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HYPERGRAPHS OF BOUNDED DISJOINTNESS∗

ALEX SCOTT† AND ELIZABETH WILMER‡

Abstract. A k-uniform hypergraph is s-almost intersecting if every edge is disjoint from exactly
s other edges. Gerbner et al. [SIAM J. Discrete Math., 26 (2012), pp. 1657–1669] conjectured that for

every k, and s > s0(k), every k-uniform s-almost intersecting hypergraph has at most (s+ 1)
(2k−2
k−1

)

edges. We prove a strengthened version of this conjecture and determine the extremal graphs. We
also give some related results and conjectures.
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1. Introduction. A k-uniform hypergraphF is intersecting if A∩B is nonempty
for all edges A,B ∈ F . Erdős, Ko, and Rado [6] showed that, for n ≥ 2k, every k-

uniform intersecting hypergraph F ⊂ (
[n]
k

)
has size at most

(
n−1
k−1

)
; equality holds for

the hypergraph of all k-sets containing a fixed element.
It is natural to vary the intersection condition and look at hypergraphs in which

some pairs of edges are allowed to be disjoint. A number of authors have addressed
the global problem of minimizing the number of disjoint pairs in a hypergraph of given
size and order (see Frankl [8], Ahlswede [1], Ahslwede and Katona [2], Bollobás and
Leader [4], and Das, Gan, and Sudakov [5]). This paper examines the local version
of this question introduced by Gerbner et al. [11], where each edge is disjoint from a
bounded number of other edges.

Following [11], we define a hypergraph F to be (≤ s)-almost intersecting if for all
A ∈ F there are at most s sets B ∈ F satisfying A∩B = ∅, and s-almost intersecting
if for all A ∈ F there are exactly s sets B ∈ F satisfying A ∩B = ∅. More generally,
let us also say that F is [a, b]-almost intersecting if for all A ∈ F

a ≤ |{B ∈ F : A ∩B = ∅}| ≤ b.

The maximum size of a k-uniform (≤s)-almost intersecting hypergraph was in-
vestigated in [11], where it was shown that the Erdős–Ko–Rado bound continues to
hold provided n > n0(k, s). By contrast, it was also shown in [11] that the maximum
size of a k-uniform s-almost intersecting hypergraph does not grow with the size of
the ground set: every k-uniform s-almost intersecting hypergraph has at most s

(
2ks
ks

)
edges. Gerbner et al. [10] subsequently improved this bound to (2s− 1)

(
2k
k

)
.

An example of a large k-uniform s-almost intersecting hypergraph is given by the
family

F(k, s) =

{
A ∪ {j} : A ∈

(
[2k − 2]

k − 1

)
, j ∈ {2k − 1, 2k, . . . , 2k + s− 1}

}
,

∗Received by the editors June 19, 2013; accepted for publication (in revised form) December 17,
2013; published electronically March 11, 2014.

http://www.siam.org/journals/sidma/28-1/92567.html
†Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK (scott@maths.ox.ac.uk).
‡Department of Mathematics, Oberlin College, Oberlin, OH, 44074 (ewilmer@oberlin.edu). This

author’s research was supported by the Great Lakes College Association as part of its New Directions
Initiative, made possible by a grant from the Andrew W. Mellon Foundation.

372

http://www.siam.org/journals/sidma/28-1/92567.html
mailto:scott@maths.ox.ac.uk
mailto:ewilmer@oberlin.edu


HYPERGRAPHS OF BOUNDED DISJOINTNESS 373

which has (s+1)
(
2k−2
k−1

)
edges. In [11], Gerbner et al. conjecture that for every k and

s > s0(k), this is the maximal size of any s-almost intersecting k-uniform hypergraph.
We prove this conjecture in section 3. In fact, we prove a rather stronger result:

we show that for every k ≥ 2 there are R = R(k) and s0(k) such that, for s > s0,
every k-uniform [R, s]-almost intersecting hypergraph has at most (s+1)

(
2k−2
k−1

)
edges.

We also determine all the extremal hypergraphs. Among the extremal hypergraphs,
the family F(k, s) minimizes the number of elements in the base set.

The bound on R that we obtain is rather large, as our argument depends on an
application of the Sunflower Lemma of Erdős and Rado. It seems likely that something
much smaller would suffice: in fact, we conjecture that for sufficiently large s, R = 1
is enough. Note that we cannot take R = 0, as there are intersecting k-uniform
hypergraphs of unbounded size (and an intersecting hypergraph is automatically [0, s]-
almost intersecting). However, in section 4, we consider the effect of weak disjointness
assumptions. In particular, for the cases k = 2 and k = 3, we show that a single pair
of disjoint edges suffices to recover the bound (s + 1)

(
2k−2
k−1

)
on the number of edges

and that we get the same family of extremal hypergraphs. (We remark that [11] fully
characterizes extremal s-almost intersecting graphs for k = 2 and all s.)

We also prove sharp bounds for multihypergraphs, that is, uniform set systems in
which repeated edges are allowed. As in the hypergraph case, there are [0, s]-almost
intersecting systems of unbounded size. In section 2, we prove that the family M(k, s)

consisting of
(
[2k]
k

)
, with each edge having multiplicity s, is the unique extremal ex-

ample over k-uniform multihypergraphs for the property of being [1, s]-almost inter-
secting. Note that in the large k and large s limit, s

(
2k
k

)
is about four times as large

as (s+ 1)
(
2k−2
k−1

)
.

Finally, in section 5, we discuss our results and raise some further questions.
We conclude this section with some definitions. We write [n] for the set {1, . . . , n}

and
(
S
j

)
for the set of all j-element subsets of a set S. Given a hypergraph F , its

disjointness graph DG(F) has vertex set equal to F , and A ∼ B in DG(F) exactly
when A ∩ B = ∅. Note that F is [a, b]-almost intersecting exactly when the minimal
and maximal vertex degrees in DG(F) satisfy a ≤ δ(DG(F)) ≤ Δ(DG(F)) ≤ b.
The definitions of [a, b]-almost intersecting and disjointness graph extend directly to
multihypergraphs, that is, uniform set systems in which repeated edges are allowed.
(In the disjointness graph, multiple copies of a single edge correspond to distinct
vertices.)

2. Multihypergraphs. First, we fully characterize the extremal behavior in the
multihypergraph case. Recall that M(k, s) is the multihypergraph consisting of

(
[2k]
k

)
,

where each edge occurs with multiplicity s. Its disjointness graph consists of 1
2

(
2k
k

)
copies of the complete bipartite graph Ks,s.

Theorem 2.1. For s ≥ 1, any k-uniform [1, s]-almost intersecting multihyper-
graph has at most s

(
2k
k

)
edges.

The unique multihypergraph achieving this bound is M(k, s), which is s-almost
intersecting.

We will use two classical theorems from extremal set theory. The first is the
Bollobás theorem on intersections between pairs of sets.

Theorem 2.2 (see [3]). Let (A1, B1), . . . , (Am, Bm) be a sequence of pairs of sets
with |Ai| = a and |Bi| = b for every i. If

1. Ai ∩Bi = ∅ for 1 ≤ i ≤ m, and
2. Ai ∩Bj 
= ∅ for 1 ≤ i, j ≤ m,
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then m ≤ (
a+b
a

)
. Furthermore, if m =

(
a+b
a

)
, then there is some set S of cardinality

a+ b such that the Ai are all subsets of S of size a, and Bi = S \Ai for each i.
We will also need the skew version of this theorem (see Frankl [9], Kalai [12], and

Lovász [13]).
Theorem 2.3 (see [9, 12, 13]). Let (A1, B1), . . . , (Am, Bm) be a sequence of pairs

of sets with |Ai| = a and |Bi| = b for every i. If
1. Ai ∩Bi = ∅ for 1 ≤ i ≤ m, and
2. Ai ∩Bj 
= ∅ for 1 ≤ i < j ≤ m,

then m ≤ (
a+b
b

)
.

Note that the assumptions in Theorem 2.3 are weaker than those in Theorem 2.2;
however, there is not a unique extremal graph (for example, B1 can be any b-element
set disjoint from A1).

We are now ready to proceed with the proof of Theorem 2.1.
Proof of Theorem 2.1. Let F be any such multihypergraph, and let F = DG(F)

be its disjointness graph (an edge of F with multiplicity c is represented by c distinct
vertices in F ). We know the minimal and maximal degrees satisfy δ(F ) ≥ 1 and
Δ(F ) ≤ s, respectively. For A ∈ F = V (F ), let Γ(A) = {B ∈ F : A ∩ B = ∅} be its
neighborhood in F .

We construct a sequence (A1, B1), (A2, B2), . . . of pairs of vertices of F according
to the following procedure, which we will call the AB algorithm: set i = 1 and V1 = F .
Repeat the following steps until Vi = ∅:

1. Choose Bi arbitrarily from Vi.
2. Since δ ≥ 1, we know that Γ(Bi) 
= ∅. Let Ai be an arbitrary element of

Γ(Bi). (Note that Ai is chosen from V1, the original vertex set, for every i.)
3. Set Vi+1 = Vi \ Γ(Ai), and increment i.

Letm be the length of the resulting sequence of pairs (Ai, Bi). By the construction
we immediately have Ai ∩ Bi = ∅ for i = 1, . . . ,m. Since at stage i we eliminate all
sets disjoint from Ai as candidates for any future Bj , we know that Ai ∩ Bj 
= ∅ for

1 ≤ i < j ≤ m. The hypotheses of Theorem 2.3 are satisfied, and so m ≤ (
2k
k

)
.

Since at the ith step in the AB algorithm we eliminate at most s vertices from
Vi+1, we must have |F|/s ≤ m. Thus |F|/s ≤ (

2k
k

)
, and we have proved the first claim

in the theorem.
Now assume that F is a [1, s]-almost intersecting k-uniform multihypergraph with

exactly s
(
2k
k

)
edges, and apply the AB algorithm to F = DG(F). The resulting

sequences A1, A2, . . . , Am and B1, B2, . . . , Bm have length at most
(
2k
k

)
, and so the

algorithm must eliminate exactly s vertices from Vi+1 at the ith step for every i.
Since this must hold for every possible sequence of choices in the algorithm, F must
be s-regular, and so F itself is [s, s]-almost intersecting.

We claim that for X,Y ∈ F , either Γ(X) = Γ(Y ) or Γ(X) ∩ Γ(Y ) = ∅. Why?
Assume that the edges X,Y are a counterexample, so that there exists Z ∈ Γ(X) \
Γ(Y ). Note that there must then exist W ∈ Γ(Y ) \ Γ(X), since both Γ(X) and Γ(Y )
contain s elements. Consider running the AB algorithm with B1 = Z, A1 = X ,
B2 = W , and A2 = Y . Then |V2 \ V3| = s − |Γ(X) ∩ Γ(Y )| < s, which is impossible
(see Figure 1).

Now let X and Z be two vertices adjacent in F . For any Y ∈ Γ(Z), we know
Γ(Y ) = Γ(X). That is, every neighbor of Z, including X , has the same neighborhood,
which must be of size s and contains Z. Similarly, every neighbor of X must have the
same neighborhood, which is of size s and containsX . We conclude that the connected
component containing X and Z in F is isomorphic to the complete bipartite graph
Ks,s and that F itself consists of 1

2

(
2k
k

)
disjoint copies of Ks,s.
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Fig. 1. Here s = 5, but the nontrivial intersection of Γ(X) and Γ(Y ) forces |V2 −V3| = 2 when
B1 = Z, A1 = X, B2 = W , and A2 = Y .

Let K =
(
2k
k

)
, and choose a sequence F1G1, . . . , FK/2GK/2 of edges of F , one

from each component. For each edge FiGi, we define two pairs (Fi, Gi) and (Gi, Fi):
altogether we get K pairs of k-sets, and these satisfy the conditions of Theorem 2.2.
It follows that the pairs {Fi, Gi} consist of all partitions of some fixed set S of size
2k into two sets of size k. Furthermore, replacing any Fi or Gi by a different vertex
from (the same vertex class in) the same component must give the same graph. It
follows that each part of each component of F must represent s copies of the same
k-set. Thus F is actually M(k, s).

3. Hypergraphs. For ordinary hypergraphs, we are able to significantly weaken
the assumptions of the conjecture made in [11]. Although in Theorem 3.1 we assume
only that our hypergraphs are [R, s]-almost intersecting for some R > R0(k), we are
able to show that the extremal systems are in fact all s-almost intersecting.

Let us describe the extremal families. Fix disjoint sets A, B with |A| = 2k − 2
and |B| ≥ s + 1. Let f :

(
A

k−1

) → (
B

s+1

)
be any map such that f(S) = f(A \ S) for

every S ∈ (
A

k−1

)
. We then define the k-uniform hypergraph Mf by

(3.1) Mf =

{
S ∪ {x} : S ∈

(
A

k − 1

)
, x ∈ f(S)

}
.

Thus Mf is the union of 1
2

(
2k−2
k−1

)
“double stars” of the form {S ∪ {x1}, . . . , S ∪

{xs+1}, (A \ S) ∪ {x1}, . . . , (A \ S) ∪ {xs+1}}.
Each edge of Mf is disjoint from exactly those edges which have the complemen-

tary “core” in A and a different “petal” in B; there are s such edges. Hence all Mf

are, in fact, s-almost intersecting, and all have the same disjointness graph: 1
2

(
2k−2
k−1

)
copies of Ks+1,s+1 minus a matching.

The hypergraphs F(k, s) defined in [11] correspond to |B| = s+1 and f(X) = B
for all X ∈ (

A
k−1

)
; they clearly minimize the size of the ground set over these families.

Theorem 3.1. Fix k > 2. Then there exist constants R = R(k) and s0 = s0(k)
such that when s > s0, any k-uniform [R, s]-almost intersecting hypergraph has at
most (s+ 1)

(
2k−2
k−1

)
edges.

The only hypergraphs achieving this bound are those of the form Mf for some f .
Remark. Note that the extremal [R, s]-almost intersecting hypergraphs are, in

fact, s-almost intersecting.
Remark. Of course, [11] covers k = 2 completely for s-almost intersecting hyper-

graphs. In section 4 below, we discuss [1, s]-almost intersecting hypergraphs in the
k = 2, 3 cases.

In general, a sunflower with r petals and core C is a collection of sets Y1, . . . , Yr

such that Yi ∩ Yj = C for all i 
= j. The disjoint sets Yi − C are called the petals,
and they are not allowed to be empty, although the center C can be. (Note that
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the “stars” in Mf are in fact sunflowers with one-element petals and (k− 1)-element
cores.) The key fact about sunflowers, which we will use in the proof of Theorem 3.1,
is the following classical result of Erdős and Rado [7].

Theorem 3.2 (Erdős–Rado Sunflower Lemma). Fix r, k ≥ 1. Any k-uniform
hypergraph F satisfying |F| > k!(r − 1)k contains a sunflower with r petals.

The following lemma assures us that extremal examples for Theorem 3.1 avoid a
particular kind of pathology. Note that it is simply not true for k = 2, as the complete
bipartite graph K2,s+1 contains disjoint edges.

Lemma 3.3. Fix k > 2. For s > kk, no k-uniform [0, s]-almost intersecting
hypergraph with at least (s+ 1)

(
2k−2
k−1

)
edges contains k mutually disjoint edges.

Proof of Lemma 3.3. Assume, to the contrary, that F is a k-uniform [0, s]-almost
intersecting hypergraph containing mutually disjoint edges X1, . . . , Xk. There are at
most kk edges Y ∈ F such that Y ∩Xi 
= ∅ for all i ∈ [k]. All other edges in F are
disjoint from at least one of the Xi. Look at degrees in F = DG(F): we must have

dF (X1) + · · ·+ dF (Xk) ≥ (s+ 1)

(
2k − 2

k − 1

)
− kk ≥ (s+ 1)(k + 1)− kk,

since
(
2k−2
k−1

)
> k + 1 for k > 2. But then dF (X1) + · · ·+ dF (Xk) > ks, contradicting

Δ(F ) ≤ s.
Proof of Theorem 3.1. It will be convenient to introduce a new parameter r and

define R = kkrk. It is then enough to prove that there are functions r0(k) and s0(k, r)
such that if r > r0(k) and s > s0(k, r), then every k-uniform (R, s)-almost intersecting
hypergraph has at most (s+1)

(
2k−2
k−1

)
edges. We will find such functions r0 and s0 in

the course of the proof.
Let F be a k-uniform [R, s]-almost intersecting hypergraph with at least (s +

1)
(
2k−2
k−1

)
edges. By repeatedly applying Theorem 3.2 until too few edges are left to

satisfy its hypotheses, we can decompose F into a union of
⌈ |F|−R

r

⌉
sunflowers with

r petals each, together with a collection of fewer than R leftover edges. Note that
a single core might appear in many sunflowers; however, by Lemma 3.3, none of the
sunflowers can have an empty core. Build the (k− 1)-uniform core multihypergraph G
by taking the cores of these sunflowers to be edges; if any core has fewer than k − 1
elements, pad it with new dummy elements (distinct for each edge, so as to introduce
no new intersections) to raise the cardinality to k − 1.

Claim 1. G is [1, t]-almost intersecting, where t = rs
(r−k)2 > s

r .

Proof of Claim 1. First consider the upper bound. Suppose a core C ∈ G is
disjoint from T other cores, D1, . . . , DT . Consider a particular Di:

• Di can intersect at most k − 1 petals around C, since |Di| = k − 1 and the
petals at C are disjoint;

• similarly, each edge in the sunflower around C can meet at most k petals
around Di.

Thus, the number of disjoint pairs (X,Y ), where X is an F -edge in the sunflower
with core C, and Y is an F -edge in the sunflower with core Di for some i, is at least
(r − (k − 1))(r − k). Summing the degrees in F = DG(F) of the r edges in the
sunflower with core C gives

T · (r − k)(r − k + 1) ≤ rs.

Now consider the lower bound. Any edge X in F is disjoint from at least R other
edges of F , and we omit fewer than R edges total as we construct sunflowers. Hence
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there must be at least one edge disjoint from X contributing to a core in G, and
disjointness is preserved by reducing to cores.

Claim 2. Fix ε > 0. Suppose that r > 6k(4k)/ε and s > 2R/ε. Then

(3.2)

((
2k − 2

k − 1

)
− ε

)
t ≤ |G| ≤

(
2k − 2

k − 1

)
t.

Proof of Claim 2. The upper bound follows immediately from Claim 1 and The-
orem 2.1.

For the lower bound, note first that

(3.3)
s

r
≤ t ≤ s

r

(
1 +

3k

r

)
,

with the second inequality true as long as r > 5k. Now, if |G| < ((
2k−2
k−1

) − ε
)
t, then

|F| ≤ r|G|+R and (3.3) imply that

(3.4) |F| ≤
((

2k − 2

k − 1

)
− ε

)(
1 +

3k

r

)
s+R <

(
2k − 2

k − 1

)
s.

Since |F| ≥ (
2k−2
k−1

)
(s+ 1), this is impossible.

Remark. At this point we have obtained an asymptotic version of the main
conjecture. By construction we know that r|G| ≤ |F| ≤ r|G| + R, so for any ε, r, s
satisfying the conditions of Claim 2 we have

(3.5) |F| ≤ (1 + ε)(s+ 1)

(
2k − 2

k − 1

)
.

We now look more closely at the structure of G = DG(G), showing that it must
be approximately regular (Claim 3) and has neighborhoods which are either identical
or nearly disjoint (Claim 4).

Claim 3. If ε, r, s satisfy the conditions of Claim 2, then

(1− ε)t ≤ δ(G) ≤ Δ(G) ≤ t.

Proof of Claim 3. If δ(G) < (1 − ε)t, then it is possible to run the AB algorithm
by taking B1 to be a neighbor of a vertex of minimal degree, taking A1 to be the
vertex of minimal degree itself, and then continuing arbitrarily. We eliminate fewer
than (1− ε)t vertices after the first pair and at most t vertices at each of the following
steps. Theorem 2.3 tells us that any run of the AB algorithm must terminate in at
most

(
2k−2
k−1

)
steps. Hence

(3.6) |G| < (1− ε)t+

((
2k − 2

k − 1

)
− 1

)
t =

((
2k − 2

k − 1

)
− ε

)
t,

contradicting Claim 2.
Claim 4. If ε, r, s satisfy the conditions of Claim 2, then for all X,Y ∈ F , either

Γ(X) = Γ(Y ) or |Γ(X) ∩ Γ(Y )| ≤ εt.
Proof of Claim 4. Assume, to the contrary, that there exist X,Y ∈ G with

Γ(X) 
= Γ(Y ) and |Γ(X) ∩ Γ(Y )| > εt. Exchanging X and Y if necessary, we may
assume that Γ(Y ) \ Γ(X) 
= ∅. Choose W ∈ Γ(Y ) \ Γ(X) and Z ∈ Γ(X), and run the
AB algorithm with B1 = Z, A1 = X , B2 = W , and A2 = Y . After the first pair at
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most t vertices are eliminated. However, after the second pair, at most (1−ε)t vertices
are eliminated because of the nontrivial intersection of the two neighborhoods. Again
by Theorem 2.3 all vertices must be eliminated after at most

(
2k−2
k−1

)
steps, so we

conclude

(3.7) |G| ≤ t+ (1− ε)t+

((
2k − 2

k − 1

)
− 2

)
t.

Since the right-hand sides of (3.7) and (3.6) are equal, Claim 2 again gives a contra-
diction.

Claim 5. Let r = 10k(64k), and suppose that s > 2(160k)(k2k)(64k
2

). Then G
is a disjoint union of exactly 1

2

(
2k−2
k−1

)
complete bipartite graphs in which the size of

each part of each component is between (0.99)t and t.
Proof of Claim 5. First, set ε = 1

16k , and note that ε, r, s then satisfy the condi-

tions for Claims 2, 3, and 4. Recall that R = kkrk.
Let N1, N2, . . . be the distinct neighborhoods that occur in G. We know that

(1 − ε)t ≤ |Ni| ≤ t for each i and |Ni ∩ Nj | < εt for distinct i, j. So for each i,

|Ni\
⋃

j<i Γ(Xj)| ≥ |Ni|−
∑

j<i |Ni∩Nj | ≥ (1−iε)t. If there are at least d =
(
2k−2
k−1

)
+1

distinct neighborhoods, then

|G| ≥
∣∣∣∣∣

d⋃
i=1

Ni

∣∣∣∣∣ ≥
d∑

i=1

(1− iε)t =

(
d−

(
d+ 1

2

)
ε

)
t >

(
2k − 2

k − 1

)
t.

Since
(
d+1
2

)
< 1/ε, this contradicts Claim 2.

We therefore have that there are at most
(
2k−2
k−1

)
distinct neighborhoods. By

Claim 3, all neighborhoods have size at most t. Since δ(G) > 0, the neighborhoods
cover all the vertices. By the lower bound in Claim 2, there are exactly

(
2k−2
k−1

)
neighborhoods.

Note that Γ(x) = Γ(y) for x, y vertices of G is an equivalence relation on the
vertex set of G. No equivalence class can contain more than t vertices, since then any
vertex in the corresponding neighborhood would have degree greater than t. If any
equivalence class contains fewer than 2t

3 vertices, then the total number of vertices

in G is less than
((

2k−2
k−1

)− 1
3

)
t, contradicting Claim 2. Hence every class contains at

least 2t
3 vertices.

Now suppose that x ∈ Γ1∩Γ2 witnesses the intersection of two distinct neighbor-
hoods. Then x has degree at least 2t

3 + 2t
3 = 4t

3 , since x is adjacent to every vertex with
neighborhood Γ1 and every vertex with neighborhood Γ2. This is impossible, since
Δ(G) ≤ t. We can conclude that distinct neighborhoods are in fact fully disjoint.

For any edge {x, y} of G, we have Γ(x) = {z : Γ(z) = Γ(y)}. It follows that the
component of {x, y} is the complete bipartite graph with parts Γ(x) and Γ(y), and G
therefore has the claimed structure. The lower bound on the size of the classes follows
from Claim 3.

We are now ready to define the promised r0(k) = 10k(64)k and s0(k) = 2(160k) ·
(k2k)(64k

2

), as in the conditions of Claim 5. Note that R = kkrk = 10kk2k64k
2

.
The next step of the argument is identical to that at the end of the proof of The-

orem 2.1. Extract a matching from G, taking one edge (Xi, Yi) from each component
for i = 1, . . . , 1

2

(
2k−2
k−1

)
. Recalling that vertices of G are actually edges in G, consider

the family of pairs of sets

(X1, Y1), (Y1, X1), (X2, Y2), (Y2, X2), . . . .
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By construction, this is a (k − 1)-uniform cross-intersecting family with
(
2k−2
k−1

)
pairs.

By Theorem 2.2, there exists a set S of size 2k−2 such that every pair (Xi, Yi) consists
of complementary subsets of S, both of size k − 1. As before, replacing any Xi or Yi

with another vertex from the same part of the same component does not change the
graph. Hence we know that the core multihypergraph G contains all k − 1 element
subsets of a fixed (2k − 2)-element set S, with all multiplicities between (0.99)t and
t. By the structure of G, we know that no dummy elements were required in the
construction of G; all the sunflowers had (k − 1)-element cores and single-element
petals.

We once again consider our original hypergraph, F , which we know to be [R, s]-
almost intersecting and of size at least (s+ 1)

(
2k−2
k−1

)
.

Claim 6. Every edge in F intersects S in exactly k − 1 elements, and every
(k − 1)-element subset of S is contained in exactly s+ 1 edges of F .

Proof of Claim 6. First, let X be a (k− 1)-element subset of S. Then there must
be at least (0.99)s edges in F containing X , since X has multiplicity at least (0.99)t
in G, each occurrence in G corresponds to a sunflower with r petals in F , and, by
Claim 1, we must have tr > s.

Now, if any edge Z of F intersects S in q ≤ k − 2 or fewer vertices, it would be
disjoint from at least ((0.99)s− k)

(
2k−2−q
k−1

)
edges whose cores lie in S \Z. This is far

more than the allowed s disjointnesses. We conclude that |Z ∩ S| ≥ k − 1.
What if Z ⊆ S? Then Z intersects every sunflower core; hence, by the preceding

paragraph, Z intersects every edge in F . This is also impossible.
Note also that if X is contained in more than s+1 edges of F , then any edge W

of F containing S \X is disjoint from at least s+1 of the edges containing X , which
is a contradiction.

Since F has at least (s+1)
(
2k−2
k−1

)
edges, every element of

(
S

k−1

)
must be contained

in exactly (s+ 1) edges of F .
We have shown that |F| ≤ (s + 1)

(
2k−2
k−1

)
. To conclude the main proof, we now

assume that F has exactly (s + 1)
(
2k−2
k−1

)
edges. Let X,Y ∈ (

S
k−1

)
be a fixed pair of

disjoint sets, and let x1, . . . , xs+1 be the petal vertices over the core X . If there exists
a vertex y 
∈ {x1, . . . , xs+1} such that Y ′ = {y} ∪ Y ∈ F , then Y ′ is disjoint from
every one of the s+ 1 edges containing X , which is impossible. Thus the s+ 1 edges
of F containing Y are {x1}∪Y, . . . , {xs+1}∪Y . This suffices to show that F is indeed
of the form Mf for an appropriate function f .

4. Small values of k. In this section we specialize to the cases k = 2 and k = 3
and show that for both values we can in fact take R = 1 in Theorem 3.1.

Theorem 4.1. For s > 13, any [1, s]-almost intersecting graph has at most 2s+2
edges. The only graph achieving this bound is K2,s+1.

Proof. Let F be any [1, s]-almost intersecting graph with m ≥ 2s+ 2 edges. Let
X be the vertex set of F , and let F = DG(F) be the disjointness graph of F . For
e ∈ F and x ∈ X , we shall write dF (e) for the degree in F of e (i.e., the number of
edges disjoint from e) and d(x) for the degree in F of x (i.e., the number of edges
that contain x). Note that δ(F ) ≥ 1: we will carry out most of the proof under the
weak assumption that no vertex meets every edge of F and use the assumption that
δ(F ) ≥ 1 only when we need it.

Next note the following:
• Any edge e = {x, y} of F meets (in one vertex) (m−1)−dF (e) ≥ (m−1)−s ≥

s+ 1 edges.
• However, e = {x, y} also meets (d(x)− 1) + (d(y)− 1) edges (in one vertex),
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so d(x) + d(y) ≥ s+ 3.
Now choose a pair e1 = x1y1 and e2 = x2y2 of disjoint edges (which must exist as
m > 3 and F is not a star).

Suppose that min{d(x1), d(y1)} ≥ 8. Let f be any edge incident with x1 that does
not meet any of {y1, x2, y2}. Then f is disjoint from at least six of the edges incident
with y1 and at least (s+1)−4 = s−3 of the edges incident with e2; since at most two
edges are double-counted, f is disjoint from at least 6+ (s− 3)− 2 > s edges, giving a
contradiction. Arguing symmetrically for x2 and y2 (and relabeling if necessary), we
may assume that d(y1), d(y2) ≤ 7, and therefore d(x1), d(x2) ≥ (s+ 3)− 7 = s− 4.

Now if any edge is disjoint from {x1, x2}, it meets at most two edges incident with
each and so (as there may be an edge x1x2) misses at least (d(x1)−2)+(d(x2)−2)−1 =
d(x1) + d(x2) − 5 ≥ 2s− 13 > s edges. This is again a contradiction, so we see that
all edges are incident with x1 or x2.

The edge x1x2 is not present, or it would meet every other edge (this is the only
place we use the condition δ(F ) ≥ 1). Thus any edge incident with x1 meets at most
one edge incident with x2; it follows that x2 is incident with at most s+1 edges, and
similarly x2 is incident with at most s+1 edges. We deduce that m = 2s+2, and x1

and x2 are each incident with exactly s+ 1 edges. Furthermore, every edge incident
with x1 meets an edge incident with x2. It follows that F is a copy of K2,s+1.

We do not know the smallest possible value for s in Theorem 4.1; however, there
are only finitely many graphs with at most 30 edges and no isolated vertices, and so
this could in principle be determined by a finite check. As noted in [11], there exist
s-almost intersecting graphs with more than 2s+ 2 edges for s = 1, 3, 6.

Theorem 4.2. For s > 13, any [0, s]-almost intersecting graph that is not a star
has at most 2s+ 3 edges. The only graph achieving this bound is K2,s+1 plus an edge
connecting the vertices in the part of size 2.

Proof. Suppose that F satisfies the conditions of the theorem and has m ≥ 2s+3
edges. We follow the proof of Theorem 4.1 through to the beginning of the final
paragraph: at this point we have used only the conditions that Δ(F ) ≤ s and F is
not a star. We now delete the edge x1x2, if present, and complete the argument,
finding that we are left with a copy of K2,s+1. It follows that x1x2 must have been
present, and adding it back gives the graph specified.

For k = 3, we can prove a similar strengthening of Theorem 3.1.
Theorem 4.3. For s > 625, any [1, s]-almost intersecting 3-uniform hypergraph

has at most 6s+ 6 edges. The only hypergraphs achieving this bound are of the form
Mf for some function f .

Proof. Let F be any [1, s]-almost intersecting 3-uniform hypergraph with m ≥
6s+ 6 edges. Let X be the vertex set of F , and let F = DG(F) be the disjointness
graph of F . As in the proof of Theorem 4.1, for e ∈ F and x ∈ X , we shall write
dF (e) for the degree in F of e and d(x) for the degree in F of x. Note that δ(F ) ≥ 1:
we will carry out most of the proof under the weak assumption that for every edge
e, and vertices x, y ∈ e, there is an edge disjoint from {x, y}, and use the assumption
that δ(F ) ≥ 1 only when we need it. We note that setting s > 625 is sufficiently large
for all steps below.

We begin with a useful fact: suppose that some pair of vertices x and y have t ≥ 1
common edges. There must be some edge e disjoint from {x, y}; since e is disjoint
from all but at most three edges incident with x and y, we must have t ≤ s+ 3.

We now break into three cases, according to the structure of F .
Case 1. F contains three pairwise disjoint edges, say, e1, e2, e3.
There are at most 27 edges meeting all three of these edges, and every other edge
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is disjoint from at least one. It follows that dF (e1) + dF (e2) + dF (e3) ≥ m − 27 ≥
6s− 21 > 3s, since s is sufficiently large. This contradicts Δ(F ) ≤ s, so we conclude
that F does not contain three pairwise disjoint edges.

Case 2. There are edges e, f1, f2 such that e is disjoint from f1 and f2, and
|f1 ∩ f2| = 1.

Suppose f1 ∩ f2 = {y}. There are at most s edges disjoint from each of e, f1, f2,
and so at least (6s + 6) − 3s = 3s + 6 edges meet all of e, f1, f2. At most 12 edges
meet all of e, f1, f2 and miss y, and so at least (3s + 6) − 12 = 3s − 6 edges must
meet e and y. At most three edges contain y and meet e in two vertices, and so at
least 3s − 9 edges contain y and meet e in exactly one vertex. Let e = {x1, x2, x3},
and, for i = 1, 2, 3, let

Ei = {f ∈ F : f ∩ {x1, x2, x3, y} = {xi, y}}.

Since, for each i, there are at most s+3 edges incident with both y and xi, it follows
that |Ei| ≥ (3s− 9)− 2(s+ 3) = s− 15.

Now any edge that misses both y and xi must be disjoint from at least (s−15)−3 =
s− 18 edges from Ei. It follows that if f misses y, then |f ∩ e| ≥ 2, since otherwise f
would be disjoint from at least 2(s−18) = 2s−36 > s edges from E1∪E2∪E3. Since
there are at most s edges disjoint from e, and at most 3(s+3) = 3s+9 edges incident
with both e and y, it follows that there are at least (6s+ 6)− s − (3s+ 9) = 2s− 3
edges that meet e and miss y. Thus there are at least 2s − 3 edges that meet e in
exactly two vertices.

Finally, consider f1. There are at most nine edges that meet e in two vertices
and also meet f1. But then at least (2s− 3)− 9 = 2s− 12 edges that meet e in two
vertices must miss f1, which gives a contradiction.

Case 3. For every edge e and every pair of edges f1, f2 that are disjoint from e,
|f1 ∩ f2| = 2.

Set K = 11, and let G be the graph with vertex set X and xy ∈ E(G) if there are
at least K edges from F that contain both x and y. For each edge xy of G, choose a
set Exy of K edges from F that contain x and y.

It will be useful to note a relationship between edges of G and F . If xy is an edge
of G, then every edge that is disjoint from {x, y} meets at most three edges from Exy

and so is disjoint from at leastK−3 edges from Exy; so if there are t edges of F disjoint
from {x, y}, then t(K − 3) ≤ ∑

e∈Exy
dF (e) ≤ sK, and so t ≤ sK/(K − 3) = (11/8)s.

We now consider the structure of G:
• Note first that G does not contain three independent edges, or else F would
contain three independent edges (we can pick these greedily).

• Next note that, for any edge x1y1 of G, there is at most one edge of G
disjoint from x1y1. For suppose x2y2 and x2y3 are disjoint from x1y1. Since
K = 11, we can greedily extend all three edges to f1, f2, f3 ∈ F such that
f2 ∩ f3 = {x2} and f1 is disjoint from f2 ∪ f3. But we have already ruled this
out in Case 2.

• We next show that Δ(G) ≤ 3. Suppose that xyi, i = 1, . . . , 4, are four edges
of G. Note that every edge of Gmust contain x, since any edge not containing
x would be disjoint from at least two edges of form xyi (which we have just
shown does not happen). Let f = {z1, z2, z3} be any edge of F that does not
contain x. For each i, there are at most s + 3 edges of F containing both
x and zi, and there are at most s edges of F disjoint from f , so there are
at least (6s + 6) − 3(s + 3) − s = 2s − 3 edges of F that do not contain x.
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There are at most 6(K−1) edges of F that contain at least two vertices from
{y1, y2, y3, y4} (since G does not have any edges among this set), and so there
are at least 2s − 6K + 3 edges of F that miss x and meet {y1, y2, y3, y4} in
at most one vertex. It follows that some edge {x, yi} of G is disjoint from at
least (3/4)(2s− 6K + 3) edges of F . But (3/4)(2s− 6K + 3) > sK/(K − 3),
giving a contradiction. We conclude that Δ(G) ≤ 3.

It follows from the facts above that all edges of G are contained in some set S ⊂ X
of size 4. We have not yet shown that G has any edges: if e(G) = 0, choose S to be
any 4-set containing an edge of F .

We next consider how the edges of F intersect S.
• If S contains an edge of G, there are at most sK/(K − 3) edges of F disjoint
from S; otherwise, S contains an edge of F , so there are at most s edges
disjoint from S.

• Suppose that at least 36K edges of F meet S in exactly one vertex. Then
at least 9K of these edges contain the same vertex x ∈ S: let E′ be such a
set of 9K edges. Now consider the graph H with vertex set X −S and edges
{e \ {x} : e ∈ E′}. H has at least 9K edges, and Δ(H) ≤ K− 1 (or we would
have an edge of G from x to a vertex outside S). By choosing greedily, we
can find a matching of size 5 in H ; let f1, . . . , f5 be the corresponding edges
of F . But now let e be any edge of F that does not contain x: e meets at
most three of the fi, so there are two others that are disjoint from e and meet
in one vertex, which is a configuration that we have already excluded. We
conclude that at most 36K edges of F meet S in exactly one vertex.

• At most four edges of F are contained in S.
It follows that at least (6s + 6) − sK/(K − 3) − 36K − 4 > s + 18 (since s is large
enough) edges of F meet S in exactly two vertices. If any edge of F is disjoint from
S, then it can meet at most 18 of these edges, giving a contradiction. We deduce that
no edges of F are disjoint from S, and so at least (6s+ 6)− 36K − 4 = 6s− 36K +2
edges of F meet S in exactly two vertices. Since no pair of vertices in S belongs to
more than s + 3 edges, it follows that every pair of vertices in S belongs to at least
(6s− 36K+2)− 5(s+3) = s− 36K− 13 edges. Now if any edge of F meets S in only
one vertex, it is disjoint from at least s − 36K − 16 edges incident with any pair of
vertices in S that it does not meet; there are three such pairs, giving a contradiction.
We conclude that every edge meets S in at least two vertices.

Finally, let S = {s1, s2, s3, s4}. If F is [1, s]-almost intersecting, then no edge of
F is contained in S (or it would meet every other edge). No pair {si, sj} belongs
to more than s+ 1 edges, or any edge containing S \ {si, sj} would be disjoint from
more than s of these edges. Thus, if |F| ≥ 6s+ 6, then every pair from S is incident
with exactly s+ 1 edges, and so every edge incident with {si, sj} must meet an edge
incident with S \ {si, sj}. It follows immediately that F is an extremal system from
the family described in the theorem.

Theorem 4.4. Let s > 625, and suppose that F is an [0, s]-almost intersecting
3-uniform hypergraph. If, for every edge e ∈ F , and vertices x, y ∈ e, there is an edge
of F disjoint from {x, y}, then F has at most 6s + 10 edges. The only hypergraphs
achieving this bound are given by adding up to four edges entirely within the 4-vertex
“core” of the extremal hypergraphs of Theorem 4.3.

Proof. Follow the proof of Theorem 4.3 through the final paragraph, and then
delete all edges that lie entirely inside S.
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5. Discussion. The results of section 4 show that for k = 2, 3 we can take R = 1
in Theorem 3.1. We conjecture that a similar result holds for all k.

Conjecture 5.1. Fix k > 2, and let s > s1(k) be sufficiently large. Then any
k-uniform [1, s]-almost intersecting hypergraph has at most (s+ 1)

(
2k−2
k−1

)
edges.

It seems likely that the only hypergraphs achieving this bound are of the form
Mf for some function f , as described in (3.1).

Another way to weaken the conditions of Theorem 3.1 is to drop the condition
that every edge needs to be disjoint from some other edge. Of course, the system can
then have unbounded size, as we could take a large star. However, if we demand only
that some pair of edges is disjoint, then, for k = 2, 3, Theorems 4.2 and 4.4 again
determine the hypergraphs of maximal size, which depends only on k.

One natural way of expressing the hypothesis of Theorem 4.2 is to say that no
vertex meets all edges. We might hope for an extension to k-uniform hypergraphs for
k > 2 by looking at hypergraphs in which no set of t vertices meets all edges. In this
case, t = k − 2 is not enough, as we can fix a set S of size 2k − 3 and take all edges
that meet S in exactly k−1 vertices: the resulting hypergraph is intersecting and has
unbounded size. On the other hand, t = k is equivalent to the condition that every
edge is disjoint from some other edge, which takes us back to Conjecture 5.1! So the
only other interesting case is t = k − 1, for which we conjecture the following.

Problem 5.2. What is the maximum size of a k-uniform, [0, s]-almost intersect-
ing hypergraph F in which no set of k − 1 vertices meets all the edges? What do the
extremal hypergraphs look like?

It is easy to see that the size of F is bounded (as pointed out by Pokrovskiy [14]):
F cannot contain a sunflower with k+ s+1 edges (as the core of the sunflower would
then have to meet every edge), so the number of edges is bounded by the Sunflower
Lemma.

We conjecture that, for k ≥ 2 and sufficiently large s, an extremal example can
be obtained by filling in the (2k − 2)-set at the center of a hypergraph of form Mf ,
giving hypergraphs of size

(s+ 1)

(
2k − 2

k − 1

)
+

(
2k − 2

k

)
.

We conjecture that the same bound should hold under the weaker condition that no
edge contains a set of k − 1 vertices meeting all the edges. The Sunflower Lemma
again gives an upper bound, while Theorems 4.2 and 4.4 confirm the conjecture in
the special cases k = 2, 3.

Another improvement to Theorem 3.1 would be to bring down the value of s0. We
have not optimized the constants in the proof, but (due to the use of the Sunflower

Lemma) the proof gives a bound of order 2O(k2). It is likely that this is far from the
truth. Can s0 be brought down to a polynomial in k?

From below, a few examples show that we cannot hope to bring s all the way
down to 1. For k = 2, [11] found several small graphs that are s-almost intersecting

but have more than 2s + 2 edges. We note that the complete hypergraph
(
[7]
3

)
is

4-almost intersecting and has 35 > (4 + 1)
(
4
2

)
= 30 edges. Similarly, the complete

hypergraph
(
[9]
4

)
is 5-almost intersecting with 126 > (5 + 1)

(
6
3

)
= 120 edges. For all

k ≥ 2, the complete hypergraph
(
[2k]
k

)
is 1-almost intersecting and has more than

2
(
2k−2
k−1

)
edges, so we need s0 > 1. But we cannot even rule out the possibility that

we can take s0 to be some constant (independent of k).
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Finally, we mention that the problems above have all concerned almost inter-
secting hypergraphs and multihypergraphs. Let us define F to be [a, b]-almost t-
intersecting if for all A ∈ F

a ≤ |{B ∈ F : |A ∩B| < t}| ≤ b.

It would be natural to try to extend the results (and questions) to almost t-intersecting
hypergraphs for t ≥ 2.
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