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Abstract

We prove two theorems about tree-decompositions in the setting of coarse graph theory. First, we
show that a graph G admits a tree-decomposition in which each bag is contained in the union of a
bounded number of balls of bounded radius, if and only if G admits a quasi-isometry to a graph with
bounded tree-width. (The “if” half is easy, but the “only if” half is challenging.) This generalizes
a recent result of Berger and Seymour, concerning tree-decompositions when each bag has bounded
radius.

Second, we show that if G admits a quasi-isometry φ to a graph H of bounded path-width, then G
admits such a quasi-isometry that has error only an additive constant. Indeed, we will show a much
stronger statement: that we can assign a non-negative integer length to each edge of H, such that
the same function φ is a quasi-isometry to this weighted version of H, with error only an additive
constant.



1 Introduction

Coarse graph theory is a new area that is filled with interesting open questions, and what is known
so far consists mostly of special cases of statements that might be much more generally true. In this
paper we make some unifying inroads. But we need to begin with some definitions.

Graphs in this paper may be infinite. (Our research was motivated by interest in finite graphs,
but all the proofs work equally well for infinite graphs.) If X is a vertex of a graph G, or a subset of
the vertex set of G, or a subgraph of G, and the same for Y , then distG(X,Y ) denotes the distance
in G between X,Y , that is, the number of edges in the shortest path of G with one end in X and
the other in Y . (If no path exists we set distG(X,Y ) =∞.)

Let G,H be graphs, and let φ : V (G)→ V (H) be a map. Let L ≥ 1 and C ≥ 0; we say that φ is
an (L,C)-quasi-isometry if:

• for all u, v in V (G), if distG(u, v) is finite then distH(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if distH(φ(u), φ(v)) is finite then distG(u, v) ≤ LdistH(φ(u), φ(v))+C; and

• for every y ∈ V (H) there exists v ∈ V (G) such that distH(φ(v), y) ≤ C.

If X ⊆ V (G), let us say the diameter of X in G is the maximum of distG(u, v) over all u, v ∈ X. A
tree-decomposition of a graph G is a pair (T, (Bt : t ∈ V (T ))), where T is a tree, and Bt is a subset
of V (G) for each t ∈ V (T ) (called a bag), such that:

• V (G) is the union of the sets Bt (t ∈ V (T ));

• for every edge e = uv of G, there exists t ∈ V (T ) with u, v ∈ Bt; and

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Bt1 ∩Bt3 ⊆ Bt2 .

(T might be infinite.) The width of a tree-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of
the numbers |Bt| − 1 for t ∈ V (T ), or ∞ if there is no finite maximum; and the tree-width of G
is the minimum width of a tree-decomposition of G. If T is a path, we call (T, (Bt : t ∈ V (T ))) a
path-decomposition, and the path-width of G is defined analogously.

Our first result is an extension of a result of Berger and Seymour [1] (which can also be derived
from a combination of results of Chepoi et al. [3]). They proved:

1.1 For all r, if G is connected and admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for
each t ∈ V (T ), Bt has diameter at most r in G, then G admits a (1, 6r+ 1)-quasi-isometry to a tree.

This has a sort of converse, also proved in [1]: if G is connected and (L,C)-quasi-isometric to a
tree then it admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each t ∈ V (T ), Bt has
diameter at most L(L+ C + 1) + C in G.

We will extend 1.1 from trees to graphs of bounded tree-width, as follows (although saying that
this extends 1.1 is something of a stretch, because we do not know whether 1.2 holds with L = 1):

1.2 For all k, r, there exist L,C ≥ 1 such that if G admits a tree-decomposition (T, (Bt : t ∈ V (T )))
such that for each t ∈ V (T ), Bt is the union of at most k sets each with diameter at most r in G,
then G admits an (L,C)-quasi-isometry to a graph with tree-width at most k.
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Our proof obtains a quasi-isometry to a graph with a tree-decomposition indexed by a subdivision
of the same tree T that indexed the tree-decomposition of G; and so if T is a path, we find a quasi-
isometry to a graph with bounded path-width. A similar result (with weaker constants) was obtained
independently by R. Hickingbotham [7], by applying a result of Dvořák and Norin [5].

In 1.2, we start with a tree-decomposition in which each bag is the union of k bounded-radius
balls, and we obtain a tree-decomposition in which each bag has size at most k + 1: and one might
hope that the final k in the statement of 1.2 should be k− 1. Obviously not for k = 1; but not when
k ≥ 2 either. To see this when k = 2, let G be a cycle, with vertices v1- · · · -vn-v1 in order. For
1 ≤ i ≤ n − 1, let Bvi = {vi, vi+1, vn}, and let T be the tree G \ {vn}. Then (T, (Bt : t ∈ V (T ))) is
a tree-decomposition of G, and each of its bags is the union of two balls of bounded radius (one the
singleton {vn} and the other consisting of two adjacent vertices). On the other hand, for all (L,C),
if n is large enough then there is no (L,C)-quasi-isometry from G to a graph with tree-width at most
1. A similar example works for each value of k ≥ 2 (take a k× k grid and subdivide each of its edges
many times).

Again, 1.2 has a sort of converse, because if G admits an (L,C)-quasi-isometry to a graph with
tree-width at most k, then G admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each
t ∈ V (T ), Bt is the union of at most k+ 1 sets each of bounded diameter — we will prove this in the
next section. But if we start with a graph G that admits a quasi-isometry to a graph with tree-width
at most k, and apply this converse, we obtain a tree-decomposition in which each bag is a union of
k + 1 sets of bounded diameter; and if we then apply 1.2, we obtain a quasi-isometry to a graph
with tree-width at most k + 1. Somewhere we went from tree-width k to tree-width k + 1, and this
is unsatisfying, at least on aesthetic grounds.

A way to get rid of it is to make a small tweak in the definition of tree-decomposition; say a
pseudo-tree-decomposition (T, (Bt : t ∈ V (T ))) is the same as a tree-decomposition, except we relax
the condition that every edge has both ends in some bag. Instead, we insist that for every edge
uv, either some bag contains both u, v, or there is an edge st of T such that Bs \ Bt = {u} and
Bt \Bs = {v}. Define pseudo-tree-width correspondingly (it differs from tree-width by at most one).
We will prove a version of 1.2 with “tree-width at most k” replaced by “pseudo-tree-width at most
k− 1”, and a version of 2.1 with “tree-width at most k” replaced by “pseudo-tree-width at most k”,
and the anomalous error of one is gone. More exactly, we will prove:

1.3 For all k, r, there exist L,C such that if G admits a tree-decomposition (T, (Bt : t ∈ V (T )))
such that for each t ∈ V (T ), Bt is the union of at most k sets each with diameter at most r in G,
then G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at most k − 1.

Conversely, for all L,C ≥ 1, if G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-
width at most k − 1, then G admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each
t ∈ V (T ), Bt is the union of at most k sets each of diameter at most 2L(L+ C) + C.

For our second result, let us return to the definition of an (L,C)-quasi-isometry. What if we want
L = 1? There is a remarkable theorem of Chepoi, Dragan, Newman, Rabinovich, and Vaxès [4], also
proved by Kerr [8]:

1.4 For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to a
tree, then there is a (1, C ′)-quasi-isometry from G to a tree.
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Is this special to trees, or can it be made much more general? For instance, Agelos Georgakopoulos
asked (in private communication) whether the same statement was true if we (twice) replace “tree”
by “planar graph”. Let C be a class of graphs. Under what conditions on C can we say the following?

“For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to a
member of C, then there is a (1, C ′)-quasi-isometry from G to a member of C.”

For this to be true, C must have some closure properties: for instance, if H ∈ C and G is obtained
from H by subdividing every edge once, there is a (2, 0)-quasi-isometry from G to H, but if we want
there to be a (1, C ′)-quasi-isometry from G to a member of C then we need C to contain a graph much
like G; and this is close to asking that C be closed under edge-subdivision. Similarly, if H ∈ C and G
is obtained from H by contracting the edges in some matching of H, there is a (3, 0)-quasi-isometry
from G to H, and so we need C to be more-or-less closed under edge-contraction. Is that enough,
could the following be true?

1.5 Conjecture: Let C be a class of connected graphs, closed under contracting edges and subdi-
viding edges. For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph
G to a member of C, then there is a (1, C ′)-quasi-isometry from G to a member of C.

For instance, if G,H are respectively the infinite square lattice and the infinite triangular lattice,
there is a quasi-isometry between them, but no (1, C)-quasi-isometry (for any constant C); but there
is a (1, 2)-quasi-isometry from G to a graph obtained by subdividing edges of H, and a (1, 100)-
quasi-isometry from H to a graph obtained by subdividing and contracting edges of G (we omit the
proofs of all these statements).

We are far from proving the conjecture 1.5 in general, but we will prove a special case, which we
will explain next. We will prove:

1.6 For all L,C, k there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to
a graph H with path-width at most k, then there is a (1, C ′)-quasi-isometry from G to a graph H ′

obtained from H by subdividing and contracting edges.

Let N denotes the set of nonnegative integers. Let H be a graph and let w : E(G) → N; we
call (H,w) a weighted graph. One can define quasi-isometry for weighted graphs in the natural way,
defining distH,w(u, v) to be the minimum of w(P ) over all paths of H between u, v, where w(P )
means

∑
e∈E(P )w(e). Subdividing and contracting edges of H is closely related to moving from H

to (H,w) for an appropriate w, so we could express 1.6 in terms of weighted graphs. In this modified
form of 1.6, rather than replacing H by H ′, we keep H and just put weights on its edges. But
something much stronger is true: we don’t need to change the quasi-isometry either.

1.7 For all L,C, k there exists C ′ such that if φ is an (L,C)-quasi-isometry from a graph G to a
graph H with path-width at most k, then there is a function w : E(H) → N such that the same
function φ is a (1, C ′)-quasi-isometry from G to the weighted graph (H,w).

Indeed, the conjecture 1.5 suggests something even stronger, that we could omit the path-width
condition from this:

1.8 Conjecture: For all L,C there exists C ′ such that if φ is an (L,C)-quasi-isometry from a
graph G to a graph H, then there is a function w : E(H) → N such that the same function φ is a
(1, C ′)-quasi-isometry from G to the weighted graph (H,w).
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We feel this is much too strong to be true, but have no counterexample.
1.6 has some applications. First, let C be the class of all subdivisions of graphs of path-width at

most k. (Subdividing the edges of a graph might increase its path-width, but only by one — see [2]).
Then 1.6 tells us that 1.5 holds for C.

Here is another application. A. Georgakopoulos in private communication showed that for all
L,C there exists C ′ such that if a finite graph G is (L,C)-quasi-isometric to a cycle, then G is
(1, C ′)-quasi-isometric to a cycle. This immediately follows from 1.6. Similarly, we (unpublished)
proved some time ago the following result about fat minors (we omit the definitions of fat minor,
since we will not need them any more in this paper): for all k,C, there exists C ′ such that if G
does not contain K1,k as a C-fat minor, then there is a (1, C ′)-quasi-isometry from G to a graph not
containing K1,k as a minor. This strengthened a result of Georgakopoulos and Papasoglu [6] that all
k,C, there exist L,C ′ such that if G does not contain K1,k as a C-fat minor, then there is a (L,C ′)-
quasi-isometry from G to a graph not containing K1,k as a minor. Our proof was complicated, but
graphs with no K1,k minor have path-width at most k− 1 and are closed under taking subdivisions,
and so our result follows via 1.6 from that of of Georgakopoulos and Papasoglu.

Is 1.5 true at least when C is the class of graphs with tree-width at most k? Yes when k = 1,
by 1.4, and indeed one can show that 1.6 also holds in this case (see the proof of 1.4 in [1]). What
about tree-width two? A special case is when C is the class of all outer-planar graphs, and we can
prove 1.5 in that case. (A hint for the proof: every outerplanar graph is quasi-isometric to a graph
in which every non-trivial block is a cycle.) But for tree-width two in general, the result is open, as
is the following weaker statement:

1.9 Conjecture: For all L,C there exist C ′, k such that if there is an (L,C)-quasi-isometry from
a graph G to a graph of tree-width at most two, then there is a (1, C ′)-quasi-isometry from G to a
graph of tree-width at most k.

2 The proof of 1.3

Let us state the definition of pseudo-tree-width more formally. A pseudo-tree-decomposition of a
graph G is a pair (T, (Bt : t ∈ V (T ))), where T is a tree, and Bt is a subset of V (G) for each
t ∈ V (T ) (called a bag), such that:

• V (G) is the union of the sets Bt (t ∈ V (T ));

• for every edge e = uv of G, either there exists t ∈ V (T ) with u, v ∈ Bt, or there is an edge
st ∈ E(T ) such that Bs \Bt = {u} and Bt \Bs = {v}; and

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a pseudo-tree-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of the numbers
|Bt| − 1 for t ∈ V (T ), or ∞ if there is no finite maximum; and the pseudo-tree-width of G is the
minimum width of a pseudo-tree-decomposition of G. If T is a path, we call (T, (Bt : t ∈ V (T ))) a
pseudo-path-decomposition, and the pseudo-path-width of G is defined analogously.

Before we prove the main part of 1.3, let us prove its (much easier) second part, the converse:
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2.1 If G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at most k − 1, then G
admits a tree-decomposition (T, (Dt : t ∈ V (T ))) such that for each t ∈ V (T ), Dt is the union of at
most k sets each of diameter at most 2L(L+ C) + C.

Proof. Let H be a graph with pseudo-tree-width at most k − 1, and let (T, (Bt : t ∈ V (T ))) be
a pseudo-tree-decomposition of H with width at most k − 1. Let φ be an (L,C)-quasi-isometry
from a graph G to H. For each h ∈ V (H), let Xh be the set of vertices i ∈ V (H) such that
distH(h, i) ≤ L + C. For each t ∈ V (T ), let Dt be the set of all vertices v ∈ V (G) such that
φ(v) ∈ Xh for some h ∈ Bt. We claim that (T, (Dt : t ∈ V (T ))) is a tree-decomposition of G
satisfying the theorem. So we must check that:

•
⋃
t∈V (T )Dt = V (G);

• for every edge uv of G there exists t ∈ V (T ) with {u, v} ∈ Dt;

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Dt1 ∩Dt3 ⊆ Dt2 ; and

• for each t ∈ V (T ), Dt is the union of at most k sets each of diameter (in G) at most 2L(L +
C) + C.

For the first statement, let v ∈ V (G); then φ(v) ∈ V (H), and so φ(v) ∈ Bt for some t ∈ V (T ). In
particular, since φ(v) ∈ Xφ(v), it follows that v ∈ Dt. This proves the first statement.

For the second statement, let uv ∈ E(G), and choose t ∈ V (T ) with φ(v) ∈ Bt. Since φ is an
(L,C)-quasi-isometry, distH(φ(u), φ(v)) ≤ L + C, and so φ(u) ∈ Xφ(v). It follows that u, v ∈ Dt.
This proves the second statement.

For the third statement, let t1, t2, t3 ∈ V (T ), such that t2 lies on the path of T between t1, t3,
and let v ∈ Dt1 ∩ Dt3 . Hence for i = 1, 3, there exists hi ∈ Bti with φ(v) ∈ Xhi ; let Pi be a path
of H between φ(v), hi of length at most L + C. Since P1 ∪ P3 is a connected graph with vertices
in Bt1 and in Bt3 , it also has a vertex in Bt2 , say h2. Thus h2 belongs to one of V (P1), V (P3), and
so distH(h2, φ(v)) ≤ L + C; and hence φ(v) ∈ Xh2 , and therefore v ∈ Dt2 . This proves the third
statement.

Finally, for the fourth statement, let t ∈ V (T ). For each h ∈ B(t), let Fh be the set of all
v ∈ V (G) such that φ(v) ∈ Xh. Thus Dt is the union of the sets Fh (h ∈ Bt), and there are |Bt| ≤ k
such sets. We claim that each Fh has diameter at most 2L(L + C) + C in G. If u, v ∈ Fh, then
each of φ(u), φ(v) has distance at most L + C from h, and so distH(φ(u), φ(v)) ≤ 2(L + C). Since
φ is an (L,C)-quasi-isometry, it follows that distH(u, v) ≤ 2L(L + C) + C. This proves the fourth
statement, and so proves 2.1.

To prove 1.3, we need the following lemma:

2.2 Let G be a graph, and let A,B be disjoint subsets of V (G) with union V (G). Let |A|, |B| ≤ k,
and suppose that there are at most k edges between A,B. Then there is a pseudo-path-decomposition
(B1, . . . , Bn) of G with width at most k − 1 and with A ⊆ B1 and B ⊆ Bn.

Proof. We proceed by induction on k+ |A|+ |B|. If some vertex a ∈ A has no neighbours in B, then
from the inductive hypothesis, applied to G\{a}, there is a pseudo-path-decomposition (B1, . . . , Bn)
of G \ {a} with width at most k − 1 and with A \ {a} ⊆ B1 and B ⊆ Bn. But then (A,B1, . . . , Bn)
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satisfies the theorem. Thus we may assume that each vertex in A has a neighbour in B, and vice
versa.

If every vertex in A has exactly one neighbour in B and vice versa, the result is true; so we assume
that some vertex in A has at least two neighbours in B, and hence |A| ≤ k − 1. Let b ∈ B with a
neighbour in A, and let G′ be obtained by deleting b. In G′, there are at most k − 1 edges between
A and B \ {b}, and these two sets both have size at most k − 1. From the inductive hypothesis
applied to G′, there is a pseudo-path-decomposition (C1, . . . , Cn) of G′ with width at most k − 2
and with A ⊆ C1 and B \ {b} ⊆ Cn. Define Bi = Ci ∪ {b} for 1 ≤ i ≤ n; then (B1, . . . , Bn) is a
pseudo-path-decomposition of G satisfying the theorem. This proves 2.2.

To prove the first part of 1.3, it suffices to prove it when G is connected (by working with each
component of G separately); and it suffices to prove it when r = 1. To see the latter, let G be a
connected graph that admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each t ∈ V (T ),
Bt is the union of at most k sets each with diameter at most r in G. For each t ∈ V (T ), and each
pair u, v of nonadjacent vertices of G[Bt] with distG(u, v) ≤ r, add an edge joining u, v, and let G′ be
the resultant graph. Then (T, (Bt : t ∈ V (T ))) is a tree-decomposition of G′, and for each t ∈ V (T ),
Bt is the union of at most k cliques of G′. Moreover, the identity map is an (r, 0)-quasi-isometry
between G,G′; and so if G′ admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at
most k − 1, then G admits an (rL, rC)-quasi-isometry to the same graph. Consequently, for given
k, if L,C satisfy the theorem when r = 1, then rL, rC satisfy the theorem for general r. Hence it
suffices to prove the following:

2.3 For all k, if G is connected and admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that Bt
is the union of at most k cliques for each t ∈ V (T ), then G admits a (2k+ 2, 2k− 1)-quasi-isometry
to a graph with pseudo-tree-width at most k − 1.

Proof. Let (T, (Bt : t ∈ V (T ))) be a tree-decomposition of G such that for each t ∈ V (T ), Bt is
the union of at most k cliques. Fix a root r ∈ V (T ) (arbitrarily). For each t ∈ V (T ), its ancestors
are the vertices of the path of T between r, t, and its strict ancestors are its ancestors different from
t. If s is an ancestor of t then t is a descendant of s, and descendants of t different from t are strict
descendants of t. For t ∈ V (T ), its height is the length of the path of T between r, t.

We will recursively define a set of pairs, called “cores”. Each core will be a pair (t, C) where
t ∈ V (T ) and C is a subset of Bt inducing a non-null connected subgraph, and we will call t its
birthplace. The set of all cores with the same birthplace will be given an arbitrary linear order called
the “birth order”, and if (t, C) precedes (t, C ′) in the birth order then we will say that (t, C) is an
elder sibling of (t, C ′), and (t, C ′) is a younger sibling of (t, C). Each core (t, C) will have a spread
S(t, C), which is the vertex set of a certain subtree of T with root t, defined below.

Here is the inductive definition. If there exists t ∈ V (T ) such that we have not yet defined the
set of cores with birthplace t, choose some such t with minimum height. Let Z be the set of vertices
v ∈ Bt such that v /∈ C and v has no neighbour in C, for every strict ancestor s of t and every core
(s, C) with t ∈ S(s, C). We define the set of cores with birthplace t to be the set of all pairs (t, C)
where C is a component of G[Z]. Choose an arbitrary linear order, called the birth order, of the set
of cores with birthplace t. For each core (t, C), its spread S(t, C) is the set of all t′ ∈ V (T ) such that

• t′ is a descendant of t;
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• C ∩Bt′ 6= ∅;

• t′ ∈ S(s, C ′) for every core (s, C ′) such that s is a strict ancestor t and t ∈ S(s, C ′); and

• t′ ∈ S(t, C ′) for every elder sibling (t, C ′) of (t, C).

This completes the inductive definition of the set of all cores.
Two subsets X,Y ⊆ V (G) are anticomplete if they are disjoint and there are no edges of G

between them. We need, first:

(1) If (t1, C1), (t2, C2) are distinct cores and their spreads intersect, then C1, C2 are anticomplete.

We may assume that t1 6= t2. Since the spreads of (t1, C1), (t2, C2) intersect, t1, t2 have a com-
mon descendant t0 say, so one of t1, t2 is a strict ancestor of the other. Hence we may assume that
t1 is a strict ancestor of t2, and therefore t2 ∈ S(t1, C1) since the spreads intersect. Since (t2, C2) is
a core, it follows that for each v ∈ C2, v /∈ C1 and v has no neighbour in C1. Consequently, C1, C2

are anticomplete. This proves (1).

(2) For each t ∈ V (T ), there are at most k cores (s, C) such that t ∈ S(s, C).

Let (s1, C1), . . . , (sn, Cn) be the set of all cores whose spread contains t, and let D1, . . . , Dm be
cliques with union Bt, with m ≤ k. The sets C1 ∩Bt, . . . , Cn ∩Bt are nonempty, and by (1) they are
pairwise anticomplete. Consequently, for 1 ≤ i ≤ n, there exists ji ∈ {1, . . . ,m} such that Ci ∩ Bt
contains a vertex of Dji ; and if i, i′ ∈ {1, . . . , n} are distinct, then ji 6= ji′ , because Ci ∩ Bt and
Ci′ ∩Bt are anticomplete and Dji is a clique. Thus n ≤ m ≤ k. This proves (2).

For each v ∈ V (G), there exists t ∈ V (T ) with v ∈ Bt, and the set of such vertices t induces a
subtree of T . In particular, there is a unique t ∈ V (T ) of minimum height with v ∈ Bt, and we call
t the birth of v. If t is the birth of v, there might or might not exist C ⊆ Bt with v ∈ C such that
(t, C) is a core. If there exists such C we say v is central. If there exists a core (t′, C ′) such that t′

is a strict ancestor of t and t ∈ S(t′, C ′) and v has a neighbour in C ′, we say v is peripheral. (Note
that v cannot belong to C ′, from the definition of t.)

(3) Every vertex v ∈ V (G) is central or peripheral, and not both.

The first statement is clear from the definition of the set of cores with birthplace t. For the “not
both” part, suppose that v is central and peripheral; choose C ⊆ Bt with v ∈ C such that (t, C) is
a core, and choose a core (t′, C ′) such that t′ is a strict ancestor of t and t ∈ S(t′, C ′) and v has a
neighbour in C ′. Since t ∈ S(t, C) ∩ S(t′, C ′), and v ∈ C has a neighbour in C ′, this contradicts (1).
This proves (3).

For each v ∈ V (G), we define a core φ(v) as follows. Let t1 ∈ V (T ) be the birth of v. If v
is central, φ(v) is the core (t1, C1) with v ∈ C1. Now assume v is peripheral. Hence there is a
strict ancestor t0 of t1 and a core (t0, C0) such that t1 ∈ S(t0, C0), and v has a neighbour in C0.
Choose such t0 of minimum height; and of all the cores (t0, C0) such that t1 ∈ S(t0, C0), and v has a
neighbour in C0, choose (t0, C0) with this property, as early as possible in the birth order. We define
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φ(v) = (t0, C0).

(4) Let v ∈ V (G), let φ(v) = (t0, C0), and let t ∈ V (T ), such that v ∈ Bt. Then exactly one of
the following holds:

• v is peripheral, and t ∈ S(t0, C0); or

• there is a core (t′, C ′) with t ∈ S(t′, C ′) and v ∈ C ′.

If both statements hold, then since t ∈ S(t0, C0) and t ∈ S(t′, C ′) and there is an edge between C0, C
′

(because v ∈ C ′ and has a neighbour in C0), this contradicts (1). So not both hold. We prove that
at least one holds by induction on the height of t. If there exists C with v ∈ C such that (t, C) is a
core, the claim is true, so we assume not. Hence, from the definition of cores, there is a core (t2, C2)
with t ∈ S(t2, C2), such that t2 is a strict ancestor of t and v belongs to or has a neighbour in C2. If
v ∈ C2, the claim holds, so we assume that v /∈ C2 and v has a neighbour in C2.

Let t1 be the birth of v. Thus, t0, t1, t2 all belong to the path of T between r, t, and t0 is an
ancestor of t1. Suppose that either t2 is a strict ancestor of t0, or (t2, C2) is an elder sibling of
(t0, C0); and hence v is peripheral, in both cases. Since v has a neighbour in C2, this contradicts the
definition of φ(v). So we assume that either t2 is a strict descendant of t0 or (t2, C2) is a younger
sibling of (t0, C0).

If t = t1 the result is true, so we assume that t 6= t1. Let s be the parent of t; so s lies in the
path of T between t1, t, and therefore v ∈ Bs. From the inductive hypothesis, either v is peripheral
and s ∈ S(t0, C0), or there is a core (t′, C ′) with s ∈ S(t′, C ′) and v ∈ C ′.

Suppose the first holds. Since either t0 is a strict ancestor of t2, or (t0, C0) is an elder sibling
of (t2, C2), and since S(t2, C2) contains t and t2 ∈ S(t0, C0), it follows (from the second half of the
definition of cores) that t ∈ S(t0, C0) and the claim is true.

So we assume the second holds, that is, there is a core (t′, C ′) with s ∈ S(t′, C ′) and v ∈ C ′. If
t ∈ S(t′, C ′) the claim holds, so we assume not. Since t2 is a strict ancestor of t and t ∈ S(t2, C2),
it follows that t2 is an ancestor of s and s ∈ S(t2, C2). But there is an edge between C2, C

′, since
v ∈ C ′ and v has a neighbour in C2; and so from (1), either (t′, C ′) = (t2, C2) or the spreads of
(t′, C ′) and (t2, C2) are disjoint. The first is impossible since t /∈ S(t′, C ′) and t ∈ S(t2, C2), and the
second is impossible since s belongs to both spreads. This proves (4).

(5) Let P be a path of T with one end r, and let v ∈ V (G). Let φ(v) = (t0, C0). Let C(P, v) be
the set of cores (t, C) such that t ∈ V (P ) and v ∈ C. Let the members of C(P, v) with birthplace
different from t0 be (t1, C1), . . . , (tn, Cn), numbered such that t0, t1, . . . , tn have strictly increasing
height. Then:

• ti /∈ S(th, Ch) for 0 ≤ h < i ≤ n;

• for 1 ≤ i ≤ n, let si be the parent of ti: then si ∈ S(ti−1, Ci−1);

• n ≤ k − 1.

The first bullet holds by (1), since v ∈ Ci and either v ∈ Ch, or h = 0 and v has a neighbour in Ch.
For the second bullet, let t′0 be the birth of v. Thus t0 is an ancestor of t′0 (possibly t′0 = t0), and
t1, . . . , tn are strict descendants of t′0 (to see that t1 6= t′0, observe that this is trivially true if v is not
central, and true if v is central since then t0 = t′0.)
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Let 1 ≤ i ≤ n. If v /∈ Bsi , then i = 1 and ti = t′0, which is impossible. So v ∈ Bsi . If si ∈ S(t0, C0),
then ti−1 ∈ S(t0, C0), and so i = 1 by the first bullet of (5) (because otherwise ti−1 /∈ S(t0, C0))
and the claim is true. So we assume that si /∈ S(t0, C0). From (4), there is a core (t′, C ′) with
si ∈ S(t′, C ′) and v ∈ C ′. Hence (t′, C ′) = (th, Ch) for some h ∈ {0, . . . , i − 1}. If h < i − 1, then
(ti−1, Ci−1) /∈ S(th, Ch) by the first bullet of (5), contradicting that ti ∈ S(t′, C ′). Thus h = i − 1
and the claim holds.

For the third bullet, we may assume that n ≥ 1. For 0 ≤ i ≤ n define g(i) to be the number of
cores (t, C) such that t is a strict ancestor of ti and ti ∈ S(t, C). We will prove by induction on i
that g(i) ≤ k − i− 1. Since there is a core (t0, C0), it follows that g(0) ≤ k − 1 by (2). Inductively,
suppose that 1 ≤ i ≤ n, and g(i − 1) ≤ k − (i − 1) − 1. Let Ai−1 be the set of all cores (t, C) such
that t is a strict ancestor of ti−1 and ti−1 ∈ S(t, C); and let Ai be the set of all cores (t, C) such
that t is a strict ancestor of ti and ti ∈ S(t, C). Thus g(i − 1) = |Ai−1| and g(i) = |Ai|. We claim
that Ai ⊆ Ai−1. Let (t, C) ∈ Ai, and suppose that (t, C) /∈ Ai−1. Thus t is a strict ancestor of ti,
and a descendant of ti−1. Since ti /∈ S(ti−1, Ci−1), and Ci−1 ∩ Bti 6= ∅ (because it contains v), the
definition of S(ti−1, Ci−1) implies that there is a core (d,D) such that d is a strict ancestor of ti−1,
and ti−1 ∈ S(d,D), and ti /∈ S(d,D). But this contradicts the definition of the spread of (t, C), since
d is a strict ancestor of ti−1 and ti ∈ S(t, C).

Consequently Ai−1 ⊆ Ai for 1 ≤ i ≤ n. But for 1 ≤ i ≤ n, since Ci−1 ∩ Bti 6= ∅ and yet
ti /∈ S(ti−1, Ci−1), there is a core (d,D) such that d is a strict ancestor of ti−1, and ti−1 ∈ S(d,D),
and ti /∈ S(d,D). But then (d,D) ∈ Ai−1 \ Ai, and so g(i) < g(i− 1) ≤ k − (i− 1)− 1 = k − i− 1.
This proves the third bullet and so proves (5).

Next we construct a graph J . Its vertex set is the set of all triples (s, t, C) where (t, C) is a
core and s is in its spread. Consequently s is a descendant of t for all vertices (s, t, C) of J . If
(s1, t1, C1), (s2, t2, C2) ∈ V (J) are distinct, they are adjacent in J if either:

• s1 = s2 and distG(C1, C2) ≤ 3, or

• s1, s2 are adjacent in T and C1 ∩ C2 6= ∅.

In particular, if (s, t, C) ∈ V (J) and s 6= t, let s′ be the parent of s; then (s′, t, C) ∈ V (J) is adjacent
in J to (s, t, C) ∈ V (J), and edges of this type are called green edges. All edges of J that are not
green are called red. We will eventually show that there is a (2k + 2, 2k − 1)-quasi-isometry from G
to the graph obtained from J by contracting all green edges. But first we prove some properties of
J .

(6) J has pseudo-tree-width at most k − 1.

For each s ∈ V (T ), let As be the set of all (s, t, C) ∈ V (J). Thus the sets As (s ∈ V (T )) are
pairwise disjoint and have union V (J). Let s, t ∈ V (T ) where s is the parent of t. There may be
edges of J between As and At, but we claim that there are at most k such edges. Choose a set F
of at most k cliques with union Bs. For each edge e ∈ E(J) between As, At, we define Fe ∈ F as
follows. Let the ends of e be (s, s1, C1) ∈ V (J) and (t, t1, D1). Then C1∩D1 6= ∅; choose Fe ∈ F that
contains a vertex in C1 ∩D1. We claim that Fe1 6= Fe2 for all distinct edges e1, e2 between As, At.
To see this, let ei have ends (s, si, Ci) ∈ V (J) and (t, ti, Di) for i = 1, 2. Either (s1, C1) 6= (s2, C2)
or (t1, D1) 6= (t2, D2). In the first case, C1, C2 are anticomplete by (1); so no clique intersects both
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C1, C2; and so Fe1 6= Fe2 . In the second case, D1, D2 are anticomplete by (1); so no clique intersects
both D1, D2; and so Fe1 6= Fe2 . Since |F| ≤ k, this proves that there are at most k edges of J
between As, At.

Let f = st be an edge of T , where s is the parent of t. From 2.2, since |As|, |At| ≤ k by (2), there

is a pseudo-path-decomposition (Bf
1 , . . . , B

f
n(f)) of J [As ∪ At] with width at most k − 1 and with

As ⊆ Bf
1 and At ⊆ Bf

n(f). This defines n(f), for each edge f of T . Subdivide each edge f ∈ E(T )

n(f) times, making a tree T ′. Define Ct = Bt for each t ∈ V (T ). For each f = st ∈ E(T ) where s
is the parent of t, let s, u1, . . . , un(f), t be the vertices in order of the path formed by subdividing f ,

and define Cui = Bf
i for 1 ≤ i ≤ n(f). This defines a pseudo-tree-decomposition of J with width at

most k − 1, and so proves (6).

The function φ does not map into V (J), since φ(v) is a pair, not a triple. For each v ∈ V (G),
define ψ(v) = (t, t, C) where φ(v) = (t, C).

(7) Let v ∈ V (G), and let (t, C) be a core with v ∈ C. Then there is a path of J between ψ(v)
and (t, t, C) with at most k − 1 red edges.

Let P be the path of T between r, t, and define (t0, C0), . . . , (tn, Cn) as in (5). By the second
bullet of (5), for 0 ≤ i < n, there is a path of J from (ti−1, ti−1, Ci−1) to (ti, ti, Ci) in which all edges
are green except the last; and since n ≤ k − 1 (again by (5)), and (t, C) = (tn, Cn), this proves (7).

(8) Let v1, v2 ∈ V (G) be adjacent. Then there is a path of J between ψ(v1), ψ(v2) using at most
k red edges.

Let ψ(vi) = (ti, ti, Ci) for i = 1, 2, and let t′i be the birth of vi for i = 1, 2. Since vi belongs to
or has a neighbour in Ci, for i = 1, 2, and v1v2 ∈ E(G), it follows that distG(C1, C2) ≤ 3. There
exists s ∈ V (T ) with v1v2 ∈ Bs, since v1v2 is an edge; and by choosing s of minimum height we may
assume that s is the birth of one of v1, v2, say v2, and so s = t′2.

A green path of J means a path of J containing only green edges. Suppose that t2 ∈ S(t1, C1).
Conequently there is a green path of J between (t1, t1, C1) and (t2, t1, C1). with vertex set all the
triples (t, t1, C) such that t is in the path of T between t1, t2, in order. Since there is a (red) edge of
J between (t2, t1, C1) and (t2, t2, C2) (from the definition of J , since distG(C1, C2) ≤ 3), the claim is
true. Thus we may assume that t2 /∈ S(t1, C1). In particular, t2 is a strict descendant of t′1.

Since t2 is in the path of T between t′1, t
′
2, and v1 ∈ Bt′1 ∩ Bt′2 , it follows that v1 ∈ Bt2 . Since

t2 /∈ S(t1, C1), (4) implies that there is a core (d,D) with t2 ∈ S(d,D) and v1 ∈ D. Thus (t1, t1, C1)
is joined to (d, d,D) be a path of J with only k−1 red edges, by (7); (d, d,D) is joined to (t2, d,D) by
a green path; and (t2, d,D) is adjacent to (t2, t2, C2) via a red edge, since distG(C2, D) ≤ 2 (because
v2 has a neighbour in both). This proves (8).

(9) For each core (t, C), G[C] has diameter at most 2k − 1.

G[C1] has no stable set of size k + 1 (because C can be partitioned into at most k cliques), and
therefore G[C] has no induced path with 2k + 1 vertices. Since it is connected, it has diameter at
most 2k − 1, This proves (9).
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(10) If (s1, t1, C1) and (s,t2, C2) are joined by a green path of J , and v1 ∈ C1 and v2 ∈ C2, then
distG(v1, v2) ≤ 2k − 1.

Any two vertices of J joined by a green edge have the same second and third coordinates, and
so t1 = t2 and C1 = C2. Consequently v1, v2 ∈ C1, and the result follows from (9). This proves (10).

(11) Let v1, v2 ∈ V (G), and suppose P is a path of J between ψ(v1), ψ(v2) containing at most n
red edges. Then distG(v1, v2) ≤ (2k + 2)n+ 2k − 1.

If n = 0 the result follows from (10), so we assume that n ≥ 1. Let P have ends b0 and an+1,
and let the red edges of P be a1b1, a2b2, . . . , anbn in order, numbered such that there there is a green
subpath of P between bi, ai+1 for 0 ≤ i ≤ n. For 1 ≤ i ≤ n, define αi, βi as follows: let ai = (s, t, C)
and bi = (s′, t′, C ′) say; choose αi ∈ C and βi ∈ C ′ with distance at most three in G. (This is possible
from the definition of red edges.) Let β0 = v1 and αn+1 = v2. Thus distG(αi, βi) ≤ 3 for 1 ≤ i ≤ n;
and distG(βi, αi+1) ≤ 2k − 1 by (10). Consequently distG(v1, v2) ≤ (2k + 2)n+ 2k − 1.

(12) For each j ∈ J , there exists v ∈ V (G) such that there is a path of J between j and ψ(v)
using at most k − 1 red edges.

Let j = (s, t, C), and choose v ∈ C ∩ Bs. There is a green path between j and (t, t, C); and by
(7), since v ∈ C ⊆ Bt, there is a path between (t, t, C) and ψ(v) containing at most k − 1 red edges.
This proves (12).

Let H be obtained from J by contracting all green edges. Thus each vertex of H is formed
by indentifying all the vertices (s, t, C) for a fixed core (t, C), and so we can identify V (H) with
the set of all cores in the natural way. From (6), and since contraction does not increase pseudo-
tree-width, H has pseudo-tree-width at most k − 1, and from (8), (11), (12), the function ψ is a
(2k + 2, 2k − 1)-quasi-isometry from G to H. This proves 2.3 and hence (with 2.1) proves 1.3.

3 The proof of 1.7, part 1

Let (H,w) be a weighted graph. For each e with w(e) > 0, let us subdivide e w(e) − 1 times, that
is, replace e by a path joining the ends of e of length w(e), the internal vertices of which are new
vertices. For each edge e ∈ E(H) with w(e) = 0, let us contract e. This produces a multigraph,
possibly with loops or parallel edges; delete all loops created and all except one of each parallel class
of parallel edges, and let H ′ be a graph obtained. Each vertex s ∈ V (H) is taken to a vertex of H ′

in the natural sense, that we call the w-image of s. We say H ′ is a w-rescaling of H.
Let G be a graph and let (H,w) be a weighted graph. A map φ from V (G) to V (H) is an

(L,C)-quasi-isometry from G to (H,w) if:

• for all u, v in V (G), if distG(u, v) is finite then dist(H,w)(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if dist(H,w)(φ(u), φ(v)) is finite then distG(u, v) ≤ Ldist(H,w)(φ(u), φ(v)) +
C; and
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• for every y ∈ V (H) there exists v ∈ V (G) such that dist(H,w)(φ(v), y) ≤ C.

Let G,H,w, φ, L,C be as above, and let H ′ a w-rescaling of H. Define φ′(v) to be the w-image
of v, for each v ∈ V (H) (and call φ′ the w-rescaling of φ). One might expect that φ′ would be an
(L,C)-quasi-isometry from G to H ′, but this is not correct: the third condition in the definition
of an (L,C)-quasi-isometry might be violated by the new vertices introduced in the subdivision
process. Let us say the weight of w is the maximum of w(e) over all e ∈ E(G). Then φ′ is an
(L,C + d(W − 1)/2e)-quasi-isometry from G to H ′, where W is the weight of w (we omit the proof,
which is clear).

In the reverse direction, suppose that G is a graph, (H,w) is a weighted graph, and φ is an
(L,C)-quasi-isometry from G to H. If w has weight W , one might expect that φ is a (WL,WC)-
quasi-isometry from G to (H,w). Again this is wrong, but now it is the second condition in the
definition that breaks, because there might be far-apart vertices in G that are joined by a path in
which all edges e satisfy w(e) = 0. Let us say that (H,w) has depth D if D is the maximum of
distH(u, v) over all u, v ∈ V (H) such that dist(H,w)(u, v) = 0. It is easy to check (again, we omit the
proof) that φ is an (Lmax(W,D), C max(W,D))-quasi-isometry from G to (H,w).

In order to prove 1.7, we start with an (L,C)-quasi-isometry from G to a graph H with path-
width at most k, and we will find an appropriate w such that φ becomes a (1, C ′)-quasi-isometry
from G to (H,w). But we really want that the w-rescaling of φ is a (1, C ′′)-quasi-isometry from G
to the w-rescaling of H, so that we can deduce 1.6, and so we have to keep the weight of w under
control.

If s, t ∈ V (H), an (s, t)-geodesic in H means a path between s, t of minimum length. If (H,w)
is a weighted graph, an (s, t)-geodesic in (H,w) means a path between s, t with w(P ) minimum. A
geodesic (in H or (H,w)) means an (s, t)-geodesic for some s, t.

3.1 Let C ≥ 1000, and let φ be a (C,C)-quasi-isometry from a graph G to a graph H. Let P be a
geodesic in G. Let the vertices of P be p1, . . . , pm in order. Then there is a function w : E(H)→ N,
with weight at most 25C7 + 1 and depth at most 12C6, such that

| dist(H,w)(φ(pi), φ(pj))− (j − i)| ≤ 12C6 + 1

for 1 ≤ i < j ≤ m.

Proof. We may assume that φ(p1) 6= φ(pm), since otherwise the result is clear. For 1 ≤ i ≤ m− 1,
there is a path Ti of H between φ(pi), φ(pi+1) of length at most 2C.

(1) There is an induced path Q of H between φ(p1), φ(pm), such that each vertex of Q belongs to one
of the paths Ti (1 ≤ i ≤ m − 1); and so for each q ∈ V (Q), there exists i ∈ {1, . . . ,m} such that
distH(q, φ(pi)) ≤ C. Moreover, for all u, v ∈ V (Q), the subpath of Q between u, v has length at most
2C2 distH(u, v) + 9C3.

Choose an increasing sequence i1 < i2 < · · · < ik with k minimal such that φ(p1) ∈ V (Ti1), and
φ(pm) ∈ V (Tik), and V (Tij ) ∩ V (Tij+1) 6= ∅ for 1 ≤ j < k. Thus, consecutive terms in the sequence
Ti1 , . . . , Tik share a vertex, and nonconsecutive terms are disjoint. It follows that there is a path Q′

from φ(p1) to φ(pm) formed by concatenating subpaths of Ti1 , . . . , Tik in order. If u, v ∈ V (Q′), let
u ∈ V (Tia) and v ∈ V (Tib) say, with ia ≤ ib; then the subpath of Q′ between u, v contains only edges
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from Tia , Tia+1 , . . . , Tib , and so has length at most the sum of the lengths of these paths, and so at
most 2C(b+ 1− a). But

b− a = distG(pa, pb) ≤ C distH(φ(pa), φ(pb)) + C,

and distH(φ(pa), φ(pb)) ≤ distH(u, v)+4C, and so the subpath of Q′ between u, v has length at most

2C(b+ 1− a) ≤ 2C + 2C2(distH(u, v) + 4C + 1) ≤ 2C2 distH(u, v) + 9C3.

Now Q′ might not be induced, but there is an induced path Q between φ(p1), φ(pm) using only
vertices of Q′, and keeping them in the same order, and so Q satisfies (1).

Let the vertices of Q in order be φ(p1) = q1- · · · -qn = φ(pm).

(2) For 1 ≤ i ≤ m there exists g(i) ∈ {1, . . . , n} such that distH(φ(pi), qg(i)) ≤ C3 + C2 + 2C.
Moreover, g(1) = 1 and g(m) = n.

For 1 ≤ j ≤ n, choose f(j) ∈ {1, . . . ,m} such that distH(qj , φ(pf(j))) ≤ C, taking f(1) = 1
and f(n) = m. Now let 1 ≤ i ≤ m. Taking g(1) = 1 and g(m) = n satisfies the claim if i ∈ {1,m},
so we assume that 2 ≤ i ≤ m − 1. Choose j ∈ {1, . . . , n} maximal such that f(j) ≤ i. Since
i < m and f(j) ≤ i, it follows that j < n, and the maximality of j implies that f(j + 1) > i. Now
distH(φ(pf(j)), φ(pf(j+1))) ≤ 2C+1, because distH(qj , φ(pf(j))) ≤ C and distH(qj+1, φ(pf(j+1))) ≤ C
and qj , qj+1 are adjacent. Since φ is a (C,C)-quasi-isometry and distH(φ(pf(j)), φ(pf(j+1))) ≤ 2C+1,
it follows that

distG(pf(j), pf(j+1)) ≤ C(2C + 1) + C = 2C(C + 1).

But distG(pf(j), pf(j+1)) = f(j+1)−f(j) since P is a geodesic of G and f(j+1) > f(j). Consequently,
since f(j) ≤ i ≤ f(j + 1), one of i − f(j), f(j + 1) − i is at most C(C + 1). Choose k ∈ {j, j + 1}
with distG(pi, pf(k)) ≤ C(C + 1). Since φ is a (C,C)-quasi-isometry, it follows that

distH(φ(pi), φ(pf(k))) ≤ C2(C + 1) + C.

Since distH(φ(pf(k)), qk) ≤ C, it follows that distH(φ(pi), qk) ≤ C3 +C2 + 2C. Choose g(i) = k; then
the claim is true. This proves (2).

(3) Let 1 ≤ i1 ≤ i2 ≤ m. If g(i2) = g(i1), then i2 − i1 ≤ 3C4. If g(i2) < g(i1), then i2 − i1 ≤ 6C6.
Consequently, if g(i2) ≤ g(i1) then distH(φ(pi2), qg(i1)) ≤ 7C7, and distH(qg(i1), qg(i2)) ≤ 7C7.

If g(i2) = g(i1), then distH(φ(pi1), φ(pi2)) ≤ 2(C3 + C2 + 2C) by (2), and so

i2 − i1 = distG(pi1 , pi2) ≤ 2C(C3 + C2 + 2C) + C ≤ 3C4.

Now suppose that g(i2) < g(i1). Choose i3 ∈ {i2, . . . ,m} maximal such that g(i3) < g(i1) (and thus
i3 6= m). From the maximality of i3, g(i3 + 1) ≥ g(i1). But distH(φ(pi3), φ(pi3+1)) ≤ 2C, since φ is
a (C,C)-quasi-isometry; and so

distH(qg(i3), qg(i3+1)) ≤ 2C + 2(C3 + C2 + 2C) = 2C3 + 2C2 + 6C.
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By (1), the subpath of Q between qg(i3), qg(i3+1) has length at most

2C2(2C3 + 2C2 + 6C) + 9C3 ≤ 5C5.

This subpath contains qg(i1), and so distH(qg(i1), qg(i3)) ≤ 5C5. Consequently,

distH(φ(pi1), φ(pi3)) ≤ 5C5 + 2(C3 + C2 + 2C);

and so
distG(pi1 , pi3) ≤ C(5C5 + 2(C3 + C2 + 2C)) + C ≤ 6C6.

Since P is a geodesic of G, it follows that i3− i1 ≤ 6C6, and therefore i2− i1 ≤ 6C6. This also holds
if g(i2) = g(i1), and so in either case, distH(φ(pi1), φ(pi2)) ≤ 6C7 + C; and since

distH(φ(p1), qg(i1)) ≤ C
3 + C2 + 2C,

it follows that
distH(φ(pi2), qg(i1)) ≤ 6C7 + C + C3 + C2 + 2C ≤ 7C7,

and similarly,
distH(qg(i1), qg(i2)) ≤ 6C7 + C + 2(C3 + C2 + 2C) ≤ 7C7.

This proves (3).

For 1 ≤ i ≤ m, define ri to be qj , where j = max(g(h) : 1 ≤ h ≤ i). We see that r1 = q1, and
rm = qn. From (3), distH(qg(i), ri) ≤ 7C7 (because ri = qg(h) for some h ≤ i with g(h) ≥ g(i)). For
1 ≤ i ≤ m, let Ri be the subpath of Q between q1, ri. Thus Ri is a subpath of Rj for all i, j with
i < j (although possibly ri = rj and hence Ri = Rj).

Let R = {ri : 1 ≤ i ≤ m}. Let I ′ be the set of all i ∈ {1, . . . ,m} such that qg(i) = ri, and choose
I ⊆ I ′ maximal such that the vertices ri (i ∈ I) are all different, with 1,m ∈ I. Define K = 25C7+1.
Choose a function w : E(H)→ N such that

• w(Ri) = i− 1 for each i ∈ I; and

• for each q ∈ V (Q), if q /∈ {ri : i ∈ I} then w(e) > 0 for at most one edge e of Q incident with
q.

• w(e) = K for every edge e of H not in E(Q).

Thus, (H,w) is a weighted graph, and we will show it satisfies the theorem. We see that for 1 ≤ j ≤ n,
there exists i ∈ I such that dist(H,w)(qj , ri) = 0, from the second condition.

(4) For 1 ≤ i ≤ j ≤ m, if ri = rj then j − i ≤ 6C6. If rj > ri and no vertex strictly between
ri, rj in Q belongs to R, then j − i ≤ 12C6 + 1.

For the first claim, let h ∈ {1, . . . ,m} be minimum with rh = rj ; then h ≤ i ≤ j, and qg(h) = rh = rj .
Since g(h) ≥ g(j), (3) implies that j − h ≤ 6C6, and hence j − i ≤ 6C6. This proves the first claim.
For the second, choose h ∈ {1, . . . ,m} maximal such that rh = ri. Thus i ≤ h < j. Since rh = ri,
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and rh+1 = rj , the first claim implies that h − i ≤ 6C6, and j − (h + 1) ≤ 6C6; and so this proves
(4).

From (4), it follows that w(e) ≤ 12C6 + 1 for each edge e ∈ E(Q), and so w has weight K.

(5) dist(H,w)(φ(pi), ri) ≤ 7C7K for 1 ≤ i ≤ m.

There exists h ≤ i such that qg(h) = ri and so g(h) ≥ g(i). By (3), i − h ≤ 6C6, and so
distH(φ(ph), φ(pi)) ≤ 6C7+C. Since distH(φ(ph), qg(h)) ≤ C3+C2+2C, it follows that distH(φ(pi), ri) ≤
6C7 + C + C3 + C2 + 2C ≤ 7C7. Since w has weight K, this proves (5).

(6) For 1 ≤ i < j ≤ m, |dist(H,w)(ri, rj)− (j − i)| ≤ 12C6.

Choose i1 ∈ I with ri1 = ri, and i2 ∈ I with ri2 = rj . Thus

dist(H,w)(ri, rj) = dist(H,w)(ri1 , ri2) = |i2 − i1|.

But by (4), |i1 − i| ≤ 6C6 and |i2 − j| ≤ 6C6; and so |(|i2 − i1|)− (j − i)| ≤ 12C6. This proves (6).

(7) Q is a (φ(p1), φ(pm))-geodesic in (H,w), and w(Q) = m− 1.

Since 1,m ∈ I, it follows that w(Q) = m − 1. Suppose that Q is not a (φ(p1), φ(pm))-geodesic
in (H,w); then there is a path R of H with distinct ends both in V (Q) and with no internal vertices
in V (Q), such that w(R) < w(S), where S is the subpath of Q joining the ends of R. Let R have
ends qj , qj′ say, and choose i, i′ ∈ I such that dist(H,w)(qj , ri) = 0, and dist(H,w)(qj′ , ri′) = 0. Thus
w(S) = i′ − i, and since w(e) = K for each e ∈ R, and |E(R)| ≥ max(1, distH(qj , qj′)), we deduce
that

i′ − i > w(R) = K|E(R)| ≥ max
(
K distH(qj , qj′),K

)
.

By (4), distH(qj , ri) ≤ 12C6 + 1, and distH(qj′ , ri′) ≤ 12C6 + 1, and consequently i′ − i > K and

i′ − i > K(−2(12C6 + 1) + distH(ri, ri′)).

But distH(ri, ri′) = distH(qg(i), qg(i′)); and the latter is at least

−distH(qg(i), φ(pi)) + distH(φ(pi), φ(pi′))− distH(φ(pi′), qg(i′)).

The first and third terms here are each at most C3 + C2 + 2C, in absolute value, by (2); and the
second is at least (i′− i−C)/C, since φ is a (C,C)-quasi-isometry. Combining these facts, we deduce
that:

i′ − i > K(−2(12C6 + 1) + (i′ − i− C)/C − 2(C3 + C2 + 2C)) > K((i′ − i)/C − 25C6).

Consequently (K/C − 1)(i′ − i) < 25KC6 and i′ − i > K, and so (K/C − 1)K < 25KC6, a
contradiction, since K > 25C7. This proves (7).

Since w(e) = 0 only for some edges e of Q, (4) implies that (H,w) has depth at most 12C6. Since
w has weight K, this completes the proof of 3.1.
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4 The proof of 1.7, part 2

Now we turn to the second part of the proof of 1.7. Let us say a function κ : N → N is an additive
bounder for a class C of graphs if or all C ≥ 1, and every (C,C)-quasi-isometry φ from a graph G
to a graph H ∈ C, there is a function w : E(H) → N with weight at most κ(C) such that φ is a
(1, κ(C))-quasi-isometry from G to (H,w).

A class C of graphs is hereditary if for every H ∈ C, all induced subgraphs of H also belong to C.

4.1 Let C be a hereditary class of graphs, with an additive bounder κ. For all c ≥ 1000 there exists
c0 with the following property. Suppose that:

• φ is a (c, c)-quasi-isometry from a graph G to a graph H;

• P is a geodesic in G, with vertices p1, . . . , pm in order;

• |distH(φ(pi), φ(pj))− (j − i)| ≤ c for 1 ≤ i < j ≤ m; and

• the subgraph of H induced on the set of all v ∈ V (H) with distH(v, φ(P )) > c belongs to C,
where φ(P ) = {φ(p1), . . . , φ(pm)}.

Then there is a function w : E(H)→ N with weight at most c0, such that φ is a (1, c0)-quasi-isometry
from G to (H,w).

Proof. Let r = 2c(c+1), and c′ = max(κ(c), 1). Let c2 = max(2c+c′, (2r+7)c+2(r+2)c2). Define

c3 = c2 + c(2(r + 2)c+ 2) + (r + 2)cc′ + (r + 2)c,

and
c0 = max(2(c′ + 1 + 2cc′) + 2r + c+ 2(cr + c)c3, 2c+ c′, (2r + 7)c+ 2(r + 2)c2).

We will show that c0 satisfies the theorem.
Let G,H, φ, P and so on be as in the hypothesis of the theorem. Let A be the set of all v ∈ V (G)

such that distG(v, P ) ≤ r. Let B = V (G) \A. Let X = {φ(v) : v ∈ B}.

(1) distH(X,φ(P )) ≥ r/c− 1.

Let b ∈ B and i ∈ {1, . . . ,m}. Then

distH(φ(b), φ(pi)) ≥ (distG(b, pi)− c)/c ≥ r/c− 1.

This proves (1).

(2) There is a partition (Y,Z) of V (H) \X, such that

• for every y ∈ Y there is a path of H[X ∪ Y ] from y to X, of length at most (r + 2)c, and
distH(y, φ(P )) ≥ (r/c− 1)/2 > c;

• for every z ∈ Z, there is a path of G[Z] from z to φ(P ), of length at most (r + 2)c, and
distH(z,X) > (r/c− 1)/2.
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Let Y be the set of all h ∈ V (H)\X such that distH(h,X) ≤ distH(h, φ(P )), and let Z = V (H)\(X∪
Y ). We claim that (2) is satisfied. Let h ∈ V (H) \X. We claim first that either distH(h,X) ≤ c,
or distH(h, φ(P )) ≤ cr + 2c. To see this, choose v ∈ V (G) with distH(φ(v), h) ≤ c. If v ∈ B
then φ(v) ∈ X and the claim holds, so we assume that v ∈ A. Hence distG(v, P ) ≤ r, and so
distH(φ(v), φ(P )) ≤ cr + c. Consequently distH(h, φ(P )) ≤ cr + 2c, and again the claim holds.
Hence

min(distH(h,X),distH(h, φ(P ))) ≤ (r + 2)c,

and so the first assertion of each bullet of (2) holds. For the second assertion, from (1), if distH(h,X) ≤
(r/c− 1)/2 then distH(h,X) ≤ dist(h, φ(P )) and therefore h ∈ Y ; and similarly if distH(h, φ(P )) <
(r/c− 1)/2 then h ∈ Z. This proves (2).

Let H ′ = H[X∪Y ]. From (1) and (2), distH(y, φ(P )) > c for each y ∈ X∪Y . Since the subgraph
of H induced on the set of all v ∈ V (H) with distH(v, φ(P ))) > c belongs to C, by hypothesis, and
C is hereditary, it follows that H ′ ∈ C. For each pair b, b′ ∈ B, if distH′(φ(b), φ(b′)) ≤ 2(r + 2)c+ 1,
let Fb,b′ = Fb′,b be a path between b, b′ of length distG(b, b′), where all its internal vertices are new
vertices. Let F be the union of G[B] and all the paths Fb,b′ . Define ψ : V (F ) → V (H) as follows.
For each v ∈ B, ψ(v) = φ(v). For all b, b′ ∈ B and every internal vertex v of Fb,b′ , let ψ(v) be one of
b, b′, chosen arbitrarily.

(3) If u, v ∈ V (F ), then distH′(ψ(u), ψ(v)) ≤ (2(r + 2)c+ 1) distF (u, v).

It suffices to show that distH′(ψ(u), ψ(v)) ≤ 2(r+ 2)c+ 1 for every edge uv of F (and then sum over
all edges of a (u, v)-geodesic in F ). Thus, let uv ∈ E(F ). If uv is an edge of one of the paths Fb,b′ ,
then

distH′(ψ(u), ψ(v)) ≤ distH′(φ(b), φ(b′)) ≤ 2(r + 2)c+ 1,

as required. If uv ∈ E(G[B]), then distH(φ(u), φ(v)) ≤ 2c since φ is a (c, c)-quasi-isometry from G to
H. Let S be a path of H between φ(u), φ(v) of length at most 2c; so each of its vertices has distance
at most c from one of φ(u), φ(v) ∈ X, and so V (S) ⊆ X ∪ Y , since c ≤ (r/c− 1)/2. Consequently,

distH′(ψ(u), ψ(v)) ≤ 2c ≤ 2(r + 2)c+ 1.

This proves (3).

(4) If u, v ∈ V (F ), then distF (u, v) ≤ 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)) + 4c(2(r + 2)c+ 1).

Choose u′ ∈ B with ψ(u) = φ(u′), and choose v′ similarly for v. Let T be the H ′-geodesic be-
tween φ(u′), φ(v′), and let its vertices be t0, . . . , tn in order, where t0 = φ(u′) and tn = φ(v′). For
0 ≤ i ≤ n, since ti ∈ X ∪ Y , there is a path Ti of H ′ from ti to X with length at most (r + 2)c; let
its end in X be xi, and choose bi ∈ B with φ(bi) = xi. For 1 ≤ i ≤ n, there is a path from xi−1 to xi
with vertex set a subset of V (Ti−1)∪V (Ti), and its length is at most 2(r+ 2)c+ 1; and consequently
Fbi−1,bi exists, and so

distF (bi−1, bi) = distG(bi−1, bi) ≤ 2cdistH(xi−1, xi) ≤ 2c(2(r + 2)c+ 1);
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so distF (bi−1, bi) ≤ 2c(2(r + 2)c+ 1). But distF (b0, bn) is at most
∑

1≤i≤n distF (bi−1, bi) and conse-
quently

distF (u′, v′) ≤ 2c(2(r + 2)c+ 1)n = 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)).

But distF (u, u′) ≤ 2c(2(r + 2)c+ 1), and the same for distF (u, u′); so

distF (u, v) ≤ 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)) + 4c(2(r + 2)c+ 1).

This proves (4).

From the definition of Y , for each y ∈ X ∪ Y there exists v ∈ V (F ) such that distH′(ψ(v), y) ≤
(r + 3)c; and so ψ is a (2c(2(r + 2)c+ 1), 4c(2(r + 2)c+ 1))-quasi-isometry from F to H ′. Since κ is
an additive bounder for C, and H ′ ∈ C, there is a function w′ : E(H ′) → N with weight at most c′,
such that ψ is a (1, c′)-quasi-isometry from G to (H ′, w′), where c′ = max(κ(c), 1). Let ∆ be the set
of edges of H between X ∪ Y and Z. Define w : E(H)→ N by:

• If e ∈ E(H ′) then w(e) = w′(e);

• If e ∈ E(G[Z]) then w(e) = 1;

• If e ∈ ∆ then w(e) = c3.

Thus w has weight at most c3, and we will show that φ is a (1, c0)-quasi-isometry from G to (H,w).

(5) Let u, v ∈ V (G). Then

dist(H,w)(φ(u), φ(v)) ≤ distG(u, v) + 2(c′ + 1 + 2cc′) + 2r + c+ 2(cr + c)c3.

Observe first that if T is a geodesic of G, with V (T ) ⊆ B and with ends b1, b2 say, then

dist(H,w)(φ(b1), φ(b2)) ≤ dist(H′,w′)(ψ(b1), ψ(b2)) ≤ distF (b1, b2) + c′ = distG(b1, b2) + c′,

from the choice of w′. Now let T be a (u, v)-geodesic T in G; and we may therefore assume that
V (T ) 6⊆ B. Let a1, a2 be the first and last vertices of T that belong to A. If a1 6= u, let b1 ∈ V (T )
be adjacent in T to a1, and not between a1, a2; thus b1 ∈ B from the definition of a1. If a1 = u then
b1, T1 are undefined. Define b2, T2 similarly if a2 6= v.

If b1, T1 exist, then T1 is a geodesic of G with vertex set in B, and so

dist(H,w)(φ(u), φ(b1)) ≤ distG(u, b1) + c′,

as above. Since a1b1 ∈ E(G) and φ is a (c, c)-quasi-isometry fromG toH, it follows that distH(φ(a1), φ(b1)) ≤
2c. Consequently distH′(φ(a1), φ(b1)) ≤ 2c, as the corresponding path in H is contained in H ′; and
since w′ has weight at most c′, it follows that dist(H,w)(φ(a1), φ(b1)) ≤ 2cc′. Thus, if b1, T1 exist, then

dist(H,w)(φ(u), φ(a1)) ≤ distG(u, b1) + c′ + 2cc′ ≤ distG(u, a1) + c′ + 1 + 2cc′.

This last is also trivially true if b1, T1 do not exist, since then u = a1. A similar inequality holds for
v, a2.
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Let T0 be the subpath of T between a1, a2. Since a1 ∈ A, there exists i1 ∈ {1, . . . ,m} such
that distG(a1, pi1) ≤ r. Choose i2 similarly for a2. Thus distG(pi1 , pi2) ≤ distG(a1, a2) + 2r, and so
distG(a1, a2) ≥ |i2 − i1| − 2r. Now since distG(a1, pi1) ≤ r, and φ is a (c, c)-quasi-isometry from G
to H, it follows that distH(φ(a1), φ(pi1)) ≤ cr + c, and so dist(H,w)(φ(a1), φ(pi1)) ≤ (cr + c)c3. The
same holds for a2, pi2 ; and so

dist(H,w)(φ(a1), φ(a2)) ≤ dist(H,w)(φ(pi1), φ(pi2)) + 2(cr + c)c3.

Since dist(H,w)(φ(pi1), φ(pi2)) ≤ |i2 − i1|+ c, we deduce that

dist(H,w)(φ(a1), φ(a2)) ≤ |i2 − i1|+ c+ 2(cr + c)c3.

But distG(a1, a2) ≥ |i2 − i1| − 2r, and so

dist(H,w)(φ(a1), φ(a2)) ≤ distG(a1, a2) + 2r + c+ 2(cr + c)c3.

We deduce that

dist(H,w)(φ(u), φ(v)) ≤ dist(H,w)(φ(u), φ(a1)) + dist(H,w)(φ(a1), φ(a2)) + dist(H,w)(φ(v), φ(a2))

≤ distG(u, a1) + c′ + 1 + 2cc′ + distG(a1, a2) + 2r

+ c+ 2(cr + c)c3 + distG(v, a2) + c′ + 1 + 2cc′

= distG(u, v) + 2(c′ + 1 + 2cc′) + 2r + c+ 2(cr + c)c3.

This proves (5).

(6) Let a1, a2 ∈ V (G), with φ(a1), φ(a2) ∈ Z. Then

| distG(a1, a2)− dist(H,w)(φ(a1), φ(a2))| ≤ (2r + 7)c+ 2(r + 2)c2.

For j = 1, 2, since φ(aj) ∈ Z, there exists ij ∈ {1, . . . ,m} such that there is a path of H[Z] between
φ(aj), φ(pij ) of length at most (r + 2)c. We may assume that i1 ≤ i2 with loss of generality. Since
| dist(H,w)(φ(pi1), φ(pi2))− (i2 − i1)| ≤ c, it follows that

|dist(H,w)(φ(a1), φ(a2))− (i2 − i1)| ≤ (2r + 5)c,

and so
| dist(H,w)(φ(a1), φ(a2))− distG(pi1 , pi2)| ≤ (2r + 5)c.

But distH(φ(aj), φ(pij )) ≤ (r+2)c, and so distG(aj , pij ) ≤ (r+2)c2+c. Consequently |distG(a1, a2)−
distG(pi1 , pi2)| ≤ 2((r + 2)c2 + c), and therefore

|distG(a1, a2)− dist(H,w)(φ(a1), φ(a2))| ≤ (2r + 5)c+ 2((r + 2)c2 + c) = (2r + 7)c+ 2(r + 2)c2.

This proves (6).

(7) Let u, v ∈ V (G), and let T be a path of H between φ(u), φ(v). Then distG(u, v) ≤ w(T ) + c2.

We proceed by induction on |∆∩E(T )|. Suppose first that ∆∩E(T ) = ∅, and so T is a path of one of

19



H ′, H[Z]. We assume first that T is a path of H ′. Thus there exist b1, b2 ∈ B with φ(b1) = φ(u) and
φ(b2) = φ(v). Since φ is a (c, c)-quasi-isometry from G to H, it follows that distG(u, b1),distG(v, b2) ≤
c. Moreover, distH′(φ(u), φ(v)) ≤ w(T ), and so distG(b1, b2) ≤ distF (b1, b2) ≤ w(T ) + c′, since φ is a
(1, c′)-quasi-isometry from H ′ to H[X ∪ Y ]. It follows that in this case, distG(u, v) ≤ w(T ) + 2c+ c′,
and so the result holds.

Now we assume that T is a path of H[Z]. Then by (6),

distG(u, v) ≤ dist(H,w)(φ(u), φ(v)) + (2r + 7)c+ 2(r + 2)c2 ≤ w(T ) + (2r + 7)c+ 2(r + 2)c2,

and again the result holds.
Thus we may assume that there exists yz ∈ ∆∩E(T ), where y ∈ X∪Y and z ∈ Z. By exchanging

u, v if necessary we may assume that φ(u), y, z, φ(v) are in order in T . Since y ∈ X ∪ Y , there exists
b ∈ B such that distH′(φ(b), y) ≤ (r + 2)c; and since z ∈ Z, there exists i ∈ {1, . . . ,m} such that
distH[Z](z, φ(pi)) ≤ (r + 2)c, as before. Hence there are paths R1, R2 of H, where R1 is between
φ(u), φ(b), and R2 is between φ(pi), φ(v), such that

w(R1) + w(R2) ≤ w(T ) + 2(r + 2)c ≤ w(T ) + (r + 2)cc′ + (r + 2)c− c3,

and R1, R2 both have fewer than |∆∩E(T )| edges in ∆. From the inductive hypothesis, distG(u, b) ≤
w(R1) + c2, and distG(pi, v) ≤ w(R2) + c2. But

distG(u, v) ≤ distG(u, b) + distG(b, pi) + distG(pi, v),

and
distG(b, pi) ≤ cdistH(φ(b), φ(pi)) + c ≤ c(2(r + 2)c+ 1) + c;

so

distG(u, v) ≤ distG(u, b) + distG(pi, v) + c(2(r + 2)c+ 2)

≤ w(R1) + c2 + w(R2) + c2 + c(2(r + 2)c+ 2)

≤ w(T ) + 2c2 + c(2(r + 2)c+ 2) + (r + 2)cc′ + (r + 2)c− c3
≤ w(T ) + c2.

This proves (7).

(8) For each v ∈ V (H), there exists u ∈ V (G) such that dist(H,w)(φ(u), v) ≤ (r + 2)cc′.

If v ∈ Z, then by (2), there is a path of H[Z] from v to φ(P ), of length at most (r + 2)c, and
hence dist(H,w)(φ(u), v) ≤ (r+ 2)c. If v ∈ X ∪ Y , by (2) there is a path of H ′ from v to X, of length
at most (r + 2)c, and hence dist(H,w)(v,X) ≤ (r + 2)cc′. This proves (8).

By (5), (7) and (8), φ is a (1, c0)-quasi-isometry from G to (H,w), and its weight is c3. This
proves 4.1.
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5 The proof of 1.7, part 3

There is an annoyance here. To prove 1.7, we work by induction on the path-width of H. We find
a subgraph H ′ that has smaller path-width than H, but we want to apply the inductive hypothesis
to a subdivision of H ′, and subdividing edges can increase path-width (for instance, the path-width
of the complete bipartite graph K2,3 is two, but if we subdivide its edges its path-width becomes
three). The easiest fix seems to be a slight modification of the definition of path-width.

Let G be a graph. A multisubset of V (G) is a map α : V (G) → N; its support is the set of
v ∈ V (G) with α(v) > 0, and its size is

∑
v∈V (G) α(v). Two multisubsets α, β are 1-close if there

exists u ∈ V (G) such that α(v) = β(v) for all v ∈ V (G)\{u}, and |α(u)−β(u)| ≤ 1. They are 2-close
if there exist u, u′ ∈ V (G) such that α(v) = β(v) for all v ∈ V (G) \ {u, u′}, and α(u) = β(u) + 1 and
α(u′) = β(u′)− 1. When α, β are 2-close we say that {u, u′} is their difference.

Let us say an edge-search of a graph G is a sequence (α1, . . . , αn) of multisubsets of V (G), such
that:

• for 1 ≤ i < n, αi, αi+1 are 1-close or 2-close;

• V (G) is the union of the supports of α1, . . . , αn;

• for every edge uv of G, there exists i ∈ {1, . . . , n − 1} such that αi, αi+1 are 2-close with
difference {u, v}; and

• for all i, j, k with 1 ≤ i ≤ j ≤ k ≤ n, the support of αj includes the intersection of the supports
of αi, αk.

We define the width of the edge-search to be the maximum size of its terms, and the edge-search-
width esw(G) of G to be the minimum width of all edge-searches of G. Let us write pw(G) for the
path-width of G.

This is motivated by the method of graph searching studied by LaPaugh [9] and others, where the
goal is to clean a contaminated graph by moving cleaners around the graph (any part of the graph that
is connected to a contaminated part by a path containing no cleaners is instantly recontaminated).
An edge is cleaned by moving a cleaner along it (and keeping it safe from recontamination); and they
want to use as few cleaners as possible. Each multisubset in the edge-search records the position of
the cleaners at a given time.

We need the following easy facts about edge-search-width, which we leave to the reader:

5.1 For every graph G:

• esw(G) ∈ {pw(G) + 1, pw(G) + 2};

• if H is a minor of G (that is, H is obtained from a subgraph of G by contracting edges) then
esw(H) ≤ esw(G);

• if H is a subdivision of G then esw(H) = esw(G).

Now we prove 1.7, which we restate, with some slight changes, for convenience (we might as well
assume that L = C ≥ 1000; and the statement with edge-search-width is equivalent to the statement
with path-width, because of 5.1):
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5.2 For all C, k there exists C ′ such that if φ is a (C,C)-quasi-isometry from a graph G to a graph
H with edge-search-width at most k, then there is a function w : E(H)→ N with weight at most C ′,
such that the same function φ is a (1, C ′)-quasi-isometry from G to the weighted graph (H,w).

Proof. We proceed by induction on k. If k = 0 then H is null and the result is trivial, so we assume
that k ≥ 1 and the result holds for k−1. Thus, the class of all graphs with edge-search-width at most
k − 1 has an additive bounder κ. By increasing C we may assume that C ≥ 1000. Let c = 30C8,
and let c0 be as in 4.1. Let C ′ = (25C7 + 1)c0; we will show that C ′ satisfies the theorem.

Every vertex of H belongs to a component of H containing φ(v) for some v ∈ V (G), from the
third condition for an quasi-isometry; and for u, v ∈ V (G), u, v belong to the same component of G if
and only if φ(u), φ(v) belong to the same component of H, by the first two conditions. Consequently
we may assume that G,H are connected, without loss of generality.

Hence H admits an edge-search (α1, . . . , αn) of width at most k in which the support of each
αi is nonempty. For 1 ≤ i ≤ n let Ai be the support of αi. So there exist v1, v2 ∈ V (G) such that
distH(φ(v1), A1), distH(φ(v2), An) ≤ C. Let P be a (v1, v2)-geodesic of G, and let the vertices of
P be v1 = p1, . . . , pm = v2 in order. Let φ(P ) = {φ(p1), . . . , φ(pm)}. By 3.1, there is a function
w1 : E(H)→ N, with weight at most 25C7 + 1 and depth at most 12C6, such that

|dist(H,w1)(φ(pi), φ(pj))− (j − i)| ≤ 12C6 + 1

for 1 ≤ i < j ≤ m. Define D = 25C7 + 1.

(1) For 1 ≤ j ≤ n there exists i with 1 ≤ i ≤ m such that dist(H,w1)(φ(pi), Aj) ≤ CD.

Suppose there is no such i. Choose a1 ∈ A1 with distH(φ(v1), a1) ≤ C, and choose an ∈ An similarly.
Since w1 has weight at most D, it follows that dist(H,w1)(φ(v1), a1) ≤ CD, and dist(H,w1)(φ(v2), an) ≤
CD. From the assumption, dist(H,w1)(φ(p1), Aj) > CD; let X be the vertex set of the component of
H \Aj that contains φ(p1). Since dist(H,w1)(φ(v1), a1) ≤ CD, it follows that a1 ∈ X. We claim that
φ(p1), . . . , φ(pm) ∈ X. For suppose not, and choose h ∈ {1, . . . ,m} minimal with φ(ph) /∈ X. Thus
h ≥ 2, and every path of H between φ(ph−1), φ(ph) contains a vertex in Aj (since φ(ph−1) ∈ X
and φ(ph) /∈ X). But dist(H,w1)(φ(ph−1), φ(ph)) ≤ 12C6 + 2, and so dist(H,w1)(φ(ph−1), Aj) ≤
12C6 + 2, a contradiction. In particular, φ(pm) ∈ X; and since dist(H,w1)(φ(pm), an) ≤ CD and
dist(H,w1)(φ(pm), Aj) > CD, it follows that an ∈ X. But then there is a path of H between a1, an,
with no vertex in Aj , contradicting that (α1, . . . , αn) is an edge-search and a1 ∈ A1 and an ∈ An.
This proves (1).

Let H1 be the w1-rescaling of H, and let φ1 be the w1-rescaling of φ. Define c = 30C8. It follows
that φ1 is a (CD,CD +D)-quasi-isometry (and hence a (c, c)-quasi-isometry) from G to H1. From
(1) and 5.1, the set of all vertices v ∈ V (H1) with distH1(v, φ(P )) ≥ c induces a subgraph of H1 with
edge-search-width at most k− 1. Let c0 be as in 4.1. From 4.1 applied to φ1, H1, there is a function
w2 : E(H1)→ N with weight at most c0, such that φ1 is a (1, c0)-quasi-isometry from G to (H1, w2).
For each edge e ∈ E(H), define w(e) to be the sum of w2(f), over all edges f of the path of H1

made by subdividing e (if w1(e) = 0, then w(e) = 0). Thus w has weight at most the product of the
weights of w1, w2, and so at most (25C7 + 1)c0. It follows that φ is a (1, c0)-quasi-isometry from G
to (H,w). This proves 5.2.
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