
Balancing connected colourings of graphs

Freddie Illingworth∗† Emil Powierski∗

Alex Scott∗† Youri Tamitegama∗

Abstract

We show that the edges of any graph G containing two edge-disjoint spanning trees can
be blue/red coloured so that the blue and red graphs are connected and the blue and red
degrees at each vertex differ by at most four. This improves a result of Hörsch. We discuss
variations of the question for digraphs, infinite graphs and a computational question, and
resolve two further questions of Hörsch in the negative.

1 Introduction

Finding edge-disjoint spanning trees in a graph has a rich history. The seminal result is the
independent characterisation by Tutte [11] and Nash-Williams [7] of the presence of k edge-
disjoint spanning trees in a finite graph. Much research has focussed on whether the packed
spanning trees can be chosen to satisfy extra properties (for example, see [1, 2, 3]). It is folklore
that the edges of any graph G can be coloured blue and red such that the blue degree and red
degree of each vertex differ by at most two. The intersection of these two problems asks how
well the colour-degrees can be balanced in a blue/red-edge colouring of a graph that contains a
double tree – the union of two edge-disjoint spanning trees. Kriesell [6] was the first to consider
balancing colour-degrees in a blue/red-edge colouring of a double tree. Building on his work,
Hörsch [5] gave the first constant bound when G is a double tree.

Theorem 1 (Hörsch [5]). Let G be a finite double tree. The edges of G may be coloured blue
and red such that the blue and red graphs are both spanning trees and the blue and red degrees
of each vertex differ by at most five.

Our main result is two-fold. Firstly we reduce the above bound to four.

Theorem 2. Let G be a finite double tree. The edges of G may be coloured blue and red such
that the blue and red graphs are both spanning trees and the blue and red degrees of each vertex
differ by at most four.

Moreover, we obtain the same bound in the more general case where G is any graph containing
a spanning double tree.

Theorem 3. Let G be a finite graph containing a spanning double tree. The edges of G may
be coloured blue and red such that the blue and red graphs both contain spanning trees and the
blue and red degrees of each vertex differ by at most four.

∗Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
†Research supported by EPSRC grant EP/V007327/1
Email: {illingworth,powierski,scott,tamitegama}@maths.ox.ac.uk

1

mailto:illingworth@maths.ox.ac.uk
mailto:powierski@maths.ox.ac.uk
mailto:scott@maths.ox.ac.uk
mailto:tamitegama@maths.ox.ac.uk


Hörsch asked whether Theorem 1 can be extended to infinite graphs. The Tutte-Nash-Williams
characterisation does not hold for infinite graphs: Oxley [8] gave countable locally finite graphs
satisfying the characterisation but not containing k edge-disjoint spanning trees. However,
Tutte proved that the characterisation is still valid for countable graphs if one asks for the
edge-disjoint subgraphs to be semiconnected : a subgraph H ⊂ G is semiconnected if it contains
an edge of every finite cut of G. We give an extension of this form of Theorem 3 to countably
infinite graphs.

Theorem 4. Let G be a countably infinite graph containing a spanning double tree. The edges
of G may be coloured blue and red such that the blue and red graphs are both semiconnected and
the blue and red degrees of each vertex differ by at most four (or are both infinite). Further, if
G is a double tree, the blue and red graphs may be chosen to be acyclic.

Hörsch asked whether digraphs can be balanced with the role of trees being played by arbores-
cences: rooted trees where all edges are directed away from the root.

Question 1. Is there a constant C such that the following holds for every digraph D that is the
union of two arc-disjoint arborescences? The edges of D can be coloured blue and red such that
the blue and red graphs are both arborescences and the blue and red out-degrees of each vertex
differ by at most C?

We provide an infinite family of counterexamples that need C ⩾ |V (D)|−2, answering Hörsch’s
question in the negative. We further show that the natural analogue where the role of trees is
played by strongly connected digraphs is also false.

Hörsch also asked an algorithmic question.

Question 2. Does there exist a polynomial time algorithm to decide if a given Eulerian double
tree has a perfectly balanced double tree decomposition?

We answer in the negative by reducing the NP-complete problem (cf. Péroche [9]) of finding
two edge-disjoint Hamiltonian cycles in a 4-regular graph to this decision problem.

The paper is organised as follows. In Section 2 we give the proof of Theorem 2 and the main
tools used to prove Theorem 3; in Section 3 we conclude the proof of Theorem 3; in Section 4
we discuss the infinite case and prove Theorem 4; in Section 5 we describe our constructions
for digraphs; in Section 6 we answer Question 2. Finally, in Section 7, we conclude with some
natural questions of our own.

1.1 Notation

We use standard notation. Throughout we consider all graphs to be multigraphs without self-
loops. For a graph G = (V,E) with vertices V and edges E we write e(G) for |E| and |G| for
|V |. Given a partition A ⊔B = V of the vertices of G, we write E(A,B) for the set of edges in
E with endpoints in both A and B, and e(A,B) = |E(A,B)|. If A ⊂ V we write G[A] to denote
the subgraph induced by A. When X is a set of vertices (respectively edges) and x is a vertex
(respectively edge), we use the shorthand X + x and X − x to mean X ∪ {x} and X \ {x}. For
a graph G, a vertex v and an edge e we write G − v for the graph obtained by deleting v and
all edges incident with it and G − e for the graph obtained by deleting e. If e /∈ E(G), G + e
denotes the graph obtained by adding e to E(G).

We use ⊔ to denote a disjoint union. Throughout we write G = S1 ⊔ · · · ⊔ Sk to mean that

2



S1, . . . , Sk are spanning subgraphs of G and E(G) = E(S1) ⊔ · · · ⊔ E(Sk). We sometimes refer
to this as a decomposition of G. If S1, . . . , Sk are trees, we refer to it as a k-tree decomposition;
if further k = 2, a double tree decomposition.

Definition. Let G be a graph, c an integer, and suppose G = S1 ⊔ · · · ⊔Sk. A vertex v ∈ V (G)
is said to be c-balanced in S1 ⊔ · · · ⊔ Sk if for all i, j,

|dSi(v)− dSj (v)| ⩽ c.

We say that the decomposition G = S1 ⊔ · · · ⊔ Sk is c-balanced if every v ∈ V (G) is c-balanced
in it.

When the constant c is clear, we write balanced for brevity. Note, for example, that Theorem 2
can be phrased as ‘every finite double tree admits a 4-balanced double tree decomposition’.

2 Balancing double trees

Fix an integer c ⩾ 2 and suppose there are double trees with no c-balanced double tree decom-
position. Throughout this section, we take G to be such a double tree with |G| minimal.

Call a vertex v ∈ V (G) small if dG(v) ⩽ c + 2 and big otherwise. A simple observation
that will be used throughout the section is that small vertices are balanced in any double tree
decomposition. We call a vertex v ∈ V (G) an ℓ-vertex if dG(v) = ℓ.

In Sections 2.1-2.4 we show that a minimal counterexample G satisfies a collection of structural
properties. Finally, in Section 2.5 we make a discharging argument with c = 4 to conclude that
G has too many edges for a double tree.

Our arguments to show that G cannot contain certain substructures have the following template.

1. Locally modify G to create a double tree H with |H| < |G|.
2. Use minimality to find a balanced decomposition for H.
3. From this decomposition recover a decomposition for G.
4. Argue that this decomposition is balanced.

Step 1 is referred to as the reduction step, step 3 as the reconstruction step. In step 4, we need
only show that the vertices involved in the reduction and reconstruction steps are balanced, as
all other vertices are balanced in step 2 and left untouched afterwards.

Our methods refine those of Hörsch [5]. There are two main novel ideas. The first is using edge
swaps to control the structure around certain 3-vertices (cf. Lemma 2.5). This is used to force
blue and red degrees above 1 and so aid balancedness. The second is controlling the parity of
the degrees of the neighbours of 2-vertices. These ideas are crucial to most of our structural
lemmas.

In figures, big vertices are black, small vertices are white. When the status of a vertex is unclear,
we indicate it in grey. As a convention, when a graph has a double tree decomposition with trees
labelled by 1 and 2, we use blue for tree 1, red for tree 2 and black when the colour is irrelevant.

2.1 2-vertices

Let v be a 2-vertex and x, y its (not necessarily distinct) neighbours. As v is a leaf in both
trees of any double tree decomposition of G, removing it yields a double tree H, which admits

3



a balanced decomposition by minimality of G. We refer to this as the standard reduction for
2-vertices. This reduction can be reversed in the obvious way by adding back v and the edges
incident to it.

x y

v

(a) Start configuration.

x y

(b) Reduced configuration.

Figure 1: Standard reduction for 2-vertices.

Lemma 2.1. Let v ∈ V (G) be a 2-vertex. Then the neighbours x, y of v are distinct, big and
dG(x) ≡ dG(y) ≡ c+ 1 mod 2.

Proof. Let vx, vy be the edges incident to v. If x = y, then the standard reduction for 2-vertices
immediately gives a balanced decomposition for G, a contradiction.

Suppose x is small. Apply the standard reduction for 2-vertices to obtain a double tree H with
a balanced blue/red double tree decomposition. We may then add v back by giving vy a colour
in which the degree of y was smallest, and vx the other colour. Since x is small, this yields a
balanced decomposition for G, a contradiction.

Suppose for contradiction that dG(x) ≡ c mod 2. Apply the standard reduction for 2-vertices
to v to obtain a double tree H with balanced decomposition H = S1 ⊔ S2. In particular,
|dS1(x)− dS2(x)| ⩽ c. By the congruence condition,

|dS1(x)− dS2(x)| ≡ dS1(x) + dS2(x) = dG(x)− 1 ≡ c− 1 mod 2,

so in fact, |dS1(x)− dS2(x)| ⩽ c− 1. By symmetry we may assume that dS1(y) ⩾ dS2(y). Put v
back, adding vx to S1 and vy to S2. Then y is still balanced and the degree difference at x has
increased by at most 1, so is at most c. This is a contradiction.

The following observation appeared in Hörsch [5, Lemma 2].

Lemma 2.2. Every big vertex v ∈ V (G) is adjacent to at most one 2-vertex.

2.2 Edge swaps

We remind the reader of a simple tool that will be used repeatedly in our arguments. Given
a double tree decomposition G = T1 ⊔ T2 and an edge e ∈ E(T1) we may swap it with some
f ∈ E(T2) such that G = S1⊔S2, where E(S1) = E(T1)− e+f and E(S2) = E(T2)−f + e, is a
double tree decomposition. Indeed, T1 splits into two components after removing e and adding
e to T2 creates a cycle C. We may thus choose f to be any edge of C − e with an endpoint in
each component. We will refer to this as swapping e. Note that if e ∈ E(T1) is incident to a
leaf x of T1, then f must also be incident to x. In particular, after swapping e, x is still a leaf
of T1.

Lemma 2.3. Let G be a double tree with a blue/red decomposition and xy a blue edge such that
x is a leaf in the blue tree. Then x remains a leaf in the blue tree after swapping xy.

4



This is particularly useful for 3-vertices as in any blue/red double tree decomposition a 3-vertex
must be a leaf in some colour.

2.3 3-vertices

Let v be a 3-vertex with (not necessarily distinct) neighbours x, y, b where the edges vx, vy are
red and the edge vb is blue as in Figure 2a. Remove v and join x and y in red to form H; we
will refer to this as the standard reduction for 3-vertices. If v has two blue neighbours and one
red neighbour, then there is an analogous reduction. Since v was a leaf in the blue tree and xvy
is the only path from x to y in the red tree, the resulting blue/red decomposition is a double
tree decomposition for H. Further, |H| = |G| − 1 so, by minimality, H has a balanced double
tree decomposition. A particularly useful feature of this reduction is that it is reversible: given
a double tree containing the configuration shown in Figure 2b we may delete the edge xy, add
a new vertex v joined to x and y in red and joined to b in blue to form another double tree.

x

y

bv

(a) Start configuration.

x

y

b

(b) Reduced configuration.

Figure 2: Standard reduction for 3-vertices.

Using this reduction, Hörsch [5, Proposition 10] showed the following.

Lemma 2.4. Let v ∈ V (G) be a 3-vertex and G = T1⊔T2 a double tree decomposition. Suppose
that v is a leaf in T2 with vb ∈ E(T2) its unique incident edge. Then b is big.

Suppose that v is a 3-vertex with two edges to small vertices. Let vb be the third edge incident
to v. Lemma 2.4 shows that in any double tree decomposition of G, the edge vb is of the
opposite colour to the other two edges. However, swapping the edge vb gives a contradiction.
So every 3-vertex has at most one edge to a small vertex and so only the following types of
3-vertices can occur.

Definition 1 (types of 3-vertex). We say that a 3-vertex is

• rich if all its neighbours are big;
• poor if it is adjacent to three distinct vertices, two big, one small;
• bad if it has a small neighbour and is joined to a big vertex by a double edge.

We are ready to prove a key result that gives structure around poor 3-vertices.

Lemma 2.5. Let v ∈ V (G) be a poor 3-vertex with big neighbours x, y and small neighbour s.
In any tree decomposition G = T1 ⊔ T2 where vs ∈ E(T1):

• Exactly one of vx, vy is in E(T1).
• If vy ∈ E(T2), then swapping vy gives the double tree decomposition G = T ′

1 ⊔ T ′
2, where

E(T ′
1) = E(T1)− vx+ vy and E(T ′

2) = E(T2) + vx− vy.
• The path from x to y in T1 does not contain s.

5



x

y

sv

(a) v a leaf in T2 with vy ∈ E(T2).

x

y

sv

(b) Configuration after swapping vy.

Figure 3: Edge swap in Lemma 2.5.

Proof. Firstly, by Lemma 2.4, at least one of vx, vy is in E(T1). They cannot both be otherwise
v is an isolated vertex in T2. This gives the first bullet point.

Suppose that vy ∈ E(T2) and so vx ∈ E(T1) and v is a leaf in T2 as in Figure 3a. Consider
swapping vy. Then vy becomes blue and so, by the first bullet point, vx becomes red.

We now prove the third bullet point. We may assume by symmetry that vy ∈ E(T2) and so
vx ∈ E(T1). Suppose that there is a path P in T1 from x to y that contains s and let P ′ be
the subpath of P from s to y. Consider swapping vy: we have just shown that vx becomes red.
But then yvsP ′ forms a blue cycle, which is impossible.

Lemma 2.6. Let v ∈ V (G) be adjacent to ℓ ⩾ 1 bad 3-vertices via their double edges. Then,

dG(v) ⩾ 2ℓ+ c+ 1.

Proof. Let v be a vertex in G with a bad neighbour u, and let w ̸= v be the small neighbour of
u. Fix a double tree decomposition G = T1 ⊔ T2. By symmetry we may assume uw ∈ E(T1).

Apply the standard reduction for 3-vertices to u and let H be the resulting graph with balanced
double tree decomposition H = S1 ⊔ S2. Without loss of generality we may assume that

v u w v w

Figure 4: Reduction step in Lemma 2.6.

vw ∈ E(S1). Define G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− vw + vu+ uw,

E(T ′
2) = E(S2) + vu,

reversing the reduction. All vertices, except possibly v, are balanced in T ′
1 ⊔ T ′

2. Since v is
adjacent to ℓ bad 3-vertices via double edges, we have dT ′

1
(v) ⩾ ℓ and dT ′

2
(v) ⩾ ℓ. In particular,

if dG(v) ⩽ 2ℓ+ c, then v is balanced also, which is a contradiction.

2.4 Critical vertices

A vertex v in G is said to be critical if dG(v) = c+3, that is, if its degree is just large enough for it
to be big. A simple observation is that critical vertices are balanced in a blue/red decomposition
if and only if both their blue and red degrees are at least two. We combine this observation
with the final bullet point of Lemma 2.5 to great effect: suppose a vertex x has a blue edge to

6



a poor 3-vertex v and v has blue degree two in a given blue/red decomposition. Then the final
bullet point of Lemma 2.5 guarantees that v has blue degree at least two. If further v is critical
and has red degree at least two, then it is balanced.

Lemma 2.7. Let v ∈ V (G) be a critical vertex.

(i) If all neighbours of v are small, then v is not adjacent to bad 3-vertices.
(ii) At most one neighbour of v is a poor 3-vertex.
(iii) If v is adjacent to a 2-vertex, then v is not adjacent to a poor 3-vertex.

Note that Lemmas 2.2, 2.7.(ii) and 2.7.(iii) yield that a critical vertex has at most one neighbour
that is either a 2-vertex or a poor 3-vertex.

Proof. (i) Suppose not and let G = T1 ⊔ T2 be a double tree decomposition. Let v ∈ V (G) be
critical with all neighbours small and let u ∈ Γ(v) be a bad 3-vertex, and w ̸= v be the small
neighbour of u. By symmetry we may assume uw ∈ E(T1).

Apply the standard reduction for 3-vertices to u, let H be the resulting double tree and H =
S1 ⊔ S2 a balanced double tree decomposition. Without loss of generality we may assume that
vw ∈ E(S1).

Case 1. dS1(v) ⩾ 2.

Reverse the reduction to get G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− vw + vu+ uw,

E(T ′
2) = E(S2) + vu.

Then dT ′
1
(v) = dS1(v) ⩾ 2 and dT ′

2
(v) ⩾ dS2(v) + 1 ⩾ 2, and so, since v is critical, it is balanced

and thus the decomposition T ′
1 ⊔ T ′

2 is balanced, a contradiction.

Case 2. dS1(v) = 1.

Let H = S′
1 ⊔ S′

2 be the decomposition obtained after swapping vw. Since v is a leaf in S1, it
remains a leaf in S′

1. Moreover, every vertex in the neighbourhood of v is small, so every big
vertex is balanced in S′

1 ⊔ S′
2. Now vw ∈ E(S′

2) and dS′
2
(v) ⩾ 2, so by Case 1 we can find a

balanced decomposition G = T ′
1 ⊔ T ′

2, a contradiction.

(ii) Suppose that v ∈ V (G) is critical and u,w ∈ Γ(v) are distinct poor 3-vertices. Let the
other neighbours of u and w be u1, u2 and w1, w2 (not necessarily distinct) respectively, as
in Figure 5a, where u2, w2 are small. By Lemma 2.5 we may perform edge swaps to ensure
{vw,ww2} ⊂ E(Ti) and {uv, uu2} ⊂ E(Tj) for some i, j ∈ {1, 2}. Apply the standard reduction
for 3-vertices to u and w and add a 2-vertex x adjacent to both u1 and w1, yielding a double
tree H which by induction has a balanced double tree decomposition H = S1 ⊔ S2. Without
loss of generality we may assume that vw2 ∈ E(S1). We consider multiple cases.

Case 1. vu2 ∈ E(S1).

By symmetry we may assume that xw1 ∈ E(S1). Reverse the reductions and delete x to give
G = T ∗

1 ⊔ T ∗
2 , where

E(T ∗
1 ) = E(S1)− xw1 − vu2 − vw2 + vu+ uu2 + vw + ww2,

E(T ∗
2 ) = E(S2)− xu1 + uu1 + ww1,

7



v

u2

u1 w1

w2u w

(a) Configuration in G.

v

u2

u1 w1

w2

x

(b) Reduction to H.

Figure 5: Reduction step in Lemma 2.7.(ii). Dashed edges are in the same tree, dotted edges
are in the same tree.

v

u2

u1 w1

w2

x

(a) Configuration in H.

v

u2

u1 w1

w2u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

u2

u1 w1

w2u w

(c) Configuration in G = T ′
1 ⊔ T ′

2.

Figure 6: Reconstruction in Case 1.

as in Figure 6b. Consider swapping ww1. Lemma 2.5 implies that we get the decomposition
G = T ′

1 ⊔ T ′
2 shown in Figure 6c, where

E(T ′
1) = E(T ∗

1 )− vw + ww1,

E(T ′
2) = E(T ∗

2 )− ww1 + vw.

We claim that G = T ′
1 ⊔T ′

2 is balanced. All degree differences are the same as in S1 ⊔S2 except
at v where a blue edge has become red. By Lemma 2.5, there is a path in T ′

1 from v to u1 that
does not use u2. Since also uv ∈ E(T ′

1), we get dT ′
1
(v) ⩾ 2. As v is critical this means it is

balanced, and therefore G = T ′
1 ⊔ T ′

2 is balanced, as required.

Case 2.i. vu2 ∈ S2 and xu1 ∈ S1.

Reverse the reductions to get G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− xu1 − vw2 + uu1 + vw + ww2,

E(T ′
2) = E(S2)− xw1 − vu2 + ww1 + uv + uu2,

as in Figure 7b. Further, since S1⊔S2 is balanced and degree differences of big vertices remained
unchanged, T ′

1 ⊔ T ′
2 is balanced, a contradiction.

8



v

u2

u1 w1

w2

x

(a) Configuration in H.

v

u2

u1 w1

w2u w

(b) Reconstruction in G.

Figure 7: Reconstruction in Case 2.i.

Case 2.ii. vu2 ∈ E(S2) and xu1 ∈ E(S2).

v

u2

u1 w1

w2

x

(a) Configuration in H.

v

u2

u1 w1

w2u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

u2

u1 w1

w2u w

(c) Configuration in G = T ′
1 ⊔ T ′

2.

Figure 8: Reconstruction in Case 2.ii.

Reverse the reductions to get G = T ∗
1 ⊔ T ∗

2 , where

E(T ∗
1 ) = E(S1)− xw1 − vw2 + uu1 + vw + ww2,

E(T ∗
2 ) = E(S2)− xu1 − vu2 + vu+ uu2 + ww1,

as in Figure 8b. By edge swapping uu1 and ww1 and noting that u, w are leaves in T ∗
1 , T

∗
2

respectively, we obtain the double tree decomposition G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(T ∗

1 )− uu1 − vw + uv + ww1,

E(T ′
2) = E(T ∗

2 )− uv − ww1 + uu1 + vw.

Vertices v, u1, u2 are balanced in S1 ⊔ S2, hence with respect to T ′
1 ⊔ T ′

2 as well, as degree
differences remained unchanged. All other degree differences at big vertices were preserved, so
G = T ′

1 ⊔ T ′
2 is balanced, a contradiction.

(iii) Let v ∈ V (G) be critical, G = T1 ⊔ T2 be a double tree decomposition and suppose that
u,w ∈ Γ(v) are a 2-vertex and a poor 3-vertex, respectively. Let v3 be the small neighbour of
w, and v1, v2 ̸= v the other big neighbours of u, w respectively. By symmetry we may assume

9



v

v1 v2

v3u w

(a) Configuration in G.

v

v1 v2

v3

x

(b) Reduction to H.

Figure 9: Reduction step in Lemma 2.7.(iii).

that w is a leaf in T2. By Lemma 2.5, we may swap edges to ensure that wv2 ∈ E(T2). Apply
the standard reduction for 2-vertices and 3-vertices to u and w respectively, and add a new
2-vertex x joined to v1 and v2, yielding a double tree H as shown in Figure 9b. By induction,
H has a balanced double tree decomposition H = S1 ⊔ S2. By symmetry we may assume that
vv3 ∈ E(S1). We treat two cases separately.

Case 1. xv2 ∈ E(S2).

v

v1 v2

v3

x

(a) Configuration in H = S1 ⊔ S2.

v

v1 v2

v3u w

(b) Reconstruction in G.

Figure 10: Reconstruction step in Case 1.

Reverse the reductions to get G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− xv1 − vv3 + vw + wv3 + uv1,

E(T ′
2) = E(S2)− xv2 + wv2 + uv,

as in Figure 10b. We claim that every vertex in T ′
1 ⊔ T ′

2 is balanced. All degree differences are
unchanged except at v where a red edge has been added. By Lemma 2.5, there is a path in G
from v2 to v in T ′

1 that does not pass through v3, so dT ′
1
(v) ⩾ 2. As v is critical, it is balanced,

as required.

Case 2. xv2 ∈ E(S1)

Reverse the reductions to get G = T ∗
1 ⊔ T ∗

2 , where

E(T ∗
1 ) = E(S1)− xv2 − vv3 + uv + wv3 + vw,

E(T ∗
2 ) = E(S2)− xv1 + uv1 + wv2,

as in Figure 11b. After swapping wv2 we obtain, by Lemma 2.5, the decomposition G = T ′
1⊔T ′

2

shown in Figure 11c. Since u and w are both leaves in T ′
1, T

′
2 respectively with vu ∈ E(T ′

1) and
vw ∈ E(T ′

2), we have dT ′
i
(v) ⩾ 2 for i = 1, 2 and therefore v is balanced as it is critical. All

other degree differences at big vertices remain unchanged. Hence, G = T ′
1 ⊔ T ′

2 is balanced, a
contradiction.

10



v

v1 v2

v3

x

(a) Configuration in H.

v

v1 v2

v3u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

v1 v2

v3u w

(c) Configuration in G = T ′
1 ⊔ T ′

2 after
swapping wv2.

Figure 11: Reconstruction in Case 2.

2.5 Discharging

In this section we conclude the proof of Theorem 2 by applying the lemmas above with c = 4.

Proof of Theorem 2. Let G be a counterexample minimising the number of vertices n. Define
the initial charge function f : V → Q by f(v) = d(v) and the discharging procedure as follows.
For each big vertex v and each edge vu it is incident to, send to the vertex u

• charge 1 if u is a 2-vertex,
• charge 1/2 if u is a poor 3-vertex,
• charge 1/2 if u is a bad 3-vertex (note that a bad 3-vertex receives a total charge of 1
from v because of the double edge),

• charge 1/3 if u is a rich 3-vertex.

Let g : V → Q be the charge function after the discharging procedure has taken place. Then∑
v∈V (G)

g(v) =
∑

v∈V (G)

f(v) = 4n− 4.

We claim that every vertex v of G has g(v) ⩾ 4, which will give a contradiction.

Indeed, if d(v) ⩾ 9, then, by Lemma 2.2, v is adjacent to at most one 2-vertex and therefore

g(v) ⩾ 9− (1 + 8 · 1
2) = 4.

If d(v) = 8, then, by Lemma 2.1, v cannot be adjacent to any 2-vertices and therefore

g(v) ⩾ 8− 8 · 1
2 = 4.

If d(v) = 7, we distinguish two cases.

• If Γ(v) contains only small vertices, then by Lemma 2.7.(i), v does not have bad vertices
in its neighbourhood, and by Lemmas 2.1, 2.7.(ii), 2.7.(iii), v has at most one neighbour
that is a 2-vertex or a poor 3-vertex. Therefore, g(v) ⩾ 7− 1− 6 · 1/3 = 4.

11



• If Γ(v) has a big vertex, using Lemmas 2.1, 2.6, 2.7.(ii), 2.7.(iii), we similarly get that
g(v) ⩾ 7− 1− 2 · 1/2− 3 · 1/3 = 4.

If d(v) ∈ {4, 5, 6}, then g(v) = d(v) ⩾ 4.

If d(v) = 3, there are two cases.

1. If v is a rich 3-vertex, it receives a charge of 1/3 from each of its edges, thus g(v) =
3 + 3 · 1/3 = 4.

2. If v is a poor or bad 3-vertex, it receives a charge of 1/2 from two of its edges, thus
g(v) = 3 + 2 · 1/2 = 4.

If d(v) = 2, then by Lemma 2.1, v receives a charge of 1 from both its neighbours and thus
g(v) = 4, as required.

3 General graphs

In this section we write G = A +M to mean that G = A ⊔M where A is a spanning double
tree and M a graph.

We deduce Theorem 3 from a slightly more general statement.

Theorem 5. Let G = A + M . Then G admits a 4-balanced decomposition into subgraphs
G = G1 ⊔G2 such that (A ∩G1) ⊔ (A ∩G2) is a double tree decomposition of A.

Theorem 5 follows from similar arguments to those used for Theorem 2, with suitable modifi-
cations.

Fix an integer c ⩾ 2 and suppose there are graphs G = A+M with no c-balanced decomposition
G = G1 ⊔G2 such that A ∩G1 and A ∩G2 are trees. We take G to be such a graph where

1. e(M) is minimal,
2. subject to this, |G| is minimal.

Again, define v ∈ V (G) to be big if dG(v) ⩾ c + 3 and small otherwise. If dG(v) = c + 3 we
again call v critical.

In figures, edges of M are dashed.

3.1 Edges of M

Lemma 3.1. If e ∈ E(M) is incident to a vertex v, then v is big and dG(v) ≡ c+ 1 mod 2.

Proof. Let uv ∈ E(M). Remove uv, rebalance the resulting graph using minimality of G and
add uv to the appropriate part so that u is balanced in the resulting decomposition G = G1⊔G2.
By construction we further have that (A ∩G1) ⊔ (A ∩G2) is a double tree decomposition. All
degree differences have been preserved at vertices of G other than u or v, and u is balanced in
G1 ⊔G2 by construction. Hence, the vertex v cannot be balanced in G1 ⊔G2.

If v is small, then v is clearly balanced in G = G1 ⊔ G2. If dG(v) ≡ c mod 2, then a parity
argument similar to that of Lemma 2.1 shows that v is balanced. Thus, neither can occur.

12



As a consequence, the edges of M are not incident to any 3-vertices. We will use the terminology
of rich, poor and bad 3-vertices defined in Section 2.3. When we do edge swaps we will do them
within the double tree A.

Note that all edges appearing in Lemmas 2.1, 2.2 and 2.4-2.7 are incident to a small vertex and
so are in the double tree A by Lemma 3.1. Hence these lemmas all still hold in G. Indeed,
reductions and reconstructions are unchanged when the vertices involved edges are in M . For
our purposes we require a slight strengthening of Lemma 2.7.(i) (this follows immediately from
the proof of Lemma 2.7 when applied in this context).

Lemma 3.2. Let v ∈ V (G) be a critical vertex. If all neighbours of v in A are small, then v is
not adjacent to any bad 3-vertex.

Edges of M are subject to further constraints, which we will need in the discharging argument.

Lemma 3.3. The subgraph M is a matching.

Proof. Let u, v, w ∈ V (G) and suppose that uv, vw ∈ E(M). Then define H = B + N by
deleting edges uv, vw from M (to give N), and by adding a new 2-vertex x joined to both u
and w in the double tree (to give B). Then e(N) < e(M) and so by minimality we may find a
balanced decomposition H = H1⊔H2, where (B∩H1)⊔(B∩H2) is a double tree. By symmetry
we may assume ux ∈ E(H1), xw ∈ E(H2). Define G = G1⊔G2 where E(G1) = E(H1)−ux+uv
and E(G2) = E(H2) − xw + vw. Then G = G1 ⊔ G2 is a balanced decomposition as degree
differences have been preserved. Also, (A∩G1)⊔(A∩G2) is a double tree as (B∩H1)⊔(B∩H2)
was, giving a contradiction.

Lemma 3.4. Let v ∈ V (G). Then v cannot be both adjacent to a 2-vertex and incident to an
edge of M .

Proof. Suppose that u, v ∈ V (G), uv ∈ E(M) and v is adjacent to a 2-vertex w. Let v′ ̸= v be
the other neighbour of w. By Lemma 3.1, both u and v are big.

Case 1. u = v′.

v

wu

(a) Configuration in G.

v

u

(b) Reduction to H.

Figure 12: Reduction step in Lemma 3.4 when u = v′.

Define H = B+N by deleting w (so A becomes B) and removing uv (so M becomes N). Then
e(N) < e(M) and so, by minimality, there is a balanced decomposition H = H1 ⊔ H2 where
(B ∩H1)⊔ (B ∩H2) is a double tree decomposition. Without loss of generality we may assume
that dH1(v) ⩽ dH2(v).

Define G = G1 ⊔ G2 where E(G1) = E(H1) + uv + vw and E(G2) = E(H2) + wu. Then as
dH1(v) ⩽ dH2(v), the vertex v is balanced in G1 ⊔ G2. Since all other degree differences have
been preserved, the decomposition G = G1 ⊔G2 is balanced. Further, (A ∩G1) ⊔ (A ∩G2) is a
double tree, giving a contradiction.

13



Case 2. u ̸= v′.

v

v′

wu

(a) Configuration in G.

v

v′

u

(b) Reduction to H.

Figure 13: Reduction step in Lemma 3.4 when u ̸= v′.

Define H = B +N by deleting w (so A becomes B), removing uv from M and adding uv′ (so
M becomes N), as in Figure 13b. Then e(N) = e(M) and |H| < |G| so by minimality there is a
balanced decomposition H = H1⊔H2 where (B∩H1)⊔(B∩H2) is a double tree decomposition.
Without loss of generality, uv′ ∈ E(H1).

Define G = G1 ⊔ G2 where E(G1) = E(H1) − uv′ + uv + wv′, E(G2) = E(H2) + vw. Note
that since B ∩H1 and B ∩H2 are both connected, the two subgraphs A ∩G1 and A ∩G2 are
connected. The decomposition is balanced as H = H1 ⊔H2 is balanced and degree differences
are preserved, a contradiction.

Lemma 3.5. Let v ∈ V (G) be a critical vertex. Then v cannot be both adjacent to a poor
3-vertex and incident to an edge of M .

v

s
w

u

(a) Configuration in G.

v

su

(b) Reduction to H.

Figure 14: Reduction step in Lemma 3.5 when u = v′.

Proof. Suppose that u, v ∈ V (G) where v is critical, uv ∈ E(M) and v is adjacent to a poor
3-vertex w. By Lemma 3.1, both u and v are big. Let s be the small neighbour of w and v′ ̸= v
be the other big neighbour of w.

First suppose that u = v′. By edge flipping and Lemma 2.5 we may assume that vw and ws are
in the same tree. We carry out the standard reduction for 3-vertices at w so that A becomes a
double tree B and delete uv from M to get N– see Figure 14b. Let H = B +N .

Now e(N) < e(M), so by minimality there is a balanced decomposition H = H1 ⊔ H2 where
(B∩H1)⊔(B∩H2) is a double tree decomposition. Without loss of generality, vs ∈ E(B)∩E(H1).

Define G = G1 ⊔G2 by

E(G1) = E(H1)− vs+ uv + vw + ws,

E(G2) = E(H2) + uw,

14



v

su

(a) Configuration in H.

v

s
w

u

(b) Configuration in G = G1 ⊔G2.

v

s
w

u

(c) Configuration in G = G′
1 ⊔G′

2.

Figure 15: Reconstruction step in Lemma 3.5 when u = v′.

as in Figure 15b. Degree differences at all vertices of G except v have been preserved and
(A ∩ G1) ⊔ (A ∩ G2) is a double tree. Hence, if v is balanced we have a contradiction. If
dG2(v) ⩾ 2 then v is balanced. Otherwise, swap the edge uw in the double tree decomposition
A = (A ∩G1) ⊔ (A ∩G2) to obtain A = T1 ⊔ T2. Define G = G′

1 ⊔G′
2 where

E(G′
1) = E(T1) ⊔ (E(M) ∩G1)− uv

E(G′
2) = E(T2) ⊔ (E(M) ∩G2) + uv,

as in Figure 15c. Then degree differences at all vertices of G except v have been preserved and
(A ∩G′

1) ⊔ (A ∩G′
2) is a double tree, but now dG2(v) ⩾ 2, giving a contradiction.

We may therefore assume u ̸= v′. By edge flipping and Lemma 2.5 we may assume that edges

v

v′

swu

(a) Configuration in G.

v

v′

su

(b) Reduction to H.

Figure 16: Reduction step in Lemma 3.5 when u ̸= v′.

vw and ws are in the same tree. We carry out the standard reduction for 3-vertices at w so
that A becomes a double tree B. We let N = M − uv + uv′. See Figure 16b. Let H = B +N .

Then e(N) = e(M) and |H| < |G| so, by minimality, there is a balanced decomposition H =
H1 ⊔H2 where (B ∩H1)⊔ (B ∩H2) is a double tree decomposition. Without loss of generality,
uv′ ∈ E(N) ∩ E(H1).

Case 1. vs ∈ E(B) ∩ E(H2).

15



v

v′

su

(a) Configuration in H.

v

v′

swu

(b) Reconstruction in G.

Figure 17: Reconstruction step in Case 1.

Reverse the reductions to give a decomposition G = G1 ⊔G2 defined by

E(G1) = E(H1)− uv′ + uv + wv′,

E(G2) = E(H2)− vs+ vw + ws,

as in Figure 17b. Since B ∩H1 and B ∩H2 are both connected, T1 := A∩G1 and T2 := A∩G2

are as well and form a double tree decomposition for A.

All degree differences at big vertices have been preserved except at v where an extra blue
edge is present. But, by Lemma 2.5, the path from v to v′ in T2 does not contain s, so
dG2(v) ⩾ dT2(v) ⩾ 2 and so v is balanced in G = G1 ⊔G2 as it is critical. Hence, G = G1 ⊔G2

is balanced, a contradiction.

Case 2. vs ∈ E(B) ∩ E(H1).

v

v′

su

(a) Configuration in H.

v

v′

swu

(b) Configuration in G = G∗
1 ⊔G∗

2.

v

v′

swu

(c) Configuration in G = G1 ⊔G2.

Figure 18: Reconstruction step in Case 2.

Reverse the reductions to give a decomposition G = G∗
1 ⊔G∗

2 where

E(G∗
1) = E(H1)− uv′ − vs+ uv + vw + ws,

E(G∗
2) = E(H2) + wv′,

16



as in Figure 18b. Since B ∩H1 and B ∩H2 are both connected, T1 := A∩G∗
1 and T2 := A∩G∗

2

are as well and form a double tree decomposition for A. Let A = S1 ⊔ S2 be the double tree
decomposition obtained by swapping edge wv′ in A (this swaps with wv by Lemma 2.5). Let
G = G1 ⊔G2 be the decomposition where

E(G1) = E(N ∩G∗
1) ⊔ E(S1),

E(G2) = E(N ∩G∗
2) ⊔ E(S2).

Then S1 = A∩G1 and S2 = A∩G2 are both spanning trees. All degree differences at big vertices
have been preserved except at v where an extra red edge is present. But, by Lemma 2.5, there
is a path from v to v′ in S1 that does not contain s, so dG1(v) ⩾ dS1(v) ⩾ 2 and so v is balanced
in G = G1 ⊔G2 as it is critical. Hence, G = G1 ⊔G2 is balanced, a contradiction.

3.2 Discharging

Proof of Theorem 5. Let G = A+M be a counterexample to the bound c = 4 such that

1. e(M) is minimal,
2. subject to this, |G| is minimal.

Define the charge function f : V → Q to be the degree of v in the double tree A: f(v) = dA(v).
Define the discharging procedure similarly to the proof of Theorem 2. For each edge uv ∈ E(A),
a big vertex v sends to its neighbour u

• charge 1 if u is a 2-vertex,
• charge 1/2 if u is a poor 3-vertex,
• charge 1/2 if u is a bad 3-vertex,
• charge 1/3 if u is a rich 3-vertex.

Let g : V → Q be the charge function after the discharging procedure has taken place. Then∑
v∈V (G)

g(v) =
∑

v∈V (G)

f(v) = 2e(A) = 4n− 4.

We claim that every vertex v of G has g(v) ⩾ 4, which will give a contradiction. As in the proof
of Theorem 2, the claim holds if v ∈ V (G) is not incident to any edge of M . If v is incident
to at least one edge of M , then, by Lemmas 3.1, 3.3, 3.4 and 3.5, v is big, has odd degree, is
incident to exactly one e ∈ E(M), is not adjacent to any 2-vertices and is not adjacent to any
poor 3-vertex. There are two cases remaining:

1. d(v) = k ⩾ 9. Then g(v) ⩾ (k − 1)− (k − 1)/2 ⩾ 4.

2. d(v) = 7. If all neighbours of v in A are small, then, by Lemma 3.2, g(v) = 6−6 ·1/3 ⩾ 4.
Otherwise v has a big neighbour, so g(v) ⩾ 6− 2 · 1/2− 3 · 1/3 ⩾ 4.

4 Balancing infinite graphs

Let G = (V,E) be an undirected graph. Recall that a spanning subgraph H ⊂ G is called
semiconnected if it contains an edge of every finite cut of G. We note that this notion depends
on the ambient graph G and that for finite graphs, the notions of spanning connected and
semiconnected subgraphs coincide.

The main results of this section are the following, which imply Theorem 4.

17



Theorem 6. Let c be minimal such that any finite double tree has a c-balanced decomposition.
Then if G is a countable infinite double tree, it admits a c-balanced decomposition G = S1 ⊔ S2

where S1, S2 are semiconnected and acyclic.

Theorem 7. Let c be minimal such that any finite graph containing a spanning double tree
has a c-balanced decomposition into connected graphs. Then if G is a countable infinite graph
containing a spanning double tree, it admits a c-balanced decomposition G = S1 ⊔ S2 where
S1, S2 are semiconnected.

As the proof of both of these theorems is virtually the same, we only spell out a proof of the
first.

Proof of Theorem 6. Without loss of generality we may assume that G is locally finite. Indeed,
if v ∈ V (G) is a vertex of infinite degree with neighbours x1, x2, . . . , we may replace it with a
path of double edges v0v1v2 . . . where vi is connected to every vertex in {x(c+1)i+k : k ∈ [c+1]}.
Applying this reduction to every vertex of infinite degree we obtain a locally finite countable
graph H. If H has a c-balanced decomposition T1 ⊔ T2, every vertex vi must have at least one
edge of both T1 and T2 that is not an edge of the path. Hence we may reconstruct a balanced
decomposition for G by merging the double paths we created, as degrees with infinite degree
have infinite degree in both trees after merging.

Let V = {v1, v2, . . . } and Vi = {v1, . . . , vi} for i ∈ N. For each n we define Gn to be the graph
obtained by contracting each connected component C of G− Vn to a vertex vC , referred to as
auxiliary vertices of Gn. Each graph Gn is finite as e(Vn, G−Vn) is finite, since Vn is finite and G
is locally finite. Further, each Gn contains a double tree Hn such that Hn[Vn] = G[Vn]. Indeed,
let T1 ⊔ T2 be a double tree decomposition for G. Contracting the connected components
of G − Vn may create cycles. Since T1, T2 restricted to Vn are both acyclic, each such cycle
necessarily contains some vC , for some connected component C of G − Vn. Hence, we may
remove edges incident to auxiliary vertices until we obtain a double tree Hn.

By Theorem 2, each Hn has a c-balanced decomposition T
(n)
1 ⊔T (n)

2 . By a standard compactness
argument we may pass to a subsequence (nk)k such that for every k > ℓ the decompositions
agree on Vℓ, i.e.

T
(nk)
1 [Vℓ] = T

(nℓ)
1 [Vℓ],

T
(nk)
2 [Vℓ] = T

(nℓ)
2 [Vℓ].

Take S1 and S2 to be the unions of (T
(nk)
1 [Vnk

])k and (T
(nk)
2 [Vnk

])k, respectively. Clearly, S1

and S2 are spanning subgraphs of G. Since G is locally finite, for any v ∈ V (G) there is some K

such that for k ⩾ K, we have Γ(v) ⊂ Vnk
and thus {e ∈ E(G) : v ∈ e} ⊂ E(T

(nk)
1 ) ⊔ E(T

(nk)
2 ).

This implies that S1 and S2 partition the edges of G and since every decomposition T
(nk)
1 ⊔T

(nk)
2

is c-balanced, we conclude that S1 ⊔ S2 is c-balanced.

It remains to check that S1 and S2 intersect every finite cut of G. Let (A,B) be a finite cut
of G. Since (A,B) is finite, there is some k such that E(A,B) ⊂ G[Vnk

]. Let x ∈ A ∩ Vnk

and y ∈ B ∩ Vnk
. Since Tnk

1 is connected and contains Vnk
, it contains a path P from x to

y. We claim that P ∩ E(A,B) ̸= ∅, finishing the proof. Indeed, the path P may be extended
to a path P ′ between x and y in G such that P ′ and P coincide on G[Vnk

], and whose only
additional edges have endpoints outside of Vnk

. Since (A,B) is a cut of G, P ′ ∩ E(A,B) ̸= ∅.

18



But E(A,B) ⊂ E(G[Vnk
]) so P ∩ E(A,B) ̸= ∅. Hence, S1 is semiconnected. Similarly, S2 is

semiconnected.

This compactness argument can easily be modified to yield Theorem 7 by applying Theorem 3
instead of Theorem 2 in the proof.

5 Digraphs

Arborescences are the natural analogue for trees in digraphs and so Hörsch’s Question 1 asks
whether the digraph analogue of Theorem 1 holds. A natural analogue of connectedness for
digraphs is strong connectedness. The following question is then the digraph analogue of Theo-
rem 3: does any union of two strongly connected digraphs allow a balanced decomposition into
two strongly connected digraphs? We answer both this and Question 1 in the negative. In fact,
our counterexamples have unique decompositions and these decompositions are not balanced.

5.1 Arborescences

In this subsection we answer Question 1 in the negative. More precisely, we show the following.

Theorem 8. Let k ⩾ 2. For every c > 0, there is a k-arborescence D, such that no k-arborescence
decomposition D = A1 ⊔ · · · ⊔ Ak is c-balanced, meaning that for all distinct i, j, there is some
vertex v with

|doutAi
− doutAj

| ⩽ c.

Proof. For k = 2, we construct an example on vertex set V = {v1, . . . , vn} as in Figure 19.

v1 vn

Figure 19: Construction in Theorem 8 when k = 2.

Let B1 be the arborescence in blue and B2 the directed path in red. We claim that this is the
unique double arborescence decomposition of the resulting digraph Dn, up to reordering, thus
proving the result as

doutB1
(vn)− doutB2

(vn) = n− 2.

Indeed, let D = C1⊔C2 be an arbitrary double arborescence decomposition of D. Without loss
of generality, #      »v1vn ∈ A(C1). Since C2 is connected, it contains a directed path from v1 to vn.
But the only such path that does not use the arc #      »v1vn is the path B2. Hence, C2 = B2 and
C1 = B1, as claimed.

19



This example can easily be generalised to show Theorem 8 for general k, for example by adding
k − 2 copies of the directed path B2.

5.2 Strongly connected digraphs

We now give the counterexample for the second question mentioned above.

s

v1 vn

t

Figure 20: Construction in Theorem 9 when k = 2.

Theorem 9. Let k ⩾ 2. For any c > 0, there is a digraph D = (V,A) that is the union of
k strongly connected digraphs, such that in any decomposition D = S1 ⊔ · · · ⊔ Sk into strongly
connected digraphs, there is a vertex v and some i, j with

|doutSi
(v)− doutSj

(v)| > c.

Proof. For k = 2 we construct a family (Dn) of examples. The digraph Dn has vertex set
V = {s, t, v1, . . . , vn} as in Figure 20. Let S1 and S2 be the digraphs in blue and red, respectively.
It is sufficient to show that this is the unique decomposition of Dn into strongly connected
digraphs, as

|doutS1
(t)− doutS2

(t)| = n− 1.

Let D = R1 ⊔ R2 be a decomposition of D into strongly connected digraphs. Without loss of
generality,

#»
st ∈ A(R1). Since R2 is strongly connected, there is a path from s to t in R2. The

only such path that does not use
#»
st is the path P with arcs { #   »sv1,

#      »v1v2, . . . ,
#            »vn−1vn,

#   »
vnt}. Hence,

all arcs of P are in R2. Since R1 is strongly connected, there are paths from t to vi and from
vi to s in R1, for each i ∈ [n]. The only such arcs that are not in P are the arcs

# »
tvi and

#  »vis,
respectively. Hence, R1 = S1 and finally R2 = S2, as claimed.

Similarly as for Theorem 8, these examples can be generalised to arbitrary k ⩾ 2 by adding
k − 2 copies of S1.

6 Complexity

In this section we will show that the decision problem “Given an Eulerian double tree, does it
have a perfectly balanced double tree decomposition?” is NP-hard, thus answering Question 2

20



in the negative. We will refer to this problem as PBDT. We need the following results.

1. Péroche [9]: the decision problem “Given a graph with maximum degree 4, does it contain
two edge-disjoint Hamiltonian cycles?” is NP-complete.1

2. Roskind, Tarjan [10]: there is an algorithm which, given a graph G, decides in polynomial
time whether G is a double tree, and outputs a double tree decomposition if it is.

Note that if a graph contains two edge-disjoint Hamiltonian cycles, then every vertex has degree
at least 4. So we immediately deduce from the result of Péroche that the decision problem “given
a 4-regular graph, does it contain two edge-disjoint Hamiltonian cycles?” is NP-complete. It
suffices to reduce this problem to PBDT. Let A be an algorithm solving PBDT.

Given a 4-regular graph G, fix a vertex v and let its neighbours be v1, v2, v3, v4. We perform
the following reductions: for i = 1, 2, 3, let Gi be the graphs obtained by removing v, adding
vertices x, y and adding edges from x to v1, vi+1 and connecting y to the other two vj .

v

v3

v1

v4

v2

(a) Configuration in G.

x

y

v1 v2

v3 v4

(b) Configuration in G1.

For i = 1, 2, 3, run the algorithm of Roskind and Tarjan. If it outputs a double tree decompo-
sition for Gi, run A on it.

Claim 1. The graph G contains two disjoint Hamiltonian cycles if and only if one of G1, G2, G3

has a perfectly balanced double tree decomposition.

Proof. Note that for i = 1, 2, 3, if Gi has a perfectly balanced decomposition T1⊔T2 then T1, T2

are two edge-disjoint Hamiltonian paths with endpoints x and y. Indeed, every v ∈ V (Gi)\{x, y}
must have degree 2 in each tree and x, y must be leaves.

Therefore, a perfectly balanced double tree decomposition in Gi corresponds to two edge-disjoint
Hamiltonian cycles in G by merging vertices x and y. Conversely, two edge-disjoint Hamiltonian
cycles in G yield a perfectly balanced decomposition in one of the three splittings of v into x
and y described above.

Hence, the above algorithm is a valid polynomial time reduction of finding two edge-disjoint
Hamiltonian cycles in a 4-regular graph to PBDT.

7 Conclusion

We have shown that every double tree has a partition into two trees such that the degrees
at each vertex differ by at most four (improving on Hörsch’s [5] bound of five). Can this be
further improved? There are examples of double trees that admit a 2-balanced double tree
decomposition, but no 1-balanced double tree decomposition. The only such examples known

1This problem is referred to as ‘2-PAR’ in the paper of Péroche.

21



to the authors involve taking an odd cycle, whose edges cannot be colored blue/red without
creating a vertex with degree difference 2, and making it into a double tree while preserving
degree differences. See below for example. In any double tree decomposition, one of the vertices
of the triangle has degree difference 2.

It seems natural to conjecture that this lower bound is tight.

Conjecture 10. Any double tree has a 2-balanced double tree decomposition.

The question of balancing double trees can naturally be generalised to balancing k-trees, as well
as graphs containing k edge-disjoint trees.

Question 3. Let k ⩾ 2. What are the smallest constants ck, dk > 0 such that the following
hold?

• Any finite graph which is the union of k edge-disjoint spanning trees has a ck-balanced
k-tree decomposition.

• Any finite graph containing k edge-disjoint spanning trees has a dk-balanced decomposition
into connected spanning subgraphs.

By repeatedly applying Theorem 1, Hörsch [5] obtained the bound ck ⩽ 16 log k. We could
similarly derive improved bounds on ck and dk by repeatedly applying Theorem 3. When the
requirement that each graph in the decomposition is a tree is dropped (so any k-edge colouring of
the original graph G is allowed), a uniform bound on the colour-degree differences is attainable.
Indeed, let H be the hypergraph whose vertices are the edges of G and whose hyperedges are the
stars centred at each vertex of G. Then H has maximum degree 2 and so bounded discrepancy
– see, for example, the paper of Doerr and Srivastav [4, Theorem 3.7]. In particular, upper
bounds on ck are bounds on dk with a constant error term. It would be particularly interesting
to resolve Hörsch’s conjecture [5] of whether there is a uniform upper bound on the ck.

The digraphs used for the proofs of Theorems 8 and 9 in Section 5 rely on the uniqueness of
the decompositions into arborescences/strongly connected digraphs. It is natural to ask what
happens if our starting digraph is less restricted.

Question 4. Are there constants c, t such that if D is a disjoint union of t spanning arbores-
cences sharing a root, then the edges of D can be coloured blue/red such that the out-degrees are
c-balanced and both graphs contain arborescences?

The same question is also interesting for strongly connected digraphs. The hypothesis that D is
a disjoint union of t strongly connected spanning digraphs is slightly cumbersome and it would
seem natural to replace it with some high connectivity condition. As far as we are aware, the
following question is open and would be interesting to resolve.

Question 5. For each positive integer t is there a constant k such that the edges of any k-
strongly connected digraph can be partitioned into t parts each of which is spanning and strongly
connected?

22



For undirected graphs the corresponding statement follows from the Tutte-Nash-Williams char-
acterisation with k = 4t.

8 Acknowledgements

The authors would like to thank Lex Schrijver for helpful comments.

References

[1] J. Bang-Jensen, F. Havet and A. Yeo. The complexity of finding arc-disjoint branching
flows. Discrete Applied Mathematics, 209:16–26, 2016.

[2] S. Bessy, F. Hörsch, A. K. Maia, D. Rautenbach and I. Sau. FPT algorithms for packing
k-safe spanning rooted sub (di) graphs. arXiv:2105.01582, 2021.

[3] J. Chuzhoy, M. Parter and Z. Tan. On packing low-diameter spanning trees.
arXiv:2006.07486, 2020.

[4] B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability and
Computing, 12:365–399, 2003.

[5] F. Hörsch. Globally balancing spanning trees. arXiv:2110.13726, 2021.

[6] M. Kriesell. Balancing two spanning trees. Networks, 57(4):351–353, 2011.

[7] C. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, 1(1):445–450, 1961.

[8] J. G. Oxley. On a packing problem for infinite graphs and independence spaces. Journal
of Combinatorial Theory, Series B, 26(2):123–130, 1979.

[9] B. Péroche. NP-completeness of some problems of partitioning and covering in graphs.
Discrete Applied Mathematics, 8:195–208, 1984.

[10] J. Roskind and R. E. Tarjan. A note on finding minimum-cost edge-disjoint spanning trees.
Mathematics of Operations Research, 10:701–708, 1985.

[11] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal
of the London Mathematical Society, 1(1):221–230, 1961.

23


	Introduction
	Notation

	Balancing double trees
	2-vertices
	Edge swaps
	3-vertices
	Critical vertices
	Discharging

	General graphs
	Edges of M
	Discharging

	Balancing infinite graphs
	Digraphs
	Arborescences
	Strongly connected digraphs

	Complexity
	Conclusion
	Acknowledgements

