
Judicious partitions of bounded-degree graphs

B. Bollobás ∗† A.D. Scott ‡

Abstract

We prove results on partitioning graphs G with bounded maxi-
mum degree. In particular, we provide optimal bounds for bipartitions
V (G) = V1 ∪ V2 in which we minimize max{e(V1), e(V2)}.

1 Introduction

The Max Cut problem asks for the maximum size of a cut in a graph G.
By considering random cuts, it is easy to see that every graph with m edges
has a cut of size at least m/2 (and the obvious greedy algorithm achieves
this); sharper bounds for the extremal problem were obtained by Edwards
([10], [11]), who showed that every graph G with m edges has a bipartition
V (G) = V1 ∪ V2 with

e(V1, V2) ≥
m

2
+

√
m

8
+

1

64
− 1

8
. (1)

(For subsequent work, see [1],[2],[7], [20], and [13], [15].) Of course, maxi-
mizing e(V1, V2) over partitions V (G) = V1 ∪ V2 is equivalent to minimizing
e(V1)+e(V2); here we shall be concerned with minimizing max{e(V1), e(V2)}.
Problems of this type, which involve finding a bipartition in which each
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vertex class (or each subset of vertex classes) satisfies some condition simul-
taneously, are known as judicious partitioning problems (see [3], [4], [5], [6],
[7], [8]).

The problem of finding a bipartition V (G) = V1∪V2 minimizing max{e(V1), e(V2)}
was addressed in [6] (see also [16], [17], [18]), where it was shown that every
graph with m edges has a bipartition in which each vertex class contains at
most

m

4
+

√
m

32
+

1

256
− 1

16
(2)

edges; indeed, there is a partition that satisfies both this bound and (1). It
was also shown that there is a vertex partition into r classes such that each
vertex class contains at most

m

r2
+
r − 1

2r2

(√
2m+

1

4
− 1

2

)
(3)

edges. These bounds are sharp for complete graphs on rn+ 1 vertices.
In this paper, we concentrate on graphs with bounded maximal degree.

In section 2 we show that if k ≥ 3 is odd then we can improve on (2) for
graphs of maximal degree at most k: every such graph has a bipartition in
which each class contains at most

k − 1

4k
m+

k − 1

4
(4)

edges; the extremal graphs are of the form (2t + 1)Kk ∪ sKk+1, for s, t ≥ 0.
As in [6], we can also demand that e(V1, V2) is large: there is a bipartition
satisfying (4) such that

e(V1, V2) ≥
k + 1

2k
m. (5)

Note that (5) is sharp for graphs of the form tKk ∪ sKk+1. We also show
that stronger results hold for k-regular graphs.

In section 3 we discuss partitions in which we seek to bound the edges
contained in each vertex class both from above and from below. For instance,
given a graph with m edges we would like a bipartition with close to p2m
edges in one class and close to (1 − p)2m in the other class. We prove a
general result for partitions of oriented hypergraphs.
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2 Bipartitions of bounded-degree graphs

Our main result in this section is the following.

Theorem 1. Let k ≥ 3 be an odd integer. Then every graph G with m edges
and maximum degree at most k has a vertex partition V (G) = V1 ∪ V2 such
that, for i = 1, 2,

e(Vi) ≤
k − 1

4k
m+

k − 1

4
(6)

and

e(V1, V2) ≥
k + 1

2k
m. (7)

The extremal graphs for (6) are of the form (2t+ 1)Kk ∪ sKk+1, for s, t ≥ 0.

Proof. Suppose the theorem is false, and let G be a counterexample with a
minimal number of vertices. Then either G has no partition satisfying (6)
and (7), or G has no partition satisfying (6) with strict inequality and G is
not of the form (2t+ 1)Kk ∪ sKk+1.

Note first that G contains no component C isomorphic to Kk+1, or ap-
plying the theorem to G \ C yields the result for G (note that Kk+1 can be
partitioned into two vertex classes of size (k + 1)/2). Thus Brooks Theorem
implies that there is a proper colouring c : V (G) → [k] = {1, . . . , k}. Let
[k] = A ∪ B be a random partition into sets A,B with |A| = (k + 1)/2 and
|B| = (k − 1)/2, chosen with equal probability among all such partitions.
Then, writing VS = {x : c(x) ∈ S} for each S ⊂ [k], we have

E e(VA, VB) =
k+1
2

k−1
2(

k
2

) m =
k + 1

2k
m. (8)

Let V (G) = V1 ∪ V2 be a cut of G with maximal size: then (8) implies
e(V1, V2) ≥ k+1

2k
m. We choose such a cut with max{e(V1), e(V2)} minimal.

We may assume that e(V1) ≥ e(V2) Note that since e(V1, V2) is maximal, we
have |Γ(v) ∩ V2| ≥ |Γ(v) ∩ V1| for v ∈ V1 and |Γ(v) ∩ V1| ≥ |Γ(v) ∩ V2| for
v ∈ V2, where Γ(v) denotes the set of neighbours of v (or else we could move
v to the opposite side and increase the size fo the cut).

Suppose

e(V1) =
k − 1

4k
m+ α, (9)
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so

e(V2) ≤ m− e(V1, V2)− e(V1)

≤ m− k + 1

2k
m− k − 1

4k
m− α

=
k − 1

4k
m− α. (10)

If α < k−1
4

the partition V1 ∪ V2 will do. Thus we may assume that α ≥ k−1
4

.
If there is a vertex v ∈ V1 with |Γ(v)∩V1| = |Γ(v)∩V2| then d(v) ≤ k− 1

(since k is odd): moving v from V1 to V2 gives a partition V ′1 ∪ V ′2 with
e(V ′1 , V

′
2) = e(V1, V2) and e(V ′1) < e(V1), while

e(V ′2) ≤ e(V2) +
k − 1

2
≤ k − 1

4k
m− α +

k − 1

2
. (11)

By minimality of max{e(V1), e(V2)}, and since e(V ′1) < e(V1), we must have
e(V ′2) ≥ e(V1). Since α ≥ (k − 1)/4 it follows from (9) and (11) that α =
(k − 1)/4, and we have equality in (8), (9) and (10), so there is a partition
satisfying (6) and (7).

Otherwise, no v ∈ V1 has |Γ(v)∩V1| = |Γ(v)∩V2|: we shall show that then
G has a partition satisfying (6) and (7) strictly. Let W1 ⊂ V1 be minimal
such that e(W1) ≥ e(V \W1) and e(W1) ≥ k−1

4k
m + k−1

4
. Let W2 = V \W1;

note that every v ∈ W1 satisfies |Γ(v) ∩W2| > |Γ(v) ∩W1|. Let

R = min
v∈W1

|Γ(v) ∩W2|
|Γ(v) ∩W1|

≥ k + 1

k − 1
.

We write

e(W1) =
k − 1

4k
m+

k − 1

4
+ β, (12)

where β ≥ 0. Since |Γ(v) ∩W2| ≥ R|Γ(v) ∩W1| for v ∈ W1, summing over
v ∈ W1 yields

e(W1,W2) ≥ 2Re(W1) = R
k − 1

2k
m+R

k − 1

2
+ 2βR, (13)

and so, by (12) and (13),

e(W2) ≤ m−
(k − 1

4k
−Rk − 1

2k

)
m− (2R + 1)

(k − 1

4
+ β

)
. (14)
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Since R ≥ (k + 1)/(k − 1), (13) and (14) imply that

e(W1,W2) ≥
k + 1

2k
m+R

k − 1

2
(15)

and

e(W2) ≤
k − 1

k

m

4
− (2R + 1)

k − 1

4
. (16)

Let v ∈ W1 be a vertex with |Γ(v) ∩W2| = R|Γ(v) ∩W1|. Then let X1 =
W1\{v}, X2 = W2∪{v}. Clearly e(X1) < e(W1): we claim e(X1, X2) >

k+1
2k
m

and e(X2) <
k−1
4k
m + k−1

4
; by minimality of W1, e(X1) <

k−1
4k
m + k−1

4
. To

prove the bound on e(X2), it is enough by (16) to show

R

1 +R
d(v) < (2R + 2)

k − 1

4
,

since e(X2) = e(W2) + |Γ(v)∩W2| = e(W2) +Rd(v)/(1 +R). Since d(v) ≤ k,
this follows if 2Rk < (k − 1)(R + 1)2, which holds since R > 1 and k ≥ 3.
From (15) the bound on e(X1, X2) holds if

R− 1

R + 1
k < R

k − 1

2

since e(X1, X2) = e(W1,W2) − |Γ(v) ∩W2| + |Γ(v) ∩W1|. Rearranging, we
see that this is equivalent to 2/(k − 1) < R+ 2R/(R− 1), which holds since
R > 1.

We have shown that G has a partition satisfying (6) and (7). If G has no
partition satisfying (6) with strict inequality then we must have α = (k−1)/4
and equality in (9) and (10). So

e(V1) =
k − 1

4k
m+

k − 1

4

e(V2) =
k − 1

4k
m− k − 1

4

and so

e(V1, V2) =
k + 1

2k
m.

It follows that no cut of G has size more than k+1
2k
m; in particular, every

partition VA ∪ VB in (8) has size k+1
2k
m, and this must hold regardless of the

k-colouring. It follows that no vertex v of G has degree less than k − 1, or
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else there is a cut in (8) that would change size if we recoloured v. Similarly,
no vertex v has degree k: otherwise, v must have neighbours in every vertex
class (or else we could change the size of some cut): letting B ⊆ [k] consist of
(k− 1)/2 colours in which v has exactly one neighbour, and A = [k] \B, the
cut VA ∪ VB must have size k+1

2k
m, while the cut VA \ {v}, VB ∪{v} is strictly

larger. We deduce that G is (k − 1)-regular. Finally, if any component of G
is not isomorphic to Kk then it can be (k − 1)-coloured, which will yield a
larger cut.

We remark that for k even the theorem above (for k + 1) immediately
gives an optimal bound; the extremal graphs are of the form (2t + 1)Kk+1

for t ≥ 0.
For k-regular graphs we can get a stronger result.

Theorem 2. Let k ≥ 3 be an odd integer. Then every k-regular graph G has
a bipartition V (G) = V1 ∪ V2 such that |V1| = |V2| and

max{e(V1), e(V2)} ≤
k − 1

4k
m. (17)

The extremal graphs are sKk+1 for s ≥ 1.

Proof. Consider a partition with |V1| = |V2|; suppose that e(V1, V2) is max-
imal among such partitions. Note that since G is regular we have e(V1) =
e(V2). Thus we need only find a partition in which one vertex class satisfies
(17). Now if |Γ(v) ∩ V2| > |Γ(v) ∩ V1| for all v ∈ V1 then

e(V1) ≤
1

2
|V1|

k − 1

2
=
k − 1

8
|G| = k − 1

4k
m, (18)

and similarly for e(V2) if |Γ(v)∩V1| > |Γ(v)∩V2| for all v ∈ V2. Otherwise, we
can find v ∈ V1 with |Γ(v)∩ V1| > |Γ(v)∩ V2| and w ∈ V2 with |Γ(w)∩ V2| >
|Γ(w) ∩ V1|: exchanging v and w gives a cut with larger size.

Now if (18) holds with equality then we may assume |Γ(v)∩V2| > |Γ(v)∩
V1| for all v ∈ V1, and in particular that every vertex in V1 has |Γ(v)∩ V2| =
(k + 1)/2. If there is v ∈ V2 with |Γ(v) ∩ V1| < |Γ(v) ∩ V2| then exchanging
v with any vertex adjacent to v in V1 gives a larger cut: we deduce that
|Γ(v) ∩ V1| > |Γ(v) ∩ V2| for all v ∈ V2, and thus |Γ(v) ∩ V1| = (k + 1)/2 for
all v ∈ V2. Thus every vertex in V1 and V2 has exactly (k + 1)/2 neighbours
in the opposite class, and furthermore this holds for every bipartition into
sets of equal size satisfying (18). If v ∈ V1 and w ∈ V2 are adjacent then
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exchanging v and w must leave every vertex with (k + 1)/2 neighbours in
the opposite class, and so we must have Γ(v)∪ {v} = Γ(w)∪ {w}. It is then
easy to check that every component of G must be isomorphic to Kk+1.

A similar result to Theorem 2 holds when k is even.

Theorem 3. Let k ≥ 2 be an even integer. Then every k-regular graph G
with even order has a bipartition V (G) = V1 ∪ V2 with |V1| = |V2| and

max{e(V1), e(V2)} ≤
1

4

k

k + 1
m.

The extremal graphs are of the form 2tKk+1, t ≥ 1.
Every k-regular graph of odd order has a bipartition with |V1| = |V2| − 1

and

max{e(V1), e(V2)} ≤
1

4

k

k + 1
m+

k

4
.

The extremal graphs are of the form (2t+ 1)Kk+1, t ≥ 0.

Proof. If |G| is even then let V (G) = V1 ∪ V2 be a partition with |V1| =
|V2|, and e(V1, V2) maximal among such partitions. If there is v ∈ V1 with
|Γ(v) ∩ V2| > |Γ(v) ∩ V1| and w ∈ V2 with |Γ(w) ∩ V1| ≥ |Γ(w) ∩ V2| then
exchanging v and w gives a bigger cut; similarly, if there is v ∈ V1 with
|Γ(v) ∩ V1| ≥ |Γ(w) ∩ V2| and w ∈ V2 with |Γ(w) ∩ V1| > |Γ(w) ∩ V2| we can
exchange v and w. Also, if there are adjacent vertices v ∈ V1 and w ∈ V2
with |Γ(v)∩ V1| = |Γ(v)∩ V2| and |Γ(w)∩ V1| = |Γ(w)∩ V2| then exchanging
v and w increases the size of the cut.

For a maximal cut, if |Γ(v)∩V2| > |Γ(v)∩V1| for all v ∈ V1, then summing
degrees in V1 gives

e(V1) ≤
1

2
|V1|

k − 2

2
=
k − 2

4k
m <

1

4

k

k + 1
m,

and similarly for e(V2) if |Γ(v) ∩ V1| > |Γ(v) ∩ V2| for all v ∈ V2. Since
e(V1) = e(V2), this proves the bound in these cases.

Otherwise, let Si = {v ∈ Vi : |Γ(v)∩ V2| = |Γ(v)∩ V1|}, for i = 1, 2. Note
that there are no edges between S1 and S2, or we can obtain a larger cut by
exchanging adjacent vertices in S1 and S2. Let Ti = Vi \Si for i = 1, 2. Now,

e(S1, V2) =
∑
v∈S1

|Γ(v) ∩ V2| =
∑
v∈S1

|Γ(v) ∩ V1|
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and
e(S2, V1) =

∑
v∈S2

|Γ(v) ∩ V1| =
∑
v∈S2

|Γ(v) ∩ V2|.

Since |Γ(v)∩ V2| ≥ (k+ 2)/2 and |Γ(v)∩ V1| ≤ (k− 2)/2 for v ∈ T1, we have∑
v∈T1

|Γ(v) ∩ V1| ≤
k − 2

k + 2

∑
v∈T1

|Γ(v) ∩ V2| =
k − 2

k + 2
e(T1, V2).

Now

2e(V1) =
∑
v∈T1

|Γ(v) ∩ V1|+
∑
v∈S1

|Γ(v) ∩ V1| (19)

≤ k − 2

k + 2
e(T1, V2) + e(S1, V2)

=
k − 2

k + 2
e(V1, V2) +

4

k + 2
e(S1, V2) (20)

and similarly,

2e(V2) ≤
k − 2

k + 2
e(V1, V2) +

4

k + 2
e(S2, V1). (21)

Since e(S1, S2) = 0, we have e(S1, V2)+e(S2, V1) ≤ e(V1, V2), and so (20) and
(21) imply

e(V1) + e(V2) ≤
k − 2

k + 2
e(V1, V2) +

2

k + 2
(e(S1, V2) + e(S2, V1))

≤ k

k + 2
e(V1, V2)

=
k

k + 2
e(G)− k

k + 2
(e(V1) + e(V2)).

Thus

e(V1) + e(V2) ≤
1

2

k

k + 1
e(G) (22)

and since e(V1) = e(V2), (22) implies that, for i = 1, 2,

e(Vi) ≤
1

4

k

k + 1
e(G). (23)

Now if (23) holds with equality then we have equality in (20) and (21),
so |Γ(v) ∩ V2| = (k + 2)/2 for v ∈ T1 and |Γ(v) ∩ V1| = (k + 2)/2 for v ∈ T2.
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We also have equality in (22), so e(S1, V2) + e(S2, V1) = e(V1, V2), and hence
e(T1, T2) = 0. Furthermore, this must hold for every partition with |V1| = |V2|
that satisfies (23). Now if a vertex v ∈ S1 is adjacent to w ∈ T1 then pick a
vertex x ∈ Γ(v) ∩ V2, so x ∈ T2. Exchanging v and x does not change the
size of the cut, so x must also be adjacent to w (or else exchanging v and
x would leave w with more than (k + 2)/2 neighbours on the other side of
the partition). But x ∈ T2, so x has no neighbours in T1, hence we must
have e(S1, T1) = 0. In particular, we see that every component of G[V1] and
G[V2] must be a regular graph. Finally, if v ∈ V1 is adjacent to w ∈ V2
then either v ∈ S1 and w ∈ T2 or v ∈ T1 and w ∈ S2, so exchanging v and
w does not change the size of the cut. Without loss of generality, we may
assume v ∈ S1 and w ∈ T2, and let V ′1 ∪V ′2 be the resulting bipartition: then
every component of G[V ′1 ] and G[V ′2 ] is regular. Since |Γ(w)∩ V ′1 | = k/2 and
|Γ(v) ∩ V ′2 | = (k − 2)/2 (and Γ(w) ∩ V ′1 ⊂ S1 and Γ(v) ∩ V ′2 ⊂ T2), it follows
that Γ(v)∪{v} = Γ(w)∪{w}. It follows that all components of G are copies
of Kk+1.

If |G| is odd, say |G| = 2l + 1, then consider partitions V1 ∪ V2 with
|V1| = l and |V2| = l + 1. Note that e(G) = (2l + 1)k/2 and e(V2) =
e(V1)+k/2. Applying the same argument as above, we get three alternatives.
If |Γ(v) ∩ V2| > |Γ(v) ∩ V1| for all v ∈ V1, we obtain

e(V1) ≤
1

2
l
k − 2

2
=
k − 2

4k
m− k − 2

8

and so, since m ≤
(
k+1
2

)
,

e(V2) = e(V1) +
k

2
≤ k − 2

4k
m+

3k + 2

8
≤ 1

4

k

k + 1
m+

k

4
,

with equality only if m =
(
k+1
2

)
and hence G ≡ Kk+1.

Alternatively, |Γ(v) ∩ V1| > |Γ(v) ∩ V2| for all v ∈ V2, and so

e(V2) ≤
1

2
(l + 1)

k − 2

2
=
k − 2

4k
m+

k − 2

8
<

1

4

k

k + 1
m+

k

4
.

Otherwise, define Si and Ti as in the even case; the argument runs in
the same way as in the even case, except e(V2) = e(V1) + k/2 = 1

2
(e(V1) +

e(V2)) + k/4, so (23) becomes

e(Vi) ≤
1

4

k

k + 1
m+

k

4
.

The argument for extremal graphs is identical.
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We remark that, in the case k = 3, a stronger result than Theorem 2
follows from a result of Locke [14], who showed that every cubic K4-free
graph G has a partition V (G) = V1 ∪ V2 with |V1| = |V2| and e(V1, V2) ≥
11e(G)/15; since e(V1) = e(V2) for a partition into classes of equal size, we
have max{e(V1), e(V2)} ≤ 2e(G)/15. It would be interesting to determine
the optimal constants for k-regular graphs containing no Kk+1. For graphs
with large girth it should be possible to get even stronger results (see [9],
[12], [14], [19], [8]).

We remark that a random k-regular graph, or a random graph in G(n, p)
with p = O(1/n), contains (with high probability) only a few short cycles.
What are the best constants we can get in the theorems above for random
graphs? We shall consider this question elsewhere.

3 Judicious partitions of hypergraphs

In section 2 we showed that every graph G with maximal degree bounded
by a constant has a partition V (G) = V1 ∪ V2 in which max{e(V1), e(V2)}
is not very large. However, this does not give us any information about
min{e(V1), e(V2)}. In a random bipartition, we have E e(V1) = E e(V2) = m/4
and E e(V1, V2) = m/2: in this section we show that, for bounded-degree
graphs, we can get quite close to this. More generally, we prove a result for
imbalanced partitions into k ≥ 2 sets.

Theorem 4. For every integer D ≥ 1 there is a constant K such that
for every graph G with maximum degree at most D and every sequence of
nonnegative real numbers p1, . . . , pk with

∑k
i=1 pi = 1 there is a partition

V (G) =
⋃k

i=1 Vi with, for 1 ≤ i ≤ k,

|e(Vi)− p2i e(G)| ≤ K

and, for 1 ≤ i < j ≤ k,

|e(Vi, Vj)− 2pipje(G)| ≤ K.

Furthermore, we may also demand | |Vi| − pi|G| | < K, for 1 ≤ i ≤ k.

Theorem 4 is a special case of a rather general result about partitioning
oriented hypergraphs.
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An oriented hypergraph H is given by a set V and a collection E(H)
of ordered tuples of (distinct) elements of V . For instance, if all tuples
have size 2 then we obtain a digraph (note that we allow tuples of different
sizes). Given oriented hypergraphs H1, . . . , Hs with common vertex set V ,
sets V1, . . . , Vt ⊂ V , and integers 1 ≤ k1, . . . , ku ≤ t, we define

d
(i)
k1,...,ku

(V1, . . . , Vt) = {〈v1, . . . , vu〉 ∈ E(Hi) : vi ∈ Vki∀i}.

We write et(Hi) for the number of edges with t vertices (ie the number of
t-tuples) in E(H).

Theorem 5. For every triple r, s,D of positive integers there is a constant
K = K(r, s,D) such that the following assertion holds for every k ≥ 1. For
every sequence of hypergraphs H1, . . . , Hs with common vertex set V such that
each Hi has maximum edge size at most r and maximum vertex degree at most
D, and every sequence of nonnegative reals p1, . . . , pk with

∑k
i=1 pi = 1, there

is a partition V =
⋃k

i=1 Vi such that

| |Vi| − pi|V | | ≤ K,

for 1 ≤ i ≤ k, and, for 1 ≤ i ≤ k, 1 ≤ t ≤ r, and 1 ≤ k1, . . . , kt ≤ k,

|d(i)k1,...,kt
(V1, . . . , Vk)− et(Hi)

t∏
i=1

pi| < K.

We shall need the following lemma in the proof of Theorem 5.

Lemma 6. Let t,D ≥ 1 be integers. There is a constant K = K(t,D)
such that for every finite set S, every sequence (fi)

t
i=1 of functions from S to

{0, . . . , D} and every positive integer u and nonnegative reals p1, . . . , pu with∑u
i=1 pi = 1, there is a partition S =

⋃u
i=1 Si such that, for 1 ≤ i ≤ u,

| |Si| − pi|S| | < K

and, for 1 ≤ i ≤ u and 1 ≤ j ≤ t,

|
∑
x∈Si

fj(x)− pi
∑
x∈S

fj(x)| < K.
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Proof. LetK = (D+1)t+1. Define an equivalence relation on S by setting x ∼
y if fi(x) = fi(y) for i = 1, . . . , t. Let the equivalence classes be R1, . . . , RT ,

where T ≤ (D + 1)t. For 1 ≤ l ≤ T , let Rl =
⋃u

i=1Q
(i)
l be an arbitrary

partition with |Q(i)
l | = bpi|Rj|c or |Q(i)

l | = dpi|Rj|e for each i. Note that

| |Q(i)
l | − pi|Rl| | ≤ 1. Now let Si =

⋃T
l=1Q

(i)
l for each i. Note that | |Si| −

pi|V | | < T . An easy calculation shows that, for 1 ≤ i ≤ u and 1 ≤ j ≤ t,

|
∑
x∈Si

fj(x)− pi
∑
x∈S

fj(x)| ≤
T∑
l=1

|
∑

x∈Q(i)
l

fj(x)− pi
∑
x∈Rl

fj(x)|

=
T∑
l=1

|yl| |Q(i)
l | − pi|Rl| |

≤ DT

< K,

wheer yl is the common value of fj(x) for x ∈ Rl.

We can now prove the theorem.

Proof of Theorem 5. We begin by considering the graph H∗ with vertex set
V and edges all pairs {x, y} that are contained in some edge in some Hi.
Note that H∗ has maximal degree less than rsD, so there is some partition
V =

⋃u
i=1 Vi with u ≤ rsD such that each Vi is independent in H∗.

We shall obtain the desired partition of V by applying the lemma to each
Vi in turn. Suppose we wish to partition Vi, and we have partitioned Vj as⋃k

i=1 V
(i)
j for each j < i. We define an equivalence relation on the edges

of H1, . . . , Hs by setting edges 〈v1, . . . , va〉 and 〈w1, . . . , wb〉 to be equivalent
if (1) they belong to the same oriented hypergraph Ht and (2) a = b and
(3) vj and wj are in the same vertex class Vl for each j and (4) if l < i

and vj, wj ∈ Vl then vj and wj are in the same vertex class V
(h)
l . For each

equivalence class X we define a function fX on Vi by setting fX(v) to be the
number of edges in X that contain v. Finally, we apply the lemma to this
collection of functions.

An easy check shows that this yields the desired partition. (Note that
for 1 ≤ a ≤ r and (distinct) k1, . . . , ka ∈ [u], the set of edges 〈v1, . . . , va〉
with vi ∈ Vki for 1 ≤ i ≤ a is essentially partitioned one vertex class Vki at a
time.)

12



As an application of the theorem, we obtain the following result. For a
graph G, a partition V (G) =

⋃k
i=1 Vi, and integers 1 ≤ k0, . . . , kt ≤ k, let

Pk0,...,kt be the number of paths v0 · · · vt with vi ∈ Vki for each i. Let Pt(G)
be the number of paths of length t in G.

Theorem 7. For every T,D ≥ 1 there is a constant K = K(T,D) such that,
for k ≥ 1, every graph G with maximum degree at most D has a partition
V (G) =

⋃k
i=1 Vi such that, for every sequence k0, . . . , kt with t ≤ T ,

|Pk1,...,kt(G)− 2Pt(G)/kt| ≤ K.

Similar results follow for embeddings of other subgraphs, and for imbal-
anced partitions.

4 Conclusion

In Theorem 5, we gave a result concerning simultaneous partitions of several
hypergraphs with bounded degrees and the same vertex set. There are many
related problems: for instance, what is the correct analogue of Theorem 1
for simultaneous bipartitions of more than one graph with the same vertex
set and maximum degree at most k? A very natural question is whether
bounds similar to (1) and (2) can be proved for simultaneous bipartitions of
two graphs.

Problem 8. Find the largest integer f (2)(m) such that for every pair of
graphs G1, G2 with m edges and common vertex set V there is a bipartition
V = V1 ∪ V2 with

min{eG1(V1, V2), eG2(V1, V2)} ≥ f (2)(m).

Perhaps it is even possible to find a bipartition that gives a cut of size at
least (1 + o(1))m/2 in each graph. Note that in a random partition we have
EeG1(V1, V2) = e(G1)/2 and EeG2(V1, V2) = e(G2)/2. But these two quanti-
ties are not independent, so we face a similar problem to judicious partitions,
where we seek to maximize more than one quantity simultaneously. There
are many possible extensions and related problems. For instance, what about
simultaneous bisections, or cuts into more than two vertex classes?
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