
Approximating the position of a hidden agent
in a graph

Hannah Guggiari∗, Alexander Roberts∗, Alex Scott∗†

May 13, 2018

Abstract

A cat and mouse play a pursuit and evasion game on a connected
graph G with n vertices. The mouse moves to vertices m1,m2, . . . of
G where mi is in the closed neighbourhood of mi−1 for i ≥ 2. The cat
tests vertices c1, c2, . . . of G without restriction and is told whether
the distance between ci and mi is at most the distance between ci−1
and mi−1. The mouse knows the cat’s strategy, but the cat does not
know the mouse’s strategy. We will show that the cat can determine
the position of the mouse up to distance O(

√
n) within finite time

and that this bound is tight up to a constant factor. This disproves a
conjecture of Dayanikli and Rautenbach.

1 Introduction

There are a wide variety of different pursuit and evasion games – games where
one player tries to localise a second player moving along the edges of a graph
by using information about the current position of the second player.

One of the most widely studied games is Cops and Robbers, which was
introduced by Nowakowski and Winkler [6] and independently by Quilliot
[7]. One player controls a set of cops and the other player is the robber. At
the start of the game, the cops are placed on vertices of G. The robber then
chooses a vertex. The players take alternate turns with the cops playing first.

∗Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
Email:{guggiari,robertsa,scott}@maths.ox.ac.uk
†Supported by a Leverhulme Trust Research Fellowship.
With thanks to the Bellairs Research Institute where some of this work was done.

1

On the cops’ turn, each cop moves to a vertex within the closed neighbour-
hood of their current position and multiple cops may occupy the same vertex.
The robber plays in a similar fashion, moving to a vertex within its current
closed neighbourhood. The cops win if one of them is on the same vertex as
the robber after a finite period of time; otherwise the robber wins. In this
game, the players have perfect information and so they know the location of
both the cops and robber at all times. One of the main open questions is
Meyniel’s Conjecture which states that, on any n-vertex graph, O(

√
n) cops

can catch the robber. See [1] for a general account and [3, 5, 8] for the best
current bounds.

Haslegrave [4] proposed a different game, Cat and Mouse, in which the
cat wins by finding the mouse in finite time. As in Cops and Robbers,
the players take alternate turns. However, in this game, the cat has no
information about where the mouse is and, on its turn, it is not constrained
by the edges of G and may test any vertex to see if the mouse is there. The
mouse knows the cat’s strategy in advance. The mouse is also required to
move to a neighbouring vertex on each turn. These differences mean that
the strategies employed by the players in Cat and Mouse differ greatly from
those used in Cops and Robbers.

In this paper, we will study a variation of the Cat and Mouse pursuit and
evasion game introduced by Dayanikli and Rautenbach [2]. The rules are as
described above, except the mouse is not required to move on its turn. A
time step consists of one turn for each player with the mouse playing first.
After the mouse has moved, the cat chooses any vertex and is told whether
the distance between itself and the mouse has increased compared with the
previous time step. The cat wins if it is able to localise the mouse up to a
given distance d within finite time (i.e. it can determine a vertex v such that
the mouse is at distance at most d from v). Otherwise, the mouse wins. A
more formal description of the game, including a precise definition of what
it means for the cat to localise the mouse, is given in Section 2.

Dayanikli and Rautenbach [2] proved that, if G is a tree with maximum
degree ∆ and radius h, then the cat can localise the mouse up to distance
4∆ − 6 within time O(h∆). They also showed that the cat can localise the
mouse up to distance 8 within time O(log n) on the n×n grid. These results
led them to make the following conjecture.

Conjecture 1.1. The cat can localise the mouse up to distance O(log n) on
any connected graph of order n.

In Section 3, we will show that Conjecture 1.1 is false. We will prove the
following theorem.

2

Theorem 1.2. For all n sufficiently large, there exists a tree T on n vertices
such that, regardless of the strategy employed by the cat, the mouse is able
to avoid being localised up to distance

√
n/12 on T for an infinite period of

time.

In Section 4, we will prove that the cat can localise the mouse up to distance
O(
√
n) on any simple, undirected and connected graph of order n within

time O(
√
n). In particular, we will prove the following theorem.

Theorem 1.3. The cat can localise the mouse up to distance
√

32n by time√
2n.

Together, these two results show that the cat can localise the mouse up to
distance O(

√
n) on any simple, undirected and connected graph of order n,

and that this bound is tight up to a constant factor.

2 Rules of the Game

There are two players, the cat and the mouse, and the game is played on
a simple, undirected, connected graph G of order n. It proceeds in discrete
time steps, which are labelled by the positive integers.

The mouse is only able to move along the edges of G. Let mi be the
position of the mouse at time i. For i ≥ 2, mi belongs to the closed neigh-
bourhood of mi−1, that is mi is either mi−1 or a neighbour of mi−1.

The cat may test any vertex of G without any restrictions. At time i,
the cat chooses a vertex ci. At the end of time step i ≥ 2, the cat is told the
value of bi where

bi =

{
1 if d(ci,mi) ≤ d(ci−1,mi−1)

0 if d(ci,mi) > d(ci−1,mi−1).

where d(u, v) denotes the length of a shortest path connecting vertices u and
v. The value of bi tells the cat whether it is further away from the mouse
at step i than it was at step i − 1. The cat has no information about the
location of the mouse when it chooses c1 and c2. However, for i ≥ 3, the cat
can use b1, . . . , bi−1 to help it decide which vertex to choose for ci. For each
i, the cat can calculate Mi, the set of possible positions for mi. A vertex v
belongs to Mi if and only if there are vertices m̃1, . . . , m̃i satisfying:

• v = m̃i

• m̃j is in the closed neighbourhood of m̃j−1 for every 2 ≤ j ≤ i

3

• for every 2 ≤ j ≤ i, d(cj, m̃j) ≤ d(cj−1, m̃j−1) if and only if bj = 1.

Let f :
⋃

i∈N{0, 1}i → V (G). We say that the cat follows strategy
(c1, c2, f) if c1 and c2 are the first two vertices it tests and ci = f(b2, . . . , bi−1)
for i ≥ 3. We say that the cat can localise the mouse up to distance d within
time t on G if there is some strategy f such that, whenever the cat follows
strategy f , there exists i ≤ t with radG(Mi) ≤ d, where the radius of a set
W of vertices is defined as

radG(W) = min
{

max{d(v, w) : w ∈ W} : v ∈ V (G)
}
.

The cat only knows G and the values bi (and hence can calculate the sets
Mi). The mouse has more information. As well as G, the mouse also knows
about the strategy followed by the cat. Therefore, the mouse knows how the
cat will choose its vertices and can adapt its own strategy accordingly.

Note that the cat must follow a strategy f :
⋃

i∈N{0, 1}i → V (G) which
has been decided before the game begins. We do not allow the cat to follow a
random strategy (as we require the cat to be certain of localising the mouse
within given time and distance).

3 Lower Bound

Before we prove Theorem 1.2 for every n ∈ N, we will first show that it holds
for some special cases. We will prove the following proposition.

Proposition 3.1. Let t be a multiple of 12 and take n = t2 + 1. There exists
a tree T on n vertices such that, regardless of the strategy employed by the
cat, the mouse is able to avoid being localised up to distance t

12
on T for an

infinite period of time.

Throughout the rest of this section, fix n = t2 + 1 where t is divisible by
12. We define T to be the tree on n vertices formed from the star K1,t by
subdividing each edge exactly t − 1 times. We will call the centre vertex u
and refer to the subdivided edges as branches. We do not regard u to be on
any branch. The structure of T means (informally) that, at each turn, the
cat is only able to check whether the mouse lies on a single branch of the
graph.

In the proof of Theorem 3.1, we will provide a strategy for the mouse
where mi is always on a different branch to ci−1 and ci and hence the cat can
never determine from its tests which branch the mouse is on. We will also
consider a second set of possible positions (wi) for the mouse such that the
cat cannot tell the difference between a mouse at mi and a mouse at wi. For

4

every i, we will ensure that d(mi, wi) >
t
6

and hence radG(Mi) >
t
12

. This is
sufficient to ensure that cat cannot localise the mouse up to distance t

12
in

finite time.

Proof of Theorem 3.1. Suppose that the cat is trying to localise the mouse
to up distance t

12
on T . We will provide a strategy for the mouse such that

radG(Mi) >
t
12

for every i ∈ N. Hence, the cat is never able to localise the
mouse on T .

To simplify the numbers, the first turn is at time t = 0. At this time,
the cat only knows the graph T . The mouse knows what T looks like as well
as the strategy employed by the cat. The mouse will sometimes give the cat
additional information about its position or movements. We will see later
that this does not impact the result.

The mouse employs the following strategy, making the moves given by
(mi). In what follows, we will also consider a second set of possible moves
(wi) for the mouse. At each turn, we will ensure that both mi, wi ∈ Mi and
d(mi, wi) >

t
6
. Hence radG(Mi) >

t
12

as required.
At several stages in the mouse’s strategy, it needs to choose a branch

which the cat will not check for a given period of time τ where τ < t. As
T has t branches and the cat can only check one per turn, such a branch
certainly exists. In order to find such a branch, it is necessary to look ahead
at the cat’s strategy. Note that, as long as the cat does not play on the branch
within the given time period, it does not matter which branch the mouse
chooses because its movements, and consequently the cat’s movements, will
be the same.

Here is the strategy which the mouse will follow:

1. The mouse chooses a branch which the cat will not check for 2t
3

turns
and chooses m0 to be the vertex at distance t

4
from u on this branch.

Similarly, let w0 be a vertex at distance t
4

from u on another branch
that the cat will not check for 2t

3
turns. The mouse tells the cat that it

is at distance t
4

from u so M0 = {v ∈ V (T) : d(v, u) = t
4
}. The mouse

also tells the cat t
4

branches which it is not located on (none of which
include m0 or w0).

2. Over the next t
6

turns, the cat will gradually lose information about
the position of the mouse. For 1 ≤ i ≤ t

6
, define mi and wi as follows:

• If d(ci, u) ≤ d(ci−1, u), then mi is one vertex closer to the u than
mi−1 and wi = wi−1.

• If d(ci, u) > d(ci−1, u), then mi = mi−1 and wi is one vertex further
away from u than wi−1.

5

Note that, in the first case, we have bi = 1 and, in the second case, we
have bi = 0. In both cases, the cat receives the same value of bi for a
mouse at mi−1 and then mi and a mouse at wi−1 followed by wi and so
cannot tell the difference between these positions. At time t

6
, we have

t
3
≤ d(mt/6, wt/6) ≤ 2t

3
.

3. Let d = d(mt/6, u) so t
12
≤ d ≤ t

4
. The mouse tells the cat that it

will now run towards u for d time steps and proceeds to do so. For
t
6
< i ≤ t

6
+ d, we have mi and wi are both one vertex closer to u than

mi−1 and wi−1 respectively.

4. At time t
6

+ d, we have mt/6+d = u and d(wt/6+d, u) = t
6
. The mouse

now chooses a branch on which the cat will not play in the next 11t
12

turns (and different from the branch containing wi). This is the branch
on which the (mi) will now lie. The (wi) will remain on their original
branch.

5. The mouse now tells the cat it is running away from the centre for t
4

time steps and does so. For t
6

+ d < i ≤ 5t
12

+ d, both mi and wi are one
vertex further away from u than mi−1 and wi respectively.

6. Let j = 5t
12

+ d. At time j, we have d(mj, u) = t
4
. Let B be a branch

which the cat has not checked in the previous t
4

turns and will not check
for the next 2t

3
turns, and which is different to the branch the mouse is

currently on (i.e. mj /∈ B). Redefine wj to be the vertex at distance t
4

from u on B. The mouse then tells the cat it is at distance t
4

from u.
The situation is now exactly the same as in step 1.

Stage 6 is identical to stage 1, both in the positions of the mouse and the
information known by the cat. Thus, the mouse may repeat stages 2 through
6 to avoid being localised by the cat indefinitely.

Let us now justify the mouse’s choice of branch in Step 1. Provided that
the mouse chooses a branch that the cat will not play on in the next 2t

3

rounds, the sequence (bi) and the branches the cat plays on do not depend
on which branch the mouse is on. Therefore, as the mouse knows the cat’s
strategy, the mouse can look into the future, simulate how the cat will play
and hence find a suitable branch.

At stage 4, we have mt/6+d = u. The cat has no idea which branch the
mouse will run down and so all of the branches it previously eliminated now
need checking again. However, the cat cannot tell the difference between a
mouse at mt/6+d and one at wt/6+d and so it does not know that the mouse
is at u. As d(wt/6+d, u) = t

6
but the cat does not know which branch wt/6+d

is on, we still have radG(Mt/6+d) >
t
12

.

6

Between times t
6

+d and j, the cat has eliminated at most t
4

branches for
a mouse that reached the centre at time t

6
+d. At time j, the cat (depending

on its play for the previous t
4

turns) may realise that the mouse was indeed
at the centre at time t

4
+ d, but this is no longer helpful as the mouse is now

at distance t
4

from the centre along an unknown branch.

Now consider the situation where the cat is not given any information except
for T and the values of the bi for i ≥ 2. The mouse can employ exactly the
same strategy as it used above but without telling the cat anything. Let M ′

i

be the possible positions of the mouse at time i and Mi be the sets given
by the above argument where the cat has extra information. This additional
information enables the cat to narrow down the mouse’s possible position
more accurately and so, for every i, we find that Mi ⊆M ′

i

Therefore, as the cat cannot localise the mouse up to distance t
4

when it is
told some information about its position and movements, it definitely cannot
localise the mouse when it does not have access to this extra knowledge. �

Theorem 1.2 follows as a corollary of Proposition 3.1.

Proof of Theorem 1.2. Suppose n = t2 + r where t is a multiple of 12 and
r ∈ [24t + 144]. Let T be the tree described in Proposition 3.1 - the tree
obtained by subdividing each edge of the star K1,t exactly t−1 times. Create
the tree T ′ on n vertices by adding a branch B of r − 1 vertices to T . The
cat and mouse play on T ′. The mouse only plays on the subgraph T and is
never located on B. It uses the same strategy as in Proposition 3.1 to avoid
being localised up to distance t

12
on T ′. �

4 Upper Bound

In this section, we will prove Theorem 1.3. In fact we prove a slightly more
precise result.

Theorem 4.1. (i) Let c > 0. Then the cat can localise the mouse up to
distance

(
8
c

+ c
)√

n by time 4
c

√
n.

(ii) The cat can localise the mouse up to distance 9
2

√
n by time n.

Theorem 1.3 follows from (i) by setting c =
√

8.
The theorem will follow from two lemmas giving upper bounds on how

well a cat can localise a mouse in a graph.
The first lemma depends on how easily we can cover the vertices of the

graph G with balls. Thus we get stronger bounds when G is a “fat” graph
with lots of clustering.

7

Lemma 4.2. Let L, k be natural numbers. Let G = (V,E) be a graph whose
vertices may be covered by L balls of radius k. Then the cat can localise the
mouse up to distance 4L+ k in G by time 2L.

Assuming this lemma, we can prove Theorem 4.1(i).

Proof of Theorem 4.1 (i). Let c > 0 and let G = (V,E) be a connected
graph. Let R be a maximal subset of V with pairwise distance at least c

√
n.

Since the c
√
n−1
2

-balls around vertices in R are disjoint and G is connected,
|R| ≤ 2

c

√
n. Thus the vertices of G are covered by 2

c

√
n balls of radius c

√
n.

So by Lemma 4.2 the cat can localise the mouse up to distance
(
8
c

+ c
)√

n
by time 4

c

√
n. �

The second lemma depends on a different property of the graph G. The
lemma gives stronger bounds when G is a “thin” graph. We define the
diameter of any connected graph G to be diam(G) = max{d(u, v) : u, v ∈
V (G)}.
Lemma 4.3. Let K be a natural number. Let G = (V,E) be a graph such
that for all v ∈ V , there exists an ` = `(v) < K such that |{w ∈ V : d(v, w) =
`}| < `

4
. Let D be the diameter of G. Then the cat can localise the mouse up

to distance 3K
2

in G by time D/2.

Assuming this lemma, we can prove Theorem 4.1 (ii).

Proof of Theorem 4.1 (ii). Let G = (V,E) be a graph with diameter D. For
any v ∈ V , by the pigeonhole principle, there exists an ` < 3

√
n such that

|{w ∈ V : d(v, w) = `}| < `
4
. We may then appeal to Lemma 4.3 with

K = 3
√
n and D ≤ n. �

Let L, k be natural numbers. Let G = (V,E) be a graph and suppose
{u1, . . . , uL} ⊆ V is such that

⋃
i∈[L]Bk(ui) = V . Consider the strategy

for the cat given by Algorithm 1.

Initialization Set i = 1, wi = 1;
while i < L do

Set c2i−1 = uwi
, c2i = ui+1;

if d(c2i,m2i) ≤ d(c2i−1,m2i−1) then
increase i and set wi = i;

else
increase i and set wi = wi−1;

end if

end while

Algorithm 1: Locating the mouse in a “fat” graph.

8

Note that if the mouse doesn’t move, then this algorithm determines which
of the ui is closest to the mouse. It takes them two at a time and chooses
the closer one. When we run the same algorithm with a moving mouse, then
the mouse may add noise, but only at a bounded rate. Lemma 4.2 follows
immediately from the following claim.

Claim 4.4. Independent of (mi)i∈N, we have d(m2L−1, uwL
) ≤ 4L+ k.

Proof. Let i ∈ [L − 1]. Then wi+1 is either wi or i + 1. In the former case,
since the mouse moves along an edge once per time step,

d(uwi+1
,m2i+1) = d(uwi

,m2i+1)

≤ d(uwi
,m2i−1) + 2.

Otherwise d(ui,m2i) < d(cui
,m2i−1) and wi = i in which case

d(uwi+1
,m2i+1) = d(ui,m2i+1)

≤ d(ui,m2i) + 1

≤ d(uwi
,m2i−1) + 1.

In either case, we have d(uwi+1
,m2i+1) ≤ d(uwi

,m2i−1) + 2. By induction, we
then have for all i ≤ L

d(uwk
,m2L−1) ≤ d(uwi

,m2i−1) + 2(L− i).

Now for each i = 2, . . . , L, we have d(uwi
,m2i−1) ≤ d(ui,m2i−2) + 1.

Therefore for all i = 2, . . . , L

d(ui,m2L−1) ≥ d(ui,m2i−2)− 2(L− i)− 1

≥ d(uwi
,m2i−1)− 2(L− i)− 2

≥ d(uwL
,m2i−1)− 4(L− i)− 2

≥ d(uwL
,m2i−1)− 4L.

Since w1 = 1, the above bound also holds for i = 1. Rearranging this, we get
that d(uwL

,m2i−1) ≤ 4L+ d(ui,m2L−1) for all i ≤ L. But (Bk(ui))i∈[L] forms
a cover of V and so d(ui,m2L−1) must be at most k for one of the i and so
d(uwk

,m2i−1) ≤ 4L+ k. �

Let K be a natural number. Let G = (V,E) be a graph such that, for all
v ∈ V , there exists an ` = `(v) < K such that |{w ∈ V : d(v, w) = `}| < `

4
.

Let D be the diameter of G and for each vertex v fix `(v) such that |{w ∈ V :
d(v, w) = `}| < `

4
. Consider Algorithm 2 which dictates a strategy for the

9

cat given the movements of the mouse (mi)i∈N. Note that Ti is not necessary
for the strategy but we include it to simplify the analysis.

Initialization Set i = 0, j = 1, T1 = 0 and pick v1 ∈ V arbitrarily ;
while i < D do

Set U = {w ∈ V : d(vj, w) = `(vj)} ;
Set uj = vj ;
while U 6= ∅ do

Increase i ;
Pick w ∈ U ;
Set c2i−1 = uj, c2i = w;
if d(c2i,m2i) ≤ d(c2i−1,m2i−1) then

Set uj = w;
end if
Set U = U − w;

end while
Set Tj+1 = i, vj+1 = uj;
Increase j

end while

Algorithm 2: Locating the mouse in a “thin” graph.

Lemma 4.3 follows immediately from the following claim.

Claim 4.5. d(vn,m2Tn−1) ≤ 3
2
K for all Tn ≥ D

2
− 3

4
K.

Proof. Suppose we run Algorithm 2. We claim that, for all n ≥ 1, Tn+1−Tn ≤
`(v)
4

and

d(vn+1,m2Tn+1−1) ≤ max

{
d(vn,m2Tn−1)−

`(vn)

2
,
3

2
K

}
. (1)

Assuming these inequalities, we see that Tn ≤ 1
4

∑n−1
i=1 `(vi) and

d(vn,m2Tn−1) ≤ max

{
d(v1,m1)−

1

2

n−1∑
i=1

`(vi),
3

2
K

}
.

Since we have d(v1,m1) ≤ D, it follows that, if 1
2

∑n−1
i=1 `(vi) ≥ D− 3

2
K, then

d(vn,m2Tn−1) ≤ 3
2
K. Therefore, if Tn ≥ 1

2
D− 3

4
K, then d(vn,m2Tn−1) ≤ 3

2
K.

It remains to show that for all n ≥ 1, Tn+1 − Tn ≤ `(v)
4

and (1) holds.
First suppose that d(vn,m2Tn−1) ≥ K. Let ` < K be such that |{w ∈
V : d(vn, w) = `}| < `

4
. Note that there must be some w such that

10

d(vn, w) = ` and w is in a shortest vn−m2Tn−1 path. So then d(w,m2Tn−1) =
d(vj,m2Tn−1)− `. Let i′ ≥ i be such that c2i = w. Then

d(c2i,m2i) ≤ d(w,m2Tn−1) + 2i− (2Tn − 1)

= d(vn,m2Tn−1)− `+ 2i− (2Tn − 1).

On the other hand, d(vn+1,m2Tn+1−1) ≤ d(c2i,m2i) + 2Tn+1 − 1− 2i, and so

d(vn+1,m2Tn+1−1) ≤ d(vn,m2Tn−1)− `+ 2i− (2Tn − 1) + 2Tn+1 − 1− 2i

= d(vn,m2Tn−1) + 2(Tn+1 − Tn)− `.

Tn+1 − Tn = |{w ∈ V : d(vn, w) = `}| and so we have that

d(vn+1,m2Tn+1−1) ≤ d(vn,m2Tn−1)−
`

2
.

Now suppose that d(vn,m2Tn−1) < K. Since Tn+1 − Tn ≤ K
4

, the mouse
moves at most K

2
steps. Therefore

d(vn+1,m2Tn+1−1) ≤ d(vn,m2Tn−1) +
K

2
≤ 3K

2
.

In either case, a simple induction on n ≥ 1, we have Tn+1− Tn ≤ 1
4
`(vTn)

and that either d(vTn ,m2Tn−1) ≤ 3K
2

or

d(vn+1,m2Tn+1−1) ≤ d(vn,m2Tn−1)−
`

2
.

�

5 Conclusion

While we have established Θ(
√
n) as a general upper bound for a cat local-

ising a mouse on a graph, it would be nice to get better bounds depending
on the structure of G. Trivially we have diam(G) as an upper bound. In
addition to this, when the diameter of G is n−R, we may appeal to Lemma
4.3 with K = O(R) to get that the cat can localise the mouse up to dis-
tance O(R). Unfortunately, nothing more can be said when the diameter is
between these two extreme cases. Indeed, consider lengthening two of the
branches of the tree given in Section 3. Lemmas 4.2 and 4.3 are perhaps
steps in the right direction here. Lemma 4.2 works well when there is lots of
clustering whilst Lemma 4.3 works well when there is very little clustering.

11

Another interesting direction to consider is the case where multiple cats
are trying to localise the mouse exactly. In particular, suppose that there is
a collection1 of k cats c1, . . . , ck. At turn i, each cat cj chooses a vertex cji
and is told the value of bji . There is a simple argument which shows that 7
cats is sufficient to localise the mouse exactly on any tree in finite time. We
believe that this is not optimal and suggest the following questions.

Question 5.1. What is the minimum number of cats that are needed to
localise the mouse exactly on any tree?

Question 5.2. What happens on a general graph G? How accurately can k
cats localise a mouse?

References

[1] W. Baird and A. Bonato, Meyniel’s conjecture on the cop number: a
survey, Journal of Combinatorics 3 (2012), 225–238.

[2] D. Dayanikli and D. Rautenbach, Approximately locating
an invisible agent in a graph with relative distance queries,
https://arxiv.org/abs/1801.02370 (2018).

[3] A. Frieze, M. Krivelevich and P. Loh, Variations on Cops and Robbers,
Journal of Graph Theory 69 (2012), 383–402.

[4] J. Haslegrave, An evasion game on a graph, Discrete Mathematics 314
(2014), 1–5.

[5] L. Lu and X. Peng, On Meyniel’s conjecture of the cop number, Journal
of Graph Theory 71 (2012), 192–205.

[6] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph,
Discrete Mathematics 43 (1983), 235–239.

[7] A. Quilliot, Jeux et pointes fixes sur les graphes, Ph.D. Dissertation,
Université de Paris VI, (1978).

[8] A. Scott and B. Sudakov, A bound for the cops and robbers problem,
SIAM Journal on Discrete Mathematics 25 (2011), 1438–1442.

1It seems there is a large choice of collective nouns for a collection of cats, including
clowder, clutter, destruction (wild cats only), dout, glare, glorying, nuisance, and pounce
[9].

12

[9] D. Tersigni, Animal collective nouns,
http://www.thealmightyguru.com/Pointless/AnimalGroups.html,
(2003–2017).

13

