(u) = d′(u) and d(w) =
d′(w), which implies that d(q) = d′(q) for all q not lying in ABCD. Since d′(z) +
d′(p) = d(v) + d(x) + 1, it follows that D(T ′) = D(T ) + 1.

Finally, Figure 7 relates to case (c). In this case g(u) = g′(u), g(y) = g′(y),
and g(v) + g(x) = g′(z) + g(p) + 1, so the above argument implies that G(T ′) =
G(T )− 1. □

We now turn our attention to cases (d) and (e). Consider any subgraph S of

T , and let Ĥ be a connected component of Ŝ. Note that Ĥ is a rooted sub-binary
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u
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Figure 5. The left-turn and right-turn labels near quadrilat-
eral ABCD in T and T ′: case (a). Here (g(x), d(x)) = (a, b),
(g(v), d(v)) = (a+ 1, b) and (g(u), d(u)) = (a+ 1, b+ 1).

B

C

D

A

T

B

C

D

A

T ′

(a+ 2, b) (a+ 1, b)

(a, b)

(a, b)

(a, b+ 1)

(a+ 1, b+ 1) (a+ 1, b+ 1)

(a+ 1, b)

u

v

w

u
z

w

x

p

Figure 6. The left-turn and right-turn labels near ABCD in T
and T ′: case (b).

tree (that is, every node has degree at most three; see Figure 3(B)). Let H̃ be the

tree obtained from Ĥ as follows (see Figure 4(A) and 4(B)). First, if the root r of

Ĥ has exactly two children then add a new node r̃ incident only to r and reroot
at r̃. Next, suppress each node of degree exactly two (that is, contract one edge

incident to the node). We obtain a rooted binary tree H̃ called the reduced tree

of Ĥ.

Proposition 6. For each i ∈ {1, 2, . . . , ⌈logα n⌉} and for each component Ĥ of

Ŝi, the reduced tree H̃ has at most 2α− 1 leaves.

Proof. Fix any node u of H̃ with in-degree zero, and consider the edge uv incident
to u in Ĥ. Then uv is dual to an edge AB with σAB = i so with αi−1 < B−A ⩽ αi.
Now fix another node w of H̃ with in-degree zero, write wx for the edge incident
to w in Ĥ, and let CD be its dual edge. Then necessarily either A < B ⩽ C < D
or C < D ⩽ B < A.
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Figure 7. The left-turn and right-turn labels near ABCD in T
and T ′: case (c).

Consider an oriented edge yr where r is the root of Ĥ. Writing EF for the
edge dual to yr, then the observation of the preceding paragraph implies that
F − E > αi−1 · ℓ, where ℓ is the number of nodes with in-degree zero in the
subtree rooted at y. On the other hand, σEF = i so F −E ⩽ αi; so ℓ ⩽ α− 1. If
r has only one child (so is a leaf itself) this yields that H̃ has at most α leaves.
If r has two children then each of their subtrees contains at most α− 1 leaves; in
this case r̃ is also a leaf, so the total number of leaves is at most 2(α− 1)+ 1. □

For any subgraph S of the triangulation T , the embedding of T̂ in the plane

induces a total order of the connected components of Ŝ, given by the order their

roots are visited by a clockwise tour around the contour of T̂ starting from the

head of the root edge ρ. For each 1 ⩽ i ⩽ ⌈logα n⌉, list the components of Ŝi in
the order just described as Hi,1, . . . ,Hi,ℓ, where ℓ = ℓ(T, i) is the number of such

components. Then, for 1 ⩽ j ⩽ ℓ(T, i) let H̃i,j be the reduced tree of Hi,j .

Each tree from (H̃i,j , i ⩽ ⌈logα n⌉, j ⩽ ℓ(T, i)) is a dual to a unique triangulation

T̃i,j of a polygon, as in Figure 4(B). Proposition 6 implies that T̃i,j belongs to an
associahedron Ak for some k ⩽ 2α−1. Let ϕ be a proper colouring of the disjoint
union of (Ak, k ⩽ 2α− 1), with colours {1, . . . , χ(A2α−1)}, and define

I(T ) :=

⌈logα n⌉∑
i=0

ℓ(T,i)∑
j=1

ϕ(T̃i,j)

 mod χ(A2α−1) .

Proposition 7. In cases (d) and (e), we have I(T ) ̸= I(T ′).

Proof. Write vx = ê for the dual edge of AC in T , and zp = êBD for the dual
edge of BD in T ′. Figures 8 and 9 illustrate cases (d) and (e) respectively.

The clockwise contour exploration of a rooted plane tree is a walk around the
outside of the tree which starts and finishes at the root, keeping the unbounded
face to its left at all times. This walk traverses each edge exactly twice, and
records the vertices it visits in sequence, with repetition. In cases (d) and (e),

for the clockwise contour explorations of T̂ and of T̂ ′, there are (possibly empty)
strings P1, . . . , P5 so that the sequences recorded by the contour explorations of
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Figure 8. The structure near the quadrilateral ABCD in T and
T ′ case (d). The dashed edges have scale σAD > σ, all other edges
of the triangulations shown in the figure have scale σ.
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y y

Figure 9. The structure near the quadrilateral ABCD in T and
T ′ in case (5). All edges of the triangulations shown in the figure
have scale σ.

T̂ and of T̂ ′ are respectively of the form

P1sxvwP2wvuP3uvxyP4yxsP5 and P1spwP2wpzuP3uzyP4yzpsP5 ;

see Figures 8 and 9.

The contour explorations of T̂ and T̂ ′ agree until they visit dual vertices lying
within ABCD. It follows that if Hσ,j is the component of Sσ containing êAC ,
then the component of S′

σ containing êBD is H ′
σ,j .

In case (d), since x has two children in Hσ,j , by construction it is the unique

child of the root of H̃σ,j . It is thus natural to identify s with the root of H̃σ,j .

We may likewise identify s with the root of H̃ ′
σ,j , since p has two children in H ′

σ,j .
After the addition of s as a root, the nodes v, x, p and z all have degree 3, so
none of these nodes are suppressed when constructing H̃σ,j and H̃ ′

σ,j from Hσ,j

and H ′
σ,j .
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In case (e), nodes v, x, p and z all have degree 3, and the edges xs and ps belong
to Hσ,j and H ′

σ,j , respectively.

It follows from the two preceding paragraphs that in cases (d) and (e), we may

view v and x as nodes of both Hσ,j and H̃σ,j , and p and z as nodes of both

H ′
σ,j and H̃ ′

σ,j . It is then clear that flipping the edge AC in the triangulation T

corresponds precisely to flipping the corresponding edge in T̃σ,j to form T̃ ′
σ,j .

Since T̃σ,j and T̃
′
σ,j are related by a single edge flip, and ϕ is a proper colouring,

it follows that ϕ(T̃σ,j) ̸= ϕ(T̃ ′
σ,j). Since all other components of Sσ, and more

generally of each (Si, 1 ⩽ i ⩽ ⌈logα n⌉), are unchanged when moving from T to
T ′, the result follows. □

Proof of Theorem 1. Consider the graph G with vertex set N4 where distinct ver-
tices (ℓ,m, r, z) and (ℓ′,m′, r′, z′) are adjacent if |ℓ′−ℓ|+|m′−m|+|r′−r|+|z′−z| ⩽
4. This graph has maximum degree at most 320 (see [25]), so is 321-colourable.
(We are not optimizing constants.) Let κ : N4 → {1, . . . , 321} be a proper colour-
ing of G.

For each triangulation T of An, let g(T ) := G(T ) mod 2 and d(T ) := D(T ) mod
2; colour T by the 5-tuple

ψ(T ) :=
(
κ((ℓT ,mT , rT , zT )), c(T ), g(T ), d(T ), I(T )

)
. (3)

We now show that ψ is a proper colouring of An.
Consider adjacent vertices T and T ′ in An. In all situations covered by Propo-

sition 2, the vectors (ℓT ′ ,mT ′ , rT ′ , zT ′) and (ℓT ,mT , rT , zT ) are different, and thus
adjacent in G, since each of |ℓT ′ − ℓT |, |mT ′ −mT |, |rT ′ − rT | and |zT ′ − zT | is at
most 1. Thus κ((ℓT ′ ,mT ′ , rT ′ , zT ′)) ̸= κ((ℓT ,mT , rT , zT )). In the situations cov-
ered by Proposition 4, we have c(T ) ̸= c(T ′). By Proposition 5, in cases (a)–(c),
either g(T ) ̸= g(T ′) or d(T ) ̸= d(T ′) or both. Finally, in cases (d) and (e), by
Proposition 7 we have I(T ) ̸= I(T ′).

Thus ψ(T ) ̸= ψ(T ′), implying for any integer α ⩾ 3,

χ(An) ⩽ 321 · ⌈3 logα n⌉ · 2 · 2 · χ(A2α−1).

Taking α = 3 yields χ(A2α−1) = χ(A5) = 3, since A5 is a 5-cycle. It follows that

χ(An) ⩽ 12 · 321 · ⌈3 log3 n⌉ ∈ O(log n) . □
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tion Methods in Algorithm Design, vol. 43 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pp. 147–160. Amer. Math. Soc., 1997.

[18] Michael Molloy, Bruce Reed, and William Steiger. On the mixing
rate of the triangulation walk. In Randomization methods in algorithm design,
vol. 43 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 179–190.
Amer. Math. Soc., 1999.

[19] Vincent Pilaud and Francisco Santos. The brick polytope of a sorting
network. European J. Combin., 33(4):632–662, 2012. MR: 2864447.

https://doi.org/10.37236/7762
https://doi.org/10.37236/7762
http://www.ams.org/mathscinet-getitem?mr=MR{3874284}
https://doi.org/10.1016/j.ejc.2015.04.006
https://doi.org/10.1016/j.ejc.2015.04.006
http://www.ams.org/mathscinet-getitem?mr=MR{3398843}
https://doi.org/10.4153/CMB-2002-054-1
https://doi.org/10.4153/CMB-2002-054-1
http://www.ams.org/mathscinet-getitem?mr=MR{1941227}
https://doi.org/10.1137/17M1114582
https://doi.org/10.1137/17M1114582
http://www.ams.org/mathscinet-getitem?mr=MR{3796362}
https://doi.org/10.1016/j.aim.2009.09.016
http://www.ams.org/mathscinet-getitem?mr=MR{2581373}
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
https://dmtcs.episciences.org/460
https://dmtcs.episciences.org/460
http://www.ams.org/mathscinet-getitem?mr=MR{2535071}
https://doi.org/10.1016/j.aim.2010.07.005
http://www.ams.org/mathscinet-getitem?mr=MR{2735770}
https://doi.org/10.1016/S0925-7721(99)00016-4
https://doi.org/10.1016/S0925-7721(99)00016-4
http://www.ams.org/mathscinet-getitem?mr=MR{1723053}
https://doi.org/10.1006/aima.1998.1759
https://doi.org/10.1006/aima.1998.1759
http://www.ams.org/mathscinet-getitem?mr=MR{1654173}
https://doi.org/10.1016/0196-6774(87)90048-4
http://www.ams.org/mathscinet-getitem?mr=MR{920505}
https://www.emis.de/journals/SLC/wpapers/s73mannpil.html
https://www.emis.de/journals/SLC/wpapers/s73mannpil.html
http://www.ams.org/mathscinet-getitem?mr=MR{3383157}
https://doi.org/10.1090/dimacs/043/09
https://doi.org/10.1090/dimacs/043/09
https://doi.org/10.1090/dimacs/043/11
https://doi.org/10.1090/dimacs/043/11
https://doi.org/10.1016/j.ejc.2011.12.003
https://doi.org/10.1016/j.ejc.2011.12.003
http://www.ams.org/mathscinet-getitem?mr=MR{2864447}


A LOGARITHMIC BOUND FOR THE CHROMATIC NUMBER OF THE ASSOCIAHEDRON13

[20] Vincent Pilaud and Christian Stump. Brick polytopes of spherical
subword complexes and generalized associahedra. Adv. Math., 276:1–61, 2015.
MR: 3327085.

[21] Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13–42,
2014. MR: 3197650.

[22] Lionel Pournin. The asymptotic diameter of cyclohedra. Israel J. Math.,
219(2):609–635, 2017. MR: 3649601.

[23] Lionel Pournin. Eccentricities in the flip-graphs of convex polygons. J.
Graph Theory, 92(2):111–129, 2019. MR: 3994734.

[24] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston.
Rotation distance, triangulations, and hyperbolic geometry. J. Amer. Math.
Soc., 1(3):647–681, 1988. MR: 928904.

[25] N. J. A. Sloane. Coordination sequence for 4-dimensional cubic lattice.
The On-Line Encyclopedia of Integer Sequences, A008412, 2025.

[26] James Dillon Stasheff. Homotopy associativity of H-spaces. I, II. Trans.
Amer. Math. Soc., 108:293–312, 1963. MR: 0158400.
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