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Abstract. We study a higher-dimensional ‘balls-into-bins’ problem. An infinite

sequence of i.i.d. random vectors is revealed to us one vector at a time, and we

are required to partition these vectors into a fixed number of bins in such a way

as to keep the sums of the vectors in the different bins close together; how close

can we keep these sums almost surely? This question, our primary focus in this

paper, is closely related to the classical problem of partitioning a sequence of

vectors into balanced subsequences, in addition to having applications to some

problems in computer science.

1. Introduction

In this note, we consider the following partitioning problem. Let V(µ) = (Vn)n≥1
be a sequence of independent random vectors, all distributed according to some

common probability distribution µ on the d-dimensional Euclidean unit ball Bd ⊂
Rd. The elements of this i.i.d. sequence V(µ) are revealed to us in order, one vector

at a time. Each time a new vector is revealed to us, we are required to assign this

vector to one of a fixed number of bins B1,B2, . . . ,Bk before seeing the next vector

in the sequence. By adopting a suitable strategy to assign vectors to bins, how

‘close together’ can we keep the sums of the vectors in the different bins?

A more precise formulation of this question is as follows. For each 1 ≤ i ≤ k, let

B0
i = 0, and for a positive integer n ∈ N, let Bn

i denote the sum of the vectors in

the bin Bi at time n; in other words,

Bn
i =

n∑
j=1

Vj1{Vj∈Bi}.

A partitioning strategy is a (possibly randomised) map from (Rd)k+1 to the set

of bins {B1,B2, . . . ,Bk} which, given the vectors Bn
1 , B

n
2 , . . . , B

n
k and Vn+1, tells

us which bin Vn+1 should be assigned to; in the language of computer science, a
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partitioning strategy is an online algorithm for assigning vectors to bins. We shall

mainly be interested in partitioning strategies that minimise, for (large) T ≥ 0, the

quantity

D(T ) = max
1≤n≤T

max
1≤i,j≤k

∥∥Bn
i −Bn

j

∥∥,
the largest observed Euclidean distance between a pair of bins up to time T . In

this paper, we shall mostly be concerned with the asymptotic behaviour of D(T ) as

T →∞ while the dimension d ≥ 1, the number of bins k ≥ 2 and the distribution

µ remain fixed, so it is perhaps worth emphasising that we choose to work with

the Euclidean norm and to track the largest observed distance between any pair of

bins purely for concreteness; indeed, all of our results hold as stated, albeit with

different implied constants, for any choice of norm, and for any well-defined notion

that tracks how close together the various bins are, such as the largest distance

between any bin and the average of the bins, for example.

The fact that serves as the starting point for the work here is the classical result

(see [2], for instance) that by assigning vectors to bins uniformly at random, one

can always ensure that D(T ) = O(
√
T log T ); we shall attempt to quantify by

how much one can hope to improve on this. We discuss two other motivations for

studying the problem at hand below.

First, the related problem of partitioning a deterministic sequence of vectors

from the d-dimensional unit ball into a fixed number of ‘balanced subsequences’ has

a rich history and may be traced back to an old question due to Riemann and Lévy

that was subsequently answered by Steinitz [14]; various forms of this problem

have since been investigated and we refer the interested reader to the survey of

Bárány [6]. We mention one result in this area that is relevant to the problem at

hand. Let V = (Vn)n≥1 be any sequence of vectors lying in the d-dimensional unit

ball Bd ⊂ Rd, and consider the problem of assigning each element of this sequence

of vectors to one of a fixed number of bins B1,B2, . . . ,Bk as before, except using

a prescient partitioning strategy : by a prescient partitioning strategy, we mean a

strategy that is allowed to see the entire sequence V ahead of time. Improving on

an earlier result of Doerr and Srivastav [11], Bárány and Doerr [8] proved that there

exists a prescient partitioning strategy that ensures that D(T ) ≤ Cd uniformly in

T for any d, k ∈ N with k ≥ 2 and any sequence V as above, where C ≈ 4.001 is a

universal constant (though it should be noted that while these prescient strategies

do require ‘knowledge of the future’, they only need to look Θ(d) vectors ahead).
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In the light of this fact, it is natural to ask what changes when we are required to

partition V without any knowledge of the future.

Next, the question we study here arises naturally in the context of load-balancing,

resource allocation and scheduling problems in large scale computation. In these

settings, there is a finite set of servers and a sequence of incoming jobs. Jobs must

be allocated to servers as and when they arrive, and each job consumes certain

quantities of the different resources (memory or processing power, for example)

available on the server it is assigned to. Ideally, one would like to allocate the jobs

in a ‘balanced’ fashion where the total load on each server is roughly the same; see

the survey of Azar [3] for a short introduction to this area. Partitioning strategies

that perform well in the ‘worst-case’ can often be suboptimal in practice since the

empirical distribution of the incoming jobs is typically random (and not adversarial).

Therefore, various probabilistic models for these problems have been studied over

the last twenty years and a number of results have been proved in different settings.

These results, for the most part, deal with the one-dimensional case of the problem

we study and address various questions about distributing (possibly weighted)

balls into bins; for a small sample of the existing literature, see [4, 1, 15, 13].

The higher-dimensional problem we study here is not only inherently interesting,

but also exhibits genuinely different behaviour compared to the one-dimensional

problem, as we shall shortly see. Finally, let us make two remarks with practical

applications in mind: first, in practice, we lose no generality by assuming that

the ‘job-vectors’ come from the unit ball as our results remain valid after any

suitable (finite) rescaling; second, fine tuning our partitioning strategies for specific

distributions can make the strategies fragile, so we focus on results that either hold

for all probability distributions on the unit ball, or are robust for a wide class of

‘nice’ distributions.

2. Our results

A few remarks about notation are in order before we state our results. In what

follows, we write [n] for the set {1, 2, . . . , n}. We use 〈·, ·〉 to denote the standard

inner product in Rd and ‖·‖ to denote the associated Euclidean norm. Also, we

write λd for the d-dimensional Lebesgue measure. We shall make use of standard

asymptotic notation; in what follows, the variable tending to infinity will always be

T unless we explicitly specify otherwise. Constants suppressed by the asymptotic

notation are allowed to depend on the fixed parameters (d, k and µ) but not on T .
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Finally, we use the term with high probability to mean with probability tending to

1 as T →∞.

Our first result, a strategy-agnostic lower bound on D(T ), will serve as a useful

benchmark.

Proposition 2.1. Fix d, k ≥ 2, and let µ be the uniform distribution on Bd ⊂ Rd.

Regardless of the partitioning strategy used to partition V(µ) into k bins, almost

surely,

lim inf
T→∞

(
D(T )(log log T )1/2

(log T )1/2

)
= Ω(1).

The above proposition immediately highlights the difference between the one-

dimensional partitioning problem and the same problem in higher dimensions.

Indeed, if we have a sequence of i.i.d. vectors distributed according to some

common distribution µ on B1 = [−1, 1], then the trivial partitioning strategy that

assigns a vector V to the bin with the largest sum if V < 0 and to the bin with

the smallest sum if V > 0 shows that in one dimension, we may uniformly ensure

that D(T ) ≤ 1 for any number of bins k and any distribution µ.

In an attempt to match the lower bound in Proposition 2.1, we consider two

different partitioning strategies below. Note that for any d, k ∈ N and any distri-

bution µ on Bd, we may, as discussed earlier, toss each element of V(µ) into one

of the k bins uniformly at random and thereby ensure with high probability that

D(T ) = O(
√
T log T ). To improve on this trivial bound, we shall have to work a

bit harder.

The first partitioning strategy we propose, which we call the inner product rule,

is as follows: simply assign Vn+1 to the bin Bi for which 〈Vn+1, B
n
i 〉 is minimal,

breaking ties arbitrarily. Intuitively, this should keep the bins close together since

we always add a vector to the bin it is ‘most opposite’ to. We shall show that

the inner product rule is a near-optimal partitioning strategy for any reasonably

well-behaved probability distribution. Recall that a measure µ on Rd is Hölder

continuous (with respect to the Lebesgue measure) if there exist constants K,α > 0

such that µ(S) ≤ Kλd(S)α for any measurable set S ⊂ Rd; the following bounds

for the inner product rule are essentially tight.

Theorem 2.2. Fix d, k ∈ N with k ≥ 2, let µ be a probability distribution on

Bd ⊂ Rd, and suppose that we partition V(µ) into k bins using the inner product
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rule. Then almost surely,

lim sup
T→∞

(
D(T )

(log T )1/2

)
= O(1); (1)

if µ is additionally Hölder continuous, then almost surely,

lim sup
T→∞

(
D(T )(log log T )1/2

(log T )1/2

)
= O(1). (2)

In the light of Proposition 2.1, it is immediately clear that (2) is essentially best-

possible. The discrepancy between the bound (2) for well-behaved distributions and

the bound (1) for arbitrary distributions in Theorem 2.2 is not just an artefact of

our proof: somewhat surprisingly, the next proposition demonstrates the existence

of (slightly pathological) distributions which show that (1) is also nearly tight.

Proposition 2.3. For every increasing function ω : R>0 → R>0 that grows without

bound, there exists a probability distribution µω on B2 ⊂ R2 for which the following

holds. If we partition V(µω) into two bins using the inner product rule, then almost

surely,

lim sup
T→∞

(
D(T )ω(T )

(log T )1/2

)
≥ 1.

The other strategy we consider is motivated by more practical considerations: in

applications, where the number of bins k is often large, it is usually too expensive to

compute k inner products to make each decision. With this in mind, we investigate

the following strategy, a higher dimensional analogue of the ‘two random choices’

strategy studied by Azar, Broder, Karlin and Upfal [5], which we call the best-

of-two rule. Unlike the inner product rule, the best-of-two rule is a randomised

strategy: given Vn+1, we choose two bins Bi and Bj randomly from the set of

all bins (without replacement) and assign Vn+1 to Bi if 〈Vn+1, B
n
i 〉 ≤ 〈Vn+1, B

n
j 〉

and to Bj otherwise, breaking ties arbitrarily. This strategy achieves a reduction

in computational complexity, but this reduction comes at a price: the following

estimate for the best-of-two rule is essentially tight.

Theorem 2.4. Fix d, k ∈ N with k ≥ 2, and let µ be any probability distribution on

Bd ⊂ Rd. If we partition V(µ) into k bins using the best-of-two rule, then almost

surely,

lim sup
T→∞

(
D(T )

log T

)
= O(1).
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Note that the best-of-two rule is identical to the inner product rule when k = 2.

That Theorem 2.4 is essentially best-possible when k ≥ 3 is evidenced by the simple

observation that if µ is the uniform distribution on B1 = [−1, 1], then with high

probability, there exists an interval of length Ω(log T ) in the first T steps where we

repeatedly choose the same pair of bins and only see numbers exceeding 1/2. To

prove Theorem 2.4, we shall show that the best-of-two rule enforces ‘self-correction’.

Similar methods based on self-correction have recently been used to answer some

long-standing questions about random graph processes; see [9, 12, 10], for example.

This paper is organised as follows. We give the proof of Proposition 2.1 in

Section 3. Section 4 is devoted to analysing the inner product rule. We then

address the best-of-two rule in Section 5. We finally conclude this note with a

discussion of some open problems in Section 6. For the sake of clarity of presentation,

we systematically omit floor and ceiling signs whenever they are not crucial.

3. Lower bounds

This section is devoted to the proof of Proposition 2.1, our strategy-agnostic

lower bound. For completeness, we first record the following fact about the size of

‘slices’ of the d-dimensional unit ball.

Proposition 3.1. For any d ∈ N, there exist constants C, c > 0 such that for any

e ∈ Sd−1 and any 0 ≤ b ≤ 1,

cb ≤ λd({x : x ∈ Bd and |〈x, e〉| ≤ b}) ≤ Cb. �

We now prove Proposition 2.1.

Proof of Proposition 2.1. First, suppose that k = 2 and consider any partitioning

strategy that partitions V(µ) into two bins. Let δn = Bn
1 − Bn

2 and write en for

the unit vector in the direction of δn. Note that we have

‖δn+1‖2 = ‖δn‖2 + ‖V ‖2 + 2‖δn‖〈V, en〉,

where V = Vn+1 if the strategy assigns Vn+1 to B1 and V = −Vn+1 otherwise.

Consider the event En+1 = {1/2 ≤ ‖δn+1‖2 − ‖δn‖2 ≤ 5/4}. We claim that

regardless of the partitioning strategy used, we have

P(En+1 | δn) ≥ cd
‖δn‖

, (3)
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where cd > 0 is a constant depending on the dimension d alone. Indeed, regardless of

which bin we assign Vn+1 to, if 〈Vn+1, en〉 ∈ [−(8‖δn‖)−1, (8‖δn‖)−1] and ‖Vn+1‖ ≥
3/4, then En+1 holds. Since µ is the uniform distribution and V(µ) is an i.i.d.

sequence, the claimed bound (3) follows easily from Proposition 3.1.

Now, break the set [T ] into r = T/m disjoint blocks T1,T2, . . . ,Tr each of length

m for some m = m(T ) that grows slowly with T (and will be specified later). We

say that a block T is good if ‖δn‖2 ≥ m/2 for some n ∈ T. Now, for i ∈ [r], consider

the block Ti = {t+ 1, t+ 2, . . . , t+m} with t = (i− 1)m and note, writing Fi for

the event that ‖δt‖2 < m/2, that

P(Ti is good |Fi) ≥ P(Et+1 ∩ Et+2 ∩ · · · ∩ Et+m |Fi).

Using (3) and the fact that V(µ) is an i.i.d. sequence, we see that

P(Et+j+1 |Fi ∩ Et+1 ∩ Et+2 ∩ · · · ∩ Et+j) ≥
cd√

m/2 + 5j/4
≥ cd

2
√
m
.

It follows that

P(Ti is good |Fi) ≥
(

cd
2
√
m

)m
.

Using the Markov property, we now deduce that

P
(
D(T ) < (m/2)1/2

)
≤

r∏
i=1

(1− P(Ti is good |Fi)) ≤ exp

(
− T
m

(
cd

2
√
m

)m)
.

Applying the above bound with m = log T/ log log T , we conclude that

P

(
D(T ) <

(
log T

2 log log T

)1/2
)
≤ T−2

for all sufficiently large T ; the proposition, in the case where k = 2, now follows

from the Borel–Cantelli lemma.

In contrast to the situation with the arguments for upper bounds (that follow

in subsequent sections), we may easily obtain a lower bound in the case where

the number of bins exceeds two from the argument above that deals with the

case of exactly two bins. Indeed when k > 2, we proceed by ‘merging’ the bins

B1,B2, . . . ,Bk′ and the bins Bk′+1,Bk′+2, . . . ,Bk into two auxiliary bins A1 and

A2 respectively, where k′ = bk/2c; in other words, we set An1 =
∑k′

i=1B
n
i and

An2 =
∑k

i=1B
n
i −An1 for each n ∈ N. If k is even, then we finish the proof as follows.
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By the argument above, it is clear that regardless of the partitioning strategy used,

there exists an n ∈ [T ] for which

‖An1 − An2‖ ≥
(

log T

2 log log T

)1/2

with probability at least 1−T−2; the result now follows from the triangle inequality.

If k is odd on the other hand, then the result follows from an analogous argument

where we track ‖(1 + 1/k′)An1 − An2‖ instead of ‖An1 − An2‖. �

4. The inner product rule

We shall analyse the inner product rule in this section. We need the following

standard Chernoff-type bound; see [2] for a proof.

Proposition 4.1. If X1, X2, . . . , Xn are independent random variables taking val-

ues in {0, 1}, then writing X =
∑n

i=1Xi, we have

P(X ≤ E[X]/2) ≤ exp(−E[X]/8). �

We start by proving Theorem 2.2.

Proof of Theorem 2.2. Given m ≥ 0, we wish to bound P(D(T ) ≥ m) from above.

Somewhat surprisingly, this is harder to do in the case where k ≥ 3 as opposed

to when k = 2. Indeed, to control D(T ), we need to control the distance between

each pair of bins; however, if we attempt to control these distances individually, we

quickly run into difficulties because we cannot say much about how the distance

between a particular pair of bins changes at each time (unless k = 2). The trick is

to instead track the observable

Sn =
∑

1≤i<j≤k

‖δn(i, j)‖2,

where δn(i, j) = Bn
i −Bn

j for all i, j ∈ [k].

First, writing en(i, j) for the unit vector in the direction of δn(i, j), note that

‖δn+1(i, j)‖2 = ‖δn(i, j)‖2 + ‖V ‖2 + 2‖δn(i, j)‖〈V, en(i, j)〉,

where

(1) V = Vn+1 if Vn+1 is assigned to Bi,

(2) V = −Vn+1 if Vn+1 is assigned to Bj, and

(3) V = 0 otherwise.

8



In particular, under the inner product rule, we have

‖δn+1(i, j)‖2 = ‖δn(i, j)‖2 + ‖Vn+1‖2 − 2‖δn(i, j)‖|〈Vn+1, en(i, j)〉|

if Vn+1 is assigned to either Bi or Bj , and ‖δn+1(i, j)‖ = ‖δn(i, j)‖ otherwise. Hence,

if Vn+1 is assigned to some bin Bh, then

Sn+1 − Sn ≤ (k − 1)− 2
∑

i∈[k]:i 6=h

‖δn(h, i)‖|〈Vn+1, en(h, i)〉|. (4)

Next, writing ` = km2/2, note that

P(D(T ) ≥ m) ≤ P
((

max
1≤n≤T

Sn

)
≥ `

)
;

indeed, as a consequence of the triangle inequality, we have

2‖δn(h, i)‖2 + 2‖δn(h, j)‖2 ≥ ‖δn(i, j)‖2

for any h, i, j ∈ [k]; summing this estimate over all h ∈ [k], we deduce that

2Sn
k
≥ max

1≤i,j≤k
‖δn(i, j)‖2.

Consequently, writing En(`) = {S1 < `} ∩ {S2 < `} ∩ · · · ∩ {Sn−1 < `} ∩ {Sn ≥ `},
we have

P(D(T ) ≥ m) ≤
T∑
n=1

P(En(`)).

Next, set r = `/2k. Note that for n ≤ r, we have Sn ≤ n(k − 1) < `, so it follows

that P(En(`)) = 0. For n ≥ r + 1, we define

Fn(`) =

{
`

2
≤ Sn−r < `

}
∩
{
`

2
≤ Sn−r+1 < `

}
∩· · ·∩

{
`

2
≤ Sn−1 < `

}
∩{Sn ≥ `}.

Under the inner product rule, we know (see (4)) that Sn+1 − Sn ≤ k − 1 for all

n ∈ N, so it is clear if Sn ≥ `, then Sn−t ≥ `/2 for each t ∈ {0, 1, . . . , r}. Therefore,

it is clear that En(`) ⊂ Fn(`) for each n ≥ r + 1, so

P(D(T ) ≥ m) ≤
T∑

n=r+1

P(Fn(`)). (5)

We shall estimate P(Fn(`)) by studying how our observable can change in a

single step using (4), which in turn will allow us to bound P(D(T ) ≥ m) using (5).

We need slightly different arguments depending on whether or not the underlying

distribution µ is well-behaved. The key difference between the two cases is that

the probability that the change in our observable in a single step is ‘bad’ decays
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with ` in the case where µ is well-behaved (see Claim 4.4), but is merely bounded

away from 1 in general (see Claim 4.3).

Case 1: Arbitrary distributions. We first establish (1) for an arbitrary

probability distribution µ on Bd. We proceed by induction over the dimension.

The result is trivial in the case where d = 1 as the inner product rule coincides

with the trivial one-dimensional strategy described in Section 2. Now, suppose that

d > 1 and that we have established the required bound in dimension d− 1.

The starting point of our argument is the following observation.

Lemma 4.2. For any probability distribution µ on Bd, either there exists a

hyperplane H ⊂ Rd passing through the origin such that µ(H ∩ Bd) = 1, or there

exist disjoint measurable sets A1,A2, . . . ,Ad ⊂ Bd and constants c, p > 0 such that

(1) for every unit vector e ∈ Sd−1, there exists i ∈ [d] such that |〈x, e〉| ≥ c for

all x ∈ Ai, and

(2) µ(Ai) ≥ p for each 1 ≤ i ≤ d.

Proof. We say that a point x ∈ Bd is µ-heavy if µ(U) > 0 for every open neigh-

bourhood U of x. If the set of µ-heavy points is contained in some hyperplane

H passing through the origin, then it follows by compactness that for any ε > 0,

µ(Hε) = 1, where Hε is the set of points at distance less than ε from H; as µ is a

probability measure, it follows that µ(H) = 1. Therefore, we may suppose that

there exist µ-heavy points x1, x2, . . . , xd such that no hyperplane passing through

the origin contains all of these points; in other words, we may assume that for every

e ∈ Sd−1, there exists an i ∈ [d] such that |〈xi, e〉| > 0. This implies the conclusion

of the lemma, once again by compactness. �

We now apply Lemma 4.2 to µ: if µ(H∩Bd) = 1 for some hyperplane H passing

through the origin, then we are done by induction; we may therefore assume that

there exist A1,A2, . . . ,Ad and c, p > 0 as promised by Claim 4.2.

To bound P(Fn(`)) from above, we first estimate, for each t ≥ 0, the probability

of the event

It(`) =
{
St+1 ≤ St − c

√
`/k
}
.

Claim 4.3. For each t ≥ 0 and all sufficiently large `, we have

P(It(`) | {St ≥ `/2}) ≥ p.
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Proof. Relabelling the bins if necessary, suppose that the largest distance between a

pair of bins at time t is the distance between the bins B1 and B2. If St ≥ `/2, then

it must be the case that ‖δt(1, 2)‖2 ≥ St/k
2 ≥ `/2k2. We know from Lemma 4.2

that with probability at least p, we have

|〈Vt+1, δt(1, 2)〉| ≥ |〈Vt+1, et(1, 2)〉|
√
`√

2k
≥ c

k

√
`

2
.

Consider the bins B± for which the inner products 〈Vt+1, B
t
±〉 are maximal and

minimal. By definition, Vt+1 gets assigned to B− under the inner product rule.

Now, since 〈
Vt+1, B

t
+ −Bt

−
〉
≥ |〈Vt+1, δt(1, 2)〉| ≥ c

k

√
`

2
,

it follows from (4) that if St ≥ `/2, then with probability at least p, we have

St+1 ≤ St + (k − 1)− 2c

k

√
`

2
≤ St −

c
√
`

k
,

where last inequality holds provide ` is sufficiently large; this proves the claim. �

Consider any interval of r steps in which our observable lies in the range [`/2, `]

and note that since our observable increases by at most k − 1 at each step, there

are at most rk2/c
√
` steps in this interval where our observable decreases by at

least c
√
`/k. Consequently, if Fn(`) holds, then there are at most rk2/c

√
` ≤ rp/2

different values of t ∈ {n − r, n − r + 1, . . . , n − 1} for which the event It(`)

holds, provided ` is sufficiently large. Using the Markov property, we deduce from

Claim 4.3 and Proposition 4.1 that for all n ∈ N, we have

P(Fn(`)) ≤ exp(−rp/8).

We know that P(D(T ) ≥ m) ≤
∑T

n=1 P(Fn(`)), so it is now clear that for all

m ≥ 0, we have

P(D(T ) ≥ m) ≤ T exp(−rp/8), (6)

where ` = km2/2, r = `/2k and p > 0 is a constant depending on d and µ alone. It

follows from (6) that D(T ) = O((log T )1/2) with probability at least 1− T−2; the

required bound (1) now follows from the Borel–Cantelli lemma.

Case 2: Hölder continuous distributions. We now show how we may

improve on (1) for well-behaved distributions. It turns out that if µ is Hölder

continuous, then it is possible to say a lot more about how our observable changes

in a single step than in the general case.
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The starting point in this case is to bound, for each t ≥ 0, the probability of the

event

Jt(`) = {St+1 − St ≥ −k}.

Claim 4.4. If µ is Hölder continuous, then for each t ≥ 0,

P(Jt(`) | {St ≥ `/2}) ≤ C

`c
,

where C, c > 0 are constants depending on d, k and µ alone.

Proof. If Vt+1 is assigned to some bin Bh, then, by (4), we have

St+1 − St ≤ (k − 1)− 2
∑

i∈[k]:i 6=h

‖δt(h, i)‖|〈Vt+1, et(h, i)〉|.

From the triangle inequality,∑
i∈[k]:i 6=h

‖δt(h, i)‖ ≥ max
1≤i,j≤k

‖δt(i, j)‖ ≥
√
St
k
.

Hence, if it so happens that

|〈Vt+1, et(i, j)〉| ≥
k2√
St

for all 1 ≤ i, j ≤ k, then

St+1 − St ≤ (k − 1)− 2

(√
St
k

)(
k2√
St

)
< −k.

Therefore, it follows that

P(Jt(`) | {St ≥ `/2}) ≤
∑

1≤i,j≤k

P

(
|〈Vt+1, et(i, j)〉| ≤

k2√
`/2

)
.

As µ is a Hölder continuous probability distribution and V(µ) is an i.i.d. sequence,

the claim now follows from Proposition 3.1. �

As before, since Sn+1 − Sn ≤ k − 1 for all n ∈ N, it is clear that in any interval

of r steps in which our observable lies in the range [`/2, `], there must exist at

least r/2 steps in this interval where our observable decreases by at most k − 1.

Consequently, if Fn(`) holds, then there must exist at least r/2 different values of

t ∈ {n− r, n− r + 1, . . . , n− 1} for which the event Jt(`) holds. Using the Markov

property, we deduce from Claim 4.4 that if µ is Hölder continuous, then we have

P(Fn(`)) ≤
(
r

r/2

)(
C

`c

)r/2
12



for all n ∈ N. It follows that for all m ≥ 0, we have

P(D(T ) ≥ m) ≤ T

(
r

r/2

)(
C

`c

)r/2
, (7)

where ` = km2/2, r = `/2k and C, c > 0 are constants depending on d, k and µ

alone; a simple calculation using (7) shows that D(T ) = O((log T/ log log T )1/2)

with probability at least 1 − T−2; the required bound (2) in the case where µ is

Hölder continuous now follows from the Borel–Cantelli lemma. �

Note that under the inner product rule, the vector Vn+1 is only ever assigned

to a bin Bi if Bn
i lies on the convex hull of the set {Bn

1 , B
n
2 , . . . , B

n
k }. Much is

known about the convex hulls of random subsets of Rd (see [7], for example), and

it seems possible to us that the Hölder condition in Theorem 2.2 could be relaxed

by carefully tracking the convex hull of the bins. However, we cannot altogether

do away with some sort of ‘well-behavedness’ condition: the inner product rule

does not match the lower bound in Proposition 2.1 in general, as evidenced by

Proposition 2.3 which we prove below.

Proof of Proposition 2.3. Given ω : R>0 → R>0 that is both increasing and un-

bounded, we first fix a fast-growing sequence of ‘length-scales’. More precisely, we

fix a sequence L = (Ls)s≥1 of positive reals such that for all s ∈ N, we have Ls ≥ 2

and

ω
(
exp
(
s2L2

s

)
− 1
)
≥ 10s.

Writing Ts = bexp(s2L2
s)c, this construction ensures that we have

Ls ≥
10(log Ts)

1/2

ω(Ts)

for each s ∈ N. Having constructed L, we define an atomic probability distribution

µL on B2 with weight (6/π2)s−2 on the vector (1/Ls,−1/2) for each s ∈ N.

We now define µω as follows. A vector drawn from µω is the vector (0, 1/2) with

probability 1/3, uniformly distributed on B2 with probability 1/3, and distributed

according to µL with probability 1/3.

We shall show, using an argument analogous to the one used to prove Propo-

sition 2.1, that if we partition V(µω) into two bins B1 and B2 using the inner

product rule, then

P
(
D(Ts) <

Ls
10

)
≤ s−2 (8)

13



for all sufficiently large s ∈ N. It is then clear that almost surely,

lim sup
T→∞

(
D(T )ω(T )

(log T )1/2

)
≥ 1.

We now prove that (8) holds for all sufficiently large s ∈ N. To this end, fix

s ∈ N and write L = Ls and T = Ts = bexp(s2L2)c. Also, let δn = Bn
1 −Bn

2 for all

n ∈ N.

As before, we break the set [T ] into r = T/L2 disjoint blocks T1,T2, . . . ,Tr each

of length L2; in other words, for i ∈ [r], we have Ti = {t + 1, t + 2, . . . , t + L2},
where t = (i− 1)L2. We say that a block T is good if ‖δn‖ ≥ L/10 for some n ∈ T.

For i ∈ [r], writing t = (i − 1)L2, we denote by Fi the event that ‖δt‖ < L. We

deduce (8) from the following claim.

Claim 4.5. For each i ∈ [r], we have

P(Ti is good |Fi) ≥ s−L
2

.

Proof. We bound the probability of a block being good by showing that in the

span of a block, there is a reasonably good chance of walking, using an alternating

sequence of the vectors (0, 1/2) and (1/L,−1/2), a distance of about L/10 to the

right starting from somewhere close to the origin. We make this precise below.

Writing t = (i − 1)L2, first consider the event E1 that there exists a time

P ∈ {t+ 1, t+ 2, . . . , t+ 10L} at which we have ‖δP‖ ≤ 10. We claim that

P(E1 |Fi) ≥ (100)−10L;

indeed, this follows from the fact that for all n ∈ N, we crudely have

P({‖δn+1‖ ≤ ‖δn‖ − 1/10|} | {‖δn‖ ≥ 10}) ≥ 1/100

because Vn+1 is sampled from the uniform distribution on B2 with probability 1/3.

Next, let

S = {(x, y) : 0 ≤ x ≤ 1 and− 1/4 ≤ y ≤ 0} ⊂ R2

and consider the event E2 that there exists a time Q ∈ {P, P + 1, . . . , P + 105} at

which we have δQ ∈ S. It is not hard to check that again, we crudely have

P(E2 |E1 ∩ Fi) ≥ 100−100.

To see this, note that if P exists, then it is possible to walk, while ‘respecting the

inner product rule’ throughout, from δP to the set S using vectors of norm 1/2 in

14



at most 100 steps; the claimed bound then follows by ‘enlarging’ such a walk and

using the uniform component of µω.

Finally, consider the event E3 that the vectors VQ+1, VQ+2, . . . , VQ+L2/5 are alter-

nately the vectors (0, 1/2) and (1/L,−1/2). It is easy to see from the definition of

µω that

P(E3 |E2 ∩ E1 ∩ Fi) =

(
2

3π2s2

)L2

10

.

Since δQ ∈ S under E2 ∩ E1 ∩ Fi, if E3 also holds, then a simple calculation

shows that we have δt+1 = δt + Vt+1 for each t ∈ {Q,Q + 1, . . . , Q + L2/5 − 1}
under the inner product rule; consequently, under E3 ∩ E2 ∩ E1 ∩ Fi, we have

δQ+L2/5 = δQ + (L/10, 0). It is now clear, provided s ∈ N is sufficiently large, that

we have

P(Ti is good |Fi) ≥ P(E3 |E2 ∩ E1 ∩ Fi)P(E2 |E1 ∩ Fi)P(E1 |Fi) ≥ s−L
2

with room to spare. �

Using the Markov property, we now deduce from Claim 4.5 that

P(D(T ) < L/10) ≤
r∏
i=1

(1− P(Ti is good |Fi)) ≤ exp

(
−Ts

−L2

L2

)
≤ s−2,

where the last inequality holds provided s is sufficiently large as T = bexp(s2L2)c.
It is now clear that (8) holds for all sufficiently large s ∈ N; the proposition

follows. �

5. The best-of-two rule

In this section, we prove Theorem 2.4. Before turning to the proof, let us recall

the following classical concentration inequality due to Azuma and Hoeffding.

Proposition 5.1. Let (Xt)t≥0 be a supermartingale such that |Xt −Xt−1| ≤ C for

all t ≥ 1. For all positive integers N and all m ≥ 0, we have

P(XN −X0 ≥ m) ≤ exp

(
−m2

2NC2

)
. �

Armed with the Azuma–Hoeffding inequality, we are ready to prove Theorem 2.4.
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Proof of Theorem 2.4. To prove the result, we shall first show that the distance

between any pair of bins is ‘self-correcting’ under the best-of-two rule, and then

use martingale techniques to track these distances.

We proceed by induction over the dimension. Consider the function fµ : Sd−1 →
[0, 1] defined by

fµ(e) =

∫
Bd

|〈x, e〉| dµ

and define

Cµ = inf
e∈Sd−1

f(e).

We claim that it suffices to prove the result in the case where Cµ > 0. Indeed, if

Cµ = 0, then since f is continuous and Sd−1 is compact, we have fµ(e) = 0 for

some e ∈ Sd−1. In other words, if Cµ = 0, then there exists a hyperplane H ⊂ Rd

passing through the origin such that µ(H∩Bd) = 1. When d = 1, this is equivalent

to saying that µ({0}) = 1, in which case the result is trivial. When d > 1, by

identifying H∩Bd with Bd−1, it is clear that µ may be identified with a probability

distribution supported on the (d− 1)-dimensional unit ball, in which case we may

proceed inductively.

Now, assume that Cµ > 0. We shall show that with probability at least 1− T−2,
we have ‖Bn

1 −Bn
2 ‖ = O(log T ) for all n ∈ [T ]; the result then follows from a union

bound over all pairs of bins and the Borel–Cantelli lemma.

Let δn = Bn
1 − Bn

2 and let An = ‖δn‖2. Our first task will be to estimate the

conditional expectation E[An+1 − An |An]; we do this as follows.

Recall that given Vn+1, we choose two bins Bi and Bj uniformly at random

from the set of all bins (without replacement) and assign Vn+1 to Bi, say, if

〈Vn+1, B
n
i 〉 ≤ 〈Vn+1, B

n
j 〉. Let E+ denote the event that the two bins chosen at

time n + 1 are precisely B1 and B2 and let E− denote the event that neither of

these two bins is chosen at time n+ 1. Also, for i ∈ {3, . . . , k}, let Ei denote the

event that two bins chosen at time n+ 1 are Bi and one of B1 or B2.

First, writing en for the unit vector in the direction of δn, we have

E[An+1 − An | δn, E+] = E
[
‖Vn+1‖2

]
− 2fµ(en)

√
An

from which it follows that

E[An+1 − An |An, E+] ≤ 1− 2Cµ
√
An. (9)
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Next, as the bins B1 and B2 are untouched at time n+ 1 under E−, we also have

E[An+1 − An |An, E−] = 0. Finally, we observe the following.

Claim 5.2. For each 3 ≤ i ≤ k, we have

E[An+1 − An |An, Ei] ≤ 1.

Proof. To simplify notation, let V = Vn+1, U1 = Bn
1 , U2 = Bn

2 and Ui = Bn
i . To

prove the claim, we decompose Ei into the events

(1) Ei(−,−) = Ei ∩ {〈V, Ui − U1〉 ≤ 0} ∩ {〈V, Ui − U2〉 ≤ 0},
(2) Ei(−,+) = Ei ∩ {〈V, Ui − U1〉 ≤ 0} ∩ {〈V, Ui − U2〉 > 0},
(3) Ei(+,−) = Ei ∩ {〈V, Ui − U1〉 > 0} ∩ {〈V, Ui − U2〉 ≤ 0}, and

(4) Ei(+,+) = Ei ∩ {〈V, Ui − U1〉 > 0} ∩ {〈V, Ui − U2〉 > 0}.

First, as the vector V is deterministically assigned to the bin Bi under Ei(−,−),

E[An+1 − An |An, Ei(−,−)] = 0.

Next, we claim that

E[An+1 − An |An, Ei(−,+)] ≤ 1

and that

E[An+1 − An |An, Ei(+,−)] ≤ 1.

Indeed, under Ei(−,+) for example, it is clear that the best-of-two rule always

assigns V to either Bi or B2 (but never to B1); since we also have 〈V, U1−U2〉 > 0

under Ei(−,+), the claim follows. Finally, under Ei(+,+), the best-of-two rule

never assigns V to Bi, and V is equally like to be assigned to either B1 or B2

because each of these bins is equally likely to be the other bin selected in addition

to Bi. Therefore,

E[An+1 − An | δn, Ei(+,+)] = E
[
‖V ‖2

]
+ (1/2)E

[
2
√
An〈V, en〉 | δn, Ei(+,+)

]
+ (1/2)E

[
2
√
An〈−V, en〉 | δn, Ei(+,+)

]
,

and consequently,

E[An+1 − An |An, Ei(+,+)] = E
[
‖V ‖2

]
≤ 1.

Putting these facts together, it follows that

E[An+1 − An |An, Ei] ≤ 1,

proving the claim. �
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It is now clear that E[An+1 − An |An, (E+)c] ≤ 1. As P(E+) ≥ 1/k2, we deduce

from (9) that

E[An+1 − An |An] ≤ 1− C
√
An, (10)

where C = 2Cµ/k
2 ≤ 1 is a positive constant depending on d, k and µ alone.

With the benefit of hindsight, let m = (100 log T/C)2 and denote by F the event

that An > 2m for some n ∈ [T ]. To bound P(F ) from above, we define a collection

of stopping times as follows. Let L0 = 0 and for each j ∈ N, let

(1) Uj = inf{n : n ≥ Lj−1 and An ≥ m}, and

(2) Lj = inf{n : n ≥ Uj and An < m}.

If F holds, then it is clear that there exists a j ∈ N such that An > 2m for some

n ∈ [Uj,Lj ∧T ]. Let Fj denote the event that there exists an n ∈ [Uj,Lj ] such that

An > 2m and note, by the union bound, that P(F ) ≤
∑T

j=1 P(Fj). Therefore, to

complete the proof, it suffices to show that P(Fj) = o(T−3) for each 1 ≤ j ≤ T .

For concreteness, we show that P(F1) = o(T−3); the same argument may be used

to bound P(Fj) for any j ≤ T . In what follows, all inequalities will hold provided T

(and hence m) is sufficiently large. Writing U = U1 and L = L1, we define another

stopping time

N = L ∧ inf{n : n ≥ U and An > 2m}.

Clearly, P(F1) = P(N < L). Now, set ` = C
√
m/2 and consider, for t ≥ 0, the

process

Xt = At+U + t`.

First, note that for each t ∈ [0,N − U),

Xt+1 −Xt = `+ At+1+U − At+U ,

so we consequently have

|Xt+1 −Xt| ≤ `+ 1 + 2
√

2m,

where the inequality above is immediate from the definition of N . Next, we also

have

E[Xt+1 −Xt |Xt] = `+ E[At+1+U − At+U |At+U ] ≤ `+ 1− C
√
m

for each t ∈ [0,N−U), where the last inequality follows from (10) and the definitions

of U and L. It is now clear that (Xt)t≥0 with t ∈ [0,N − U ] is a supermartingale
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with increments bounded by 4
√
m. Therefore, for any N ∈ [0,L − U ], by the

Azuma–Hoeffding inequality, we have

P(N = N + U) ≤ P(XN −X0 ≥ 2m+N`−X0)

≤ P(XN −X0 ≥ m/2 +N`)

≤ exp

(
−(m/2 +N`)2

16Nm

)
= o
(
T−4

)
,

where the last inequality holds uniformly in N . By applying the union bound

over the (at most T ) possible values of N , we obtain that P(F1) = o(T−3). This

completes the proof of Theorem 2.4. �

6. Conclusion

First, it would be nice to know under what conditions (2) holds in general. We

have proved this estimate for probability distributions satisfying a Hölder condition.

At the other end of the spectrum, the same bound also holds for probability

distributions supported on a finite number of atoms; in fact, it can be shown in this

case that under the inner product rule, we deterministically have D(T ) = O(1).

We know from Proposition 2.3 that the inner product rule does not match the

lower bound in Proposition 2.1 in general, however.

Next, it is worth mentioning that the construction in Proposition 2.3 was designed

specifically to be ‘bad’ for the inner product rule; in particular, this construction

does not improve on the strategy-agnostic lower bound in Proposition 2.1. It

is therefore an intriguing problem to decide the following: given a probability

distribution on the unit ball, does there exist a (distribution-specific) partitioning

strategy that matches the lower bound in Proposition 2.1 to within a constant

factor? Of course, one can also ask the following (perhaps more difficult) question:

is there a universal strategy that matches the lower bound in Proposition 2.1 for

every probability distribution on the unit ball?

Finally, it would also be good to improve the implicit constants in our results

and quantitatively understand the influence of the number of bins on the problems

at hand; indeed, it is natural to expect that the freedom to use more bins should

offer better control. A careful analysis of our proofs shows that for the uniform

distribution, the lower bound in Proposition 2.1 and the upper bound in Theo-

rem 2.2 differ by a multiplicative factor of k, roughly; bridging this gap remains an

interesting problem.
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