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Abstract

The Erdős-Hajnal conjecture says that for every graph H there exists c > 0 such that

max(α(G), ω(G)) ≥ nc

for every H-free graph G with n vertices, and this is still open when H = C5. Until now the best
bound known on max(α(G), ω(G)) for C5-free graphs was the general bound of Erdős and Hajnal,
that for all H,

max(α(G), ω(G)) ≥ 2Ω(
√

logn)

if G is H-free. We improve this when H = C5 to

max(α(G), ω(G)) ≥ 2Ω(
√

logn log logn).



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges, and the cardinalities of the
largest stable sets and cliques in a graph G are denoted by α(G), ω(G) respectively. If G,H are
graphs, we say that G contains H if some induced subgraph of G is isomorphic to H, and G is H-free
otherwise.

The Erdős-Hajnal conjecture [6, 7] asserts:

1.1 Conjecture: For every graph H, there exists ε > 0 such that every H-free graph G satisfies

max(α(G), ω(G)) ≥ |V (G)|ε.

This is true for all H with at most four vertices, but is open when H = C5 (C5 denotes the cycle
of length five). The problem for C5 has attracted a good deal of unsuccessful attention, for several
reasons; not only is C5 arguably the smallest open case of 1.1, but also it is symmetrical, and more
importantly, by excluding C5 we exclude its complement as well. (Excluding both a graph and its
complement is an approach that has been quite fruitful lately, for instance [1, 2].) So we are happy
to report some progress at last.

The best general bound for the Erdős-Hajnal conjecture to date was proved by Erdős and Hajnal
in [7], namely:

1.2 For every graph H, there exists c > 0 such that

max(α(G), ω(G)) ≥ 2c
√

logn

for every H-free graph G with n > 0 vertices.

(Logarithms are to base two, throughout the paper.) Until now, this was also the best bound known
when H = C5, but in this paper we will improve it to:

1.3 There exists c > 0 such that

max(α(G), ω(G)) ≥ 2c
√

logn log logn

for every C5-free graph G with n > 1 vertices.

If A,B ⊆ V (G) are disjoint and nonempty, the edge-density between them means the number of
edges joining A,B, divided by |A| · |B|. The proof of 1.3 is via the following conjecture of Conlon,
Fox and Sudakov [5]:

1.4 Conjecture: For every graph H there exist ε, σ > 0 such that for every H-free graph G on
n > 1 vertices, and all c with 0 ≤ c ≤ 1/2, V (G) contains two disjoint subsets A,B with |A| ≥ εcσn
and |B| ≥ εn, such that the edge-density between A,B is either at most c or at least 1− c.

This has not been proved so far for any graph H with more than four vertices, but in this paper
we prove it for H = C5 (with σ = 1), and this is the key to proving 1.3. We first prove it for sparse
graphs G, and then use a theorem of Rödl to deduce it in general (both in the next section). The
proof of 1.3 is completed in section 3.
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We remark that 1.4 (for all H) is equivalent to the same statement for sparse graphs (for all H),
because of the theorem of Rödl discussed in the next section; a graph H satisfies the original version
of 1.4 if and only if both H and its complement satisfy the sparse version. We can prove the sparse
version of 1.4 for many more graphs H than just C5 (for instance, for all bipartite H, and all cycles
of length at least four); these results will appear in a later paper [3]. But C5 is still the largest graph
H for which we can show that both H and its complement satisfy the sparse version of 1.4, and so
the largest for which we can prove the original version of 1.4.

2 Sparse graphs

In this section we prove 1.4 for H = C5, and first we prove it when G is sufficiently sparse. For
disjoint A,B ⊆ V (G), we say A is anticomplete to B if there are no edges between A and B, and A
covers B if every vertex in B has a neighbour in A. We will prove:

2.1 For all c with 0 < c ≤ 1/2, and every graph G with n > 0 vertices, if G satisfies:

• every vertex has degree at most n/16− 1, and

• for every two disjoint subsets A,B ⊆ V (G) with |A| ≥ cn/2 and |B| ≥ n/16, the edge-density
between A,B is at least c,

then G contains C5.

Proof. Let 0 < c ≤ 1/2, and let G,n be as in the theorem. Since every vertex has degree at
most n/16 − 1, it follows that n ≥ 16 and in particular, bn/2c ≥ n/4. Choose a set N0 ⊆ V (G) of
cardinality bn/2c. It follows that |N0| ≥ n/4 ≥ cn/2, and so the edge-density between N0 and its
complement is at least c. In particular, some vertex in N0 has at least cn/2 neighbours.

Let v1 be a vertex of degree at least cn/2, let N1 be the set of all neighbours of v1, and let
Z2 = V (G) \ (N1 ∪ {v1}). Since |N1| + 1 ≤ n/16, it follows that |Z2| ≥ 15n/16. But |N1| ≥ cn/2,
and so fewer than n/16 vertices in Z2 have no neighbour in N1, since c > 0. Hence at least 7n/8
vertices in Z2 do have such a neighbour. Choose B1 ⊆ N1 minimal such that B1 covers at least
5n/16 vertices in Z2. Let B2 be the set of vertices in Z2 covered by B1. Thus 5n/16 ≤ |B2| ≤ 3n/8
from the minimality of B1, and since every vertex has degree at most n/16. Let A2 = Z2 \B2. Thus
A2 is anticomplete to B1, and |A2| = |Z2| − |B2| ≥ (15n/16− 3n/8) = 9n/16.

Let A1 = N1 \B1. Since |N1| ≥ cn/2, the edge-density between N1, A2 is at least c. In particular
there is a vertex v2 ∈ A1 with at least c|A2| ≥ 9cn/16 ≥ cn/2 neighbours in A2. (Note that v2 /∈ B1

since B1 is anticomplete to A2.) Let N2 be the set of neighbours of v2 in A2. Thus N2 ∩B2 = ∅, but
v2 might also have neighbours in B2. Let P1 be the set of vertices in B1 adjacent to v2, and let Q
be the set of vertices in B2 that have a neighbour in B1 \ P1.

(1) If |Q| ≥ n/8 then G contains C5.

Assume that |Q| ≥ n/8. Since v2 has degree at most n/16, there is a set Q′ ⊆ Q of at least
n/16 vertices that are nonadjacent to v2. The edge-density between N2 and Q′ is at least c, since
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|N2| ≥ cn/2, and in particular some vertex q ∈ Q′ has a neighbour w ∈ N2. Since q ∈ Q′ ⊆ Q, it is
adjacent to some vertex b1 ∈ B1 that is nonadjacent to v2; but then

b1-v1-v2-w-q-b1

is an induced cycle of length 5. (Note that b1 is nonadjacent to w since B1 is anticomplete to A2.)
This proves (1).

Let Y2 = A2 \N2; it follows that |Y2| ≥ |A2| − n/16 ≥ n/2. Since |N2| ≥ cn/2, the edge-density
between N2, Y2 is at least c, and so some vertex v3 ∈ N2 has at least c|Y2| ≥ cn/2 neighbours in Y2.
Let N3 be the set of neighbours of v3 in Y2. Let P2 be the set of vertices in B2 with a neighbour in P1.

(2) If |P2| ≥ 3n/16 then G contains C5.

Assume that |P2| ≥ 3n/16. It follows that there is a set P ′2 ⊆ P2 of at least n/16 vertices that
are nonadjacent to both v2, v3. The edge-density between N3 and P ′2 is at least c, since |N3| ≥ cn/2,
and in particular some vertex p2 ∈ P ′2 has a neighbour u ∈ N3. Since p2 ∈ P ′2 ⊆ P2, it is adjacent to
some vertex p1 ∈ P1; but then

p1-v2-v3-u-p2-p1

is an induced cycle of length 5. (Note that p1 is nonadjacent to v3, u since B1 is anticomplete to A2.)
This proves (2).

Since B1 covers B2, it follows that P2 ∪Q = B2, and since |B2| ≥ 5n/16, the result follows from
(1) and (2). This proves 2.1.

Next we apply a theorem of Rödl [9], the following. (G denotes the complement graph of G.)

2.2 For every graph H and all d > 0 there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|V (G)| such that in one of G[X], G[X], every vertex in X has degree
at most d|X|.

We deduce:

2.3 There exists ε > 0 such that for all c with 0 ≤ c ≤ 1/2, if G is C5-free with n > 1 vertices, then
there exist disjoint A,B ⊆ V (G) with |A| ≥ εcn and |B| ≥ εn, such that the edge-density between
A,B is either less than c or more than 1− c.

Proof. Let δ satisfy 2.2, taking d = 1/32 and H = C5. Now let ε = δ/16, and let G be C5-free
with n > 1 vertices. Let v be a vertex; then it has either at least (n − 1)/2 neighbours or at least
(n− 1)/2 non-neighbours; and since (n− 1)/2 ≥ εn, we may assume that 1 < εcn, for otherwise the
theorem holds taking A = {v}. In particular n > 2ε−1 ≥ 32δ−1.

By 2.2, there exists X ⊆ V (G) with |X| ≥ δn such that every vertex of J has degree at most
|V (J)|/32, where J is one of G[X], G[X]. Since |V (J)| ≥ δn ≥ 32, it follows that 1 + |V (J)|/32 ≤
|V (J)|/16, and so every vertex of J has degree at most |V (J)|/16 − 1. Since C5 is isomorphic to
its complement, J is C5-free, and so from 2.1, there are two disjoint subsets A,B ⊆ V (J) with
|A| ≥ c|V (J)|/2 and |B| ≥ |V (J)|/16, such that the edge-density between A,B in J is less than c.
Thus |A| ≥ cδn/2 ≥ εcn and |B| ≥ δn/16 = εn, and the edge-density between A,B in G is either at
most c or at least 1− c. This proves 2.3.
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It is possible to deduce versions of 1.2 from versions of Rödl’s theorem 2.2 directly, as follows.
If we have d, δ satisfying 2.2, then for any n, if we choose k ≤ min( 1

2d ,
δn
2 ) then we can use Turán’s

theorem to obtain a stable set or clique on k vertices from the set of at least 2k vertices with density
at most 1

2k or at least 1− 1
2k that 2.2 gives us. This motivates trying to improve the bound in 2.2.

• Rödl’s original proof of 2.2 uses Szemerédi’s regularity lemma and gives a tower-type bound
for 1/δ in terms of 1/d, which yields something worse than 1.2.

• In [8], a better bound of δ = 2−15|V (H)|(log(1/d)2 in 2.2 is proved, which implies the bound of 1.2.

• It is conjectured that a polynomial dependence of δ on d holds, and this would imply the
Erdős-Hajnal conjecture itself.

• For H = C5 we can get mid-way between, and that provides a different route to proving 1.3,
as follows. One can prove that for H = C5 we may take

δ = 2−O(log(1/d)2/ log log(1/d))

in 2.2 by appropriately adapting the proof of 2.2 in [8] using that we now know 1.4 for H = C5.
This would imply 1.3. But the details of the proof of this improved bound for 2.2 for C5 are
involved and similar to that of the proof of 1.3 given in the next section, and we omit them for
the sake of brevity.

3 The proof of 1.3.

Now we use 2.3 to prove 1.3. Since the argument to come is rather heavy, and works just as well for
any graph H satisfying 1.4 instead of C5, it might be wise to present it in full generality. Thus, let us
say a class of graphs I is hereditary if every graph isomorphic to an induced subgraph of a member
of the class also belongs to the class. Let ε be as in 2.3, and let σ > 1 + log(ε−1). Then for c ≤ 1/2,
cσ ≤ ε, and so by 2.3, if G is C5-free with n ≥ 2 vertices, and 0 ≤ c ≤ 1/2, then there exist disjoint
A,B ⊆ V (G) with |A| ≥ cσn and |B| ≥ εn, such that the edge-density between them is either at
most c or at least 1− c. Then 1.3 follows from 2.3 and the following, applied to the hereditary class
of all C5-free graphs:

3.1 Let I be a hereditary class of graphs, and let σ ≥ 0 and 0 ≤ ε ≤ 1 with the following property:
for every graph G ∈ I with at least two vertices, and all c with 0 ≤ c ≤ 1/2, there are disjoint subsets
A,B ⊆ V (G) with |A| ≥ cσn and |B| ≥ εn, such that the edge-density between A,B is either at most
c or at least 1− c, where n = |V (G)|. Then there exists κ > 0 such that

max(α(G), ω(G)) ≥ 2κ
√

logn log logn

for every G ∈ I, where n = |V (G)| ≥ 2.

Proof. Let us define r(n) =
√

log n log log n for n ≥ 2, for typographical convenience.
A cograph is a graph not containing a 4-vertex path. Thus the disjoint union of two cographs

is a cograph, and so is the complement of a cograph. We prove 3.1 by showing that G contains a
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cograph with at least 22κr(n) vertices. As cographs are perfect, there is a clique or independent set
with 2κr(n) vertices (and so of the desired cardinality).

For a graph G, let φ(G) denote the maximum of |V (H)| over all cographs H contained in G. For
each real number x ≥ 0, let f(x) be the minimum of φ(G), over all graphs G ∈ I with |V (G)| = dxe
(we may assume there is some such graph G, or else the result is trivially true). Since I is hereditary,
f(x) is non-decreasing with x.

We may assume that σ ≥ 1 (by increasing σ if necessary). Let µ = (32σ)−1/2. Choose n0 such
that ⌊

σ2µr(n)− 1

log(2/ε)

⌋
≥
√

log n

for all n ≥ n0, and also such that µr(n0) ≥ 2, and log n0 ≥ 4σµr(n0). Choose κ > 0 such that
κ ≤ µ/2 and 2κr(n0) ≤ 1. We will show that κ satisfies the theorem.

(1) For all n ≥ 2 and all c with 0 ≤ c ≤ 1/2, either f(n) ≥ 1/(4c) or f(n) ≥ f(cσn/2) + f(εn/2).

Let G ∈ I with n ≥ 2 vertices, such that φ(G) = f(n). Since G ∈ I, the hypothesis implies
that there are disjoint sets A,B ⊆ V (G) with |A| ≥ cσn and |B| ≥ εn such that the edge-density
between A and B is either at most c or at least 1 − c. We suppose without loss of generality that
this density is at most c (in the other case, we apply the same argument to G).

Let A′′ be the set of vertices in A with at least 2c|B| neighbours in B. As the number of edges
between A,B is at least 2c|B||A′′| and at most c|A||B|, it follows that |A′′| ≤ |A|/2. Let A′ = A\A′′;
so |A′| = |A| − |A′′| ≥ |A|/2 and every vertex in A′ has at most 2c|B| neighbours in B. Since
G[A′] ∈ I, it follows from the definition of f that φ(G[A′]) ≥ f(|A′|). Let A0 ⊆ A′ induce a cograph,
with |A0| = f(|A′|).

If |A0| ≥ 1/(4c), then f(n) = φ(G) ≥ |A0| ≥ 1/(4c) as required, so we may assume that |A0| ≤
1/(4c). Let B′ be those vertices in B with no neighbours in A0; so |B′| ≥ |B| − 2c|B||A0| ≥ |B|/2.
Again from the definition of f , φ(G[B′]) ≥ f(|B′|) ≥ f(εn/2). Since A0 is anticomplete to B′, it
follows that

f(n) = φ(G) ≥ |A0|+ φ(G[B′]) ≥ f(cσn/2) + f(εn/2).

This proves (1).

(2) For all n ≥ 2 and all c with 0 ≤ c ≤ 1/2, if log n ≥ σ log(1/c) then either f(n) ≥ 1/(4c)
or f(n) ≥ kf(c2σn), where

k =

⌊
σ log(1/c)− 1

log(2/ε)

⌋
.

We may assume that f(n) < 1/(4c), and hence f(n′) < 1/(4c) for all n′ ≤ n. From the definition of
k, k log(2/ε) ≤ σ log(1/c) − 1 ≤ log n − 1, and so n(ε/2)k ≥ 2. Hence we may recursively apply (1)
k times without violating the condition “n ≥ 2” in (1); and we obtain

f(n) ≥ f(cσn/2) + f(cσ(ε/2)n/2) + f(cσ(ε/2)2n/2) + · · ·+ f(cσ(ε/2)kn/2).

Each of the k + 1 terms on the right side is at least f(c2σn), from the definition of k, and so
f(n) ≥ kf(c2σn). This proves (2).
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(3) For all n ≥ 2 and all c with 0 ≤ c ≤ 1/2, if log n ≥ 2σ log(1/c) and with k as in (2), ei-
ther f(n) ≥ 1/(4c) or f(n) ≥ kj, where

j =

⌊
log n

4σ log(1/c)

⌋
.

Again, we may assume that f(n) < 1/(4c), and hence f(n′) < 1/(4c) for all n′ ≤ n. From the defini-
tion of j, c2σjn ≥ n1/2, and so log(c2σjn) ≥ 1

2 log n ≥ σ log(1/c). Moreover, c2σ(j−1)n ≥ n1/2c−2σ ≥ 2
since σ ≥ 1. Hence we may apply (2) recursively j times, and deduce that f(n) ≥ kjf(c2σjn) ≥ kj .
This proves (3).

(4) Let n ≥ n0, and c = 2−2µr(n). Then

• c ≤ 1/2;

• log n ≥ 4σµr(n) = 2σ log(1/c);

• k ≥
√

log n, where k is as defined in (2); and

• 1/(4c) ≥ 2µr(n).

We observe first that c ≤ 1/2 if n ≥ n0, since µr(n0) ≥ 1. Also, log n0 ≥ 4σµr(n0) from the
choice of n0, and since logn

r(n) increases with n, it follows that log n ≥ 4σµr(n) for n ≥ n0. But

4σµr(n) = 2σ log(1/c), and so this proves the second statement. The third statement follows from
the choice of n0. For the final statement, we must check that log(1/c)−2 ≥ µr(n), that is, µr(n) ≥ 2;
but this holds from the definition of n0. This proves (4).

(5) If n ≥ n0 then f(n) ≥ 2µr(n).

Let c be as in (4) and let n ≥ n0. By the first two statements of (4), we may apply (3), and
so either f(n) ≥ 1/(4c) or f(n) ≥ (log n)j/2, by the third statement of (4). In the first case, the
claim follows from the final statement of (4), so we may assume that

f(n) ≥ (log n)j/2 ≥ (log n)(logn)/(16σ log(1/c)) = 2(16σ·2µ)−1r(n).

As µ = (16σ · 2µ)−1 from the definition of µ, this proves (5).

We recall that κ ≤ µ/2 and 2κr(n0) ≤ 1. We claim that f(n) ≥ 22κr(n) for all n ≥ 2. This is
true if n ≤ n0, because then f(n) ≥ 2 ≥ 22κr(n); and if n > n0 then it follows from (5). This proves
3.1.
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