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Abstract

A well-known theorem of Rödl says that for every graph H, and every ε > 0, there exists δ > 0
such that if G does not contain an induced copy of H, then there exists X ⊆ V (G) with |X| ≥ δ|G|
such that one of G[X], G[X] has edge-density at most ε. But how does δ depend on ε? Fox and
Sudakov conjectured that the dependence is at most polynomial: that for all H there exists c > 0
such that for all ε with 0 < ε ≤ 1/2, Rödl’s theorem holds with δ = εc. This conjecture implies the
Erdős-Hajnal conjecture, and until now it had not been verified for any non-trivial graphs H. Our
first result shows that it is true when H = P4. Indeed, in that case we can take δ = ε, and insist
that one of G[X], G[X] has maximum degree at most ε2|G|).

Second, we will show that every graph H that can be obtained by substitution from copies of P4

satisfies the Fox-Sudakov conjecture. To prove this, we need to work with a stronger property. Let
us say H is viral if there exists c > 0 such that for all ε with 0 < ε ≤ 1/2, if G contains at most
εc|G||H| copies of H as induced subgraphs, then there exists X ⊆ V (G) with |X| ≥ εc|G| such that
one of G[X], G[X] has edge-density at most ε. We will show that P4 is viral, using a “polynomial
P4-removal lemma” of Alon and Fox. We will also show that the class of viral graphs is closed under
vertex-substitution.

Finally, we give a different strengthening of Rödl’s theorem: we show that if G does not contain
an induced copy of P4, then its vertices can be partitioned into at most 480ε−4 subsets X such that
one of G[X], G[X] has maximum degree at most ε|X|.



1 Introduction

Some terminology and notation: G[X] denotes the induced subgraph with vertex set X of a graph
G; |G| denotes the number of vertices of G; G is the complement graph of G; P4 denotes the path
with four vertices; a graph is H-free if it has no induced subgraph isomorphic to H; and a cograph
is a P4-free graph. The edge-density of a graph G is its number of edges divided by

(|G|
2

)
.

A very useful theorem of Rödl [13] says:

1.1 For every graph H and every ε > 0, there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G| such that one of G[X], G[X] has edge-density at most ε.

How does δ depend on ε, for a given graph H? Fox and Sudakov [10] proposed the conjecture
that the dependence is polynomial:

1.2 Conjecture ([10], conjecture 7.1): For every graph H there exists c > 0 such that for every
ε with 0 < ε ≤ 1/2 and every H-free graph G, there exists X ⊆ V (G) with |X| ≥ εc|G| such that one
of G[X], G[X] has edge-density at most ε.

This conjecture is very strong, and until now had not been verified for any nontrivial graphs H. It
was motivated by the Erdős-Hajnal conjecture [8, 9], which it implies, but which we do not discuss
here.1

We first prove that 1.2 holds in a particularly nice form when H = P4. We will show:

1.3 For every ε ∈ [0, 1] and every cograph G, there exists X ⊆ V (G) with |X| ≥ ε|G| such that one
of G[X], G[X] has maximum degree at most ε2|G| (and so at most ε|X|).

We need to define “vertex-substitution” before we go on. Let H1, H2 be graphs, let v ∈ V (H1),
and let N be the set of all neighbours of v in H1. Let H be obtained from the disjoint union of
H1 \ {v} and H2 by making every vertex of H2 adjacent to every vertex in N . Then H is obtained
by substituting H2 for the vertex v of H1, and this operation is called vertex-substitution.

We would like to prove that more graphs than just P4 satisfy 1.2, and one natural way is via
vertex-substitution (for example, Alon, Pach and Solymosi [2] showed that graphs satisfying the
Erdős-Hajnal conjecture are closed under vertex-substitution). We have not been able to show that
the graphs that satisfy 1.2 are closed under vertex-substitution. But we have been able to show that
P4 itself has an even stronger property than 1.2, and graphs with this stronger property are closed
under vertex-substitution. Consequently:

1.4 All graphs that can be obtained by vertex-substitution starting from copies of P4 and its subgraphs
satisfy 1.2.

Let us say a copy of H in G is an isomorphism from H to an induced subgraph of G. There is a
theorem of Nikiforov [12], strengthening Rödl’s theorem:

1.5 For every graph H and all ε > 0, there exists δ > 0 such that for every graph G, if there are
at most δ|G||H| copies of H in G, then there exists X ⊆ V (G) with |X| ≥ δ|G| such that one of
G[X], G[X] has edge-density at most ε.

1Since this paper was submitted for publication, Bucić, Fox and Pham [4] have proved that all graphs H satisfying
the Erdős-Hajnal conjecture also satisfy the Fox-Sudakov conjecture, and indeed are viral (defined later).
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Again, one could ask how δ depends on ε. Let us say that H is viral if there exists d > 0 such that
for every graph G and every ε with 0 < ε ≤ 1/2, either

• there are at least εd|G||H| copies of H in G; or

• there exists X ⊆ V (G) with |X| ≥ εd|G| such that one of G[X], G[X] has edge-density at
most ε.

We will show, using a recent “polynomial removal lemma” for P4, proved by Alon and Fox [3],
that:

1.6 All graphs with at most four vertices are viral.

We will also show:

1.7 If H1, H2 are viral and H is obtained by substituting H2 for a vertex of H1, then H is viral.

We deduce:

1.8 All graphs that can be obtained by vertex-substitution starting from graphs with at most four
vertices are viral.

In the final section, we will discuss a different strengthening of Rödl’s theorem, and prove:

1.9 If G is a cograph, then for every ε with 0 < ε ≤ 1, there is a partition of V (G) into at most
480ε−4 sets such that for each of them, say X, one of G[X], G[X] has maximum degree at most ε|X|.

2 Cographs have large dense or sparse sets

In this section we prove 1.3. We will discuss how close it is to best possible in the next section.
Cographs are well understood. There is a theorem discovered independently by several authors

(see [7]), that:

2.1 If G is a cograph with |G| ≥ 2 then one of G,G is disconnected.

We will use 2.1 to prove 1.3 by induction on |G|. Applying it directly does not seem to work, and to
use induction we will use a strengthening of 1.3, the following (1.3 follows by setting x = y = ε):

2.2 If G is a cograph then, for all x, y ≥ 0 with min(x, y) ≤ 1, either:

• there exists X ⊆ V (G) with |X| ≥ x|G| such that G[X] has maximum degree at most xy|G|; or

• there exists Y ⊆ V (G) with |Y | ≥ y|G| such that G[Y ] has maximum degree at most xy|G|.

Proof. If |G| ≤ 1 the result is true, so we assume that |G| ≥ 2 and the result holds for all cographs
with fewer vertices, and for all choices of x, y ≥ 0 with min(x, y) ≤ 1. If x > 1, then y ≤ 1 and
the second bullet holds choosing Y ⊆ V (G) with |Y | = dy|G|e; so we may assume that x ≤ 1 and
similarly y ≤ 1. By 2.1, taking complements if necessary, we may assume that G is not connected;
let G1, G2 be two non-null subgraphs of G, with union G and with V (G1)∩ V (G2) = ∅. Now we are
given x, y ≥ 0 with min(x, y) ≤ 1.
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For i = 1, 2, let yi = y|G|/|Gi|. If for some i ∈ {1, 2} there exists Yi ⊆ V (Gi) with |Yi| ≥ yi|Gi| =
y|G| such that Gi[Yi] has maximum degree at most xyi|Gi| = xy|G|, then the second bullet holds.
Hence we assume that for i = 1, 2 there is no such Yi. But min(x, yi) ≤ 1, so from the inductive
hypothesis, for i = 1, 2 there exists Xi ⊆ V (Gi) with |Xi| ≥ x|Gi| such that G[Xi] has maximum
degree at most xyi|Gi| = xy|G|. Then |X1 ∪ X2| ≥ x|G| and G[X1 ∪ X2] has maximum degree at
most xy|G|, and the first bullet of the theorem holds. This proves 2.2.

Here is a consequence, strengthening 1.3:

2.3 Let G be a cograph, and let 0 ≤ ε ≤ 1. Then there exists X,Y ⊆ V (G), such that G[X], G[Y ]
both have maximum degree at most ε|G|, and with |X| · |Y | ≥ ε|G|2.

Proof. Let I be the set of x ∈ [0, 1] such that for some X ⊆ V (G), |X| ≥ x|G| and G[X] has
maximum degree at most ε|G|; and let J be the set of x ∈ [0, 1] such that for some Y ⊆ V (G),
x|Y | ≥ ε|G| and G[Y ] has maximum degree at most ε|G|. By 2.2, I ∪ J = [0, 1]. Since I, J are
nonempty closed sets (because G is finite), it follows that I ∩ J 6= ∅. This proves 2.3.

The form of 2.2 seems novel, and suggests that we ask which other graphs have the same property.
Let us say G is good if for all x, y with 0 ≤ x, y ≤ 1, either:

• there exists X ⊆ V (G) with |X| ≥ x|G| such that G[X] has maximum degree at most xy|G|;
or

• there exists Y ⊆ V (G) with |Y | ≥ y|G| such that G[Y ] has maximum degree at most xy|G|.

Thus, complements of good graphs are good; 2.2 says that all cographs are good; and its proof shows
that goodness is preserved under taking disjoint unions. Which other graphs are good? This is still
open, but we can show (we omit the proofs):

• all forests are good;

• the bull is not good;

• a cycle of length at least five is good if and only if its length is a multiple of six; and

• goodness is not preserved under vertex-substitution; indeed, substituting a two-vertex graph
for a vertex of a good graph does not always preserve goodness.

3 The tightness of 1.3

Let us say two disjoint subsets A,B are complete to each other if every vertex in A is adjacent to
every vertex in B, and anticomplete if there are no edges between A,B.

For ε ∈ [0, 1], let δε be the supremum of all δ such that for every cograph G, there exists X ⊆ V (G)
such that |X| ≥ δ|G| and one of G[X], G[X] has maximum degree at most εδ|G|. The next result
shows that 1.3 is almost tight.

3.1 If ε ∈ [0, 1), then ε ≤ δε ≤ (dε−1e − 1)−1.
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Proof. By 1.3, ε ≤ δε. Let m = dε−1e − 1; that is, the largest integer strictly less than 1/ε. Take
an integer n ≥ (1/m− ε)−1, and let G be the cograph consisting of the disjoint union of m complete
graphs C1, . . . , Cm, each with n vertices. We will show that if X ⊆ V (G) and one of G[X], G[X]
has maximum degree at most ε|X|, then |X| ≤ |G|/m, and consequently δε ≤ 1/m. Let X ⊆ V (G)
with |X| > |G|/m = n. By the pigeonhole principle, |X ∩ Ci| ≥ |X|/m for some i, and so G[X] has
maximum degree at least |X|/m − 1 > ε|X| (because (1/m − ε)|X| > (1/m − ε)n ≥ 1). But since
|X| > |G|/m = |Ci|, there is a vertex in X \ Ci, and the degree of this vertex in G[X] is at least
|X|/m > ε|X|. This proves 3.1.

The result 1.3 is neat, and one might think it should be tight, but it is not; and indeed, neither
of the bounds of 3.1 is tight when 1/2 ≤ ε < 1. We will show that δε = 1/(2− ε) in this range. To
do so, we first show the following, which implies that δε ≥ 1/(2− ε) > ε when 1/2 ≤ ε < 1:

3.2 Let 1/2 ≤ ε < 1 and let δ = 1/(2− ε). For every non-null cograph G, there is a set X ⊆ V (G)
with |X| > δ|G| such that one of G[X], G[X] has maximum degree at most εδ|G|.

Proof. Let G be a non-null cograph, and let 1/2 ≤ ε < 1. Let δ = 1/(2− ε) and d = ε/(2− ε); we
must show that there is a set X ⊆ V (G) with |X| > δ|G| such that one of G[X], G[X] has maximum
degree at most d|G|.

We partition V (G) into sets X1, . . . , Xk as follows. Suppose that i ≥ 1 and we have defined
X1, . . . , Xi−1, such that V (G) 6= X1 ∪ · · · ∪ Xi−1. Let Y = V (G) \ (X1 ∪ · · · ∪ Xi−1). If |Y | = 1,
let Xi = Y and k = i. Now we assume that |Y | > 1, and define Xi as follows. By 2.1, one of
G[Y ], G[Y ] is not connected. Let Xi be a subset of Y that is the vertex set of a component of one of
G[Y ], G[Y ], chosen with |Xi| minimum. Thus |Xi| ≤ |Y |/2, and in particular V (G) 6= X1 ∪ · · · ∪Xi.
This completes the inductive definition.

(1) We may assume that |Xi| ≤ δ|G|/2 for 1 ≤ i ≤ k − 1.

Suppose that some |Xi| > δ|G|/2, and let Y = V (G) \ (X1 ∪ · · · ∪ Xi). Choose A ⊆ Xi with
|A| = bδ|G|/2 + 1c. As we saw, |Y | ≥ |Xi|, and so there exists B ⊆ Y with |B| = |A|. Now the set
A ∪ B has cardinality more than δ|G|. Moreover, from the construction, Xi is either complete or
anticomplete to Y , and by taking complements if necessary, we may assume the former. But then
every vertex in A has no neighbours in B and has at most |A| − 1 ≤ δ|G|/2 ≤ εδ|G| neighbours in
A, and similarly for B; and so setting X = A ∪B satisfies the theorem. This proves (1).

We may assume that |G| ≥ 2 and so k ≥ 2. If d|G| ≥ |G| − 1, then the theorem is satisfied with
X = V (G) (because δ < 1 and every vertex has at most d|G| neighbours in G). So we may assume
that d|G| < |G| − 1. Choose h with 0 ≤ h ≤ k− 1, minimum such that |Xh+1 ∪ · · · ∪Xk| ≤ d|G|+ 1.
(This is possible since the condition is satisfied when h = k− 1). Since |G| > d|G|+ 1 it follows that
h ≥ 1. By moving to the complement if necessary, we may assume that there Xh, Y are anticomplete,
where Y = Xh+1 ∪ · · · ∪Xk. Let I be the set of all i ∈ {1, . . . , h} such that Xi, Y are anticomplete,
and let J be the set of all i ∈ {1, . . . , h} such that Xi, Y are complete. Thus h ∈ I. Moreover, all
the sets Xi (i ∈ I) are pairwise anticomplete, and the sets Xi (i ∈ J) are pairwise complete.

Choose Z ⊆ Xh such that |Y ∪ Z| = bd|G|+ 1c (this is possible since |Xh ∪ Y | > d|G|+ 1 from
the minimality of h). Let A be the union of Y and the sets Xi (i ∈ I). Since each of the sets
Xi (i ∈ I) and Y have cardinality at most d|G| + 1 by (1), and there are no edges between them,
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it follows that G[A] has maximum degree at most d|G|. Similarly, let B be the union of Y ∪ Z and
the sets Xi (i ∈ J); then since these sets all have cardinality at most d|G| + 1, and there are no
edges of G between any two of them, it follows that G[B] has maximum degree at most d|G|. But
|A| + |B| = |G| + |Y | + |Z|, and so one of |A|, |B| has cardinality at least (|G| + |Y | + |Z|)/2. To
complete the proof it suffices to show that (|G|+ |Y |+ |Z|)/2 ≥ δ|G|. Certainly |Y ∪Z| > d|G|; and
hence

(|G|+ |Y |+ |Z|)/2 > (1 + d)|G|/2 = (1 + ε/(2− ε))|G|/2 = δ|G|.

This proves 3.2.

3.2 says that |X| > δ|G|, and hence |X| ≥ bδ|G|+ 1c. Next we show that this is tight.

3.3 Let 1/2 ≤ ε ≤ 1 and δ = 1/(2 − ε). For each even integer 2n ≥ 4, there is a cograph G with
2n vertices such that if X ⊆ V (G) and one of G[X], G[X] has maximum degree at most εδ|G|, then
|X| ≤ δ|G|+ 1 (and hence |X| ≤ bδ|G|+ 1c).

Proof. Let G be the “half-graph” with vertex set {a1, . . . , an, b1, . . . , bn}, in which {a1, . . . , an} is a
stable set, {b1, . . . , bn} is a clique, and ai, bj are adjacent if and only if i ≤ j. This graph is a cograph.
Now choose X ⊆ V (G) such that G[X] has maximum degree at most εδ|G|, with |X| maximum,
and subject to that with |X ∩ A| maximum. Since |X| > |G|/2 (because |G| ≥ 4 and so εδ|G| ≥ 1),
X contains a vertex b ∈ B. For each a ∈ A \X, since b is adjacent to all neighbours of a in X, it
follows that (X ∪ {a}) \ {b} would be a better choice than X, a contradiction; and so A ⊆ X. Let
|X ∩ B| = i say; then there is a vertex in X ∩ B with i neighbours in A and adjacent to all other
vertices in X ∩B, and since its degree in G[X] is at most εδ|G|, we deduce that 2i− 1 ≤ εδ|G|. So
|X ∩B| ≤ (εδ|G|+ 1)/2, and hence |X| ≤ |G|/2 + (εδ|G|+ 1)/2 = δ|G|+ 1/2. Similarly (the graph is
not quite self-complementary), if X ⊆ V (G) and G[X] has maximum degree at most εδ|G|, it follows
that |X| ≤ δ|G|+ 1. This proves 3.3.

We deduce:

3.4 If 1/2 ≤ ε ≤ 1, then δε = 1/(2− ε).

Proof. By 3.2, δε ≥ 1/(2 − ε). By 3.3, δε ≤ 1/(2 − ε) + 1/(2n) for each integer n ≥ 2, and so
δε ≤ 1/(2− ε). This proves 3.4.

4 Viral graphs and vertex-substitution

Let us prove 1.7, which we restate:

4.1 If H1, H2 are viral and H is obtained by substituting H2 for a vertex of H1, then H is viral.

Proof. Let H be obtained by substituting H2 for a vertex v say of H1. For i = 1, 2, since Hi is
viral, there exists di as in the definition of “viral”. Let d = (|H2|+ 1)(d1 + 1) + d2. To show that H
is viral, we will show that:

(1) For every graph G and all ε with 0 < ε ≤ 1/2, either
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• there exists X ⊆ V (G) with |X| ≥ εd|G| such that one of G[X], G[X] has edge-density at most
ε; or

• there are at least εd|G||H| copies of H in G.

(We remind the reader that “copy” means an isomorphism from H to an induced subgraph of G.)
Since εd1 |G| ≥ εd|G|, we may assume that there is no X ⊆ V (G) with |X| ≥ εd1 |G| such that one of
G[X], G[X] has edge-density at most ε, since otherwise the first bullet of (1) holds. Consequently,
from the choice of d1, there are at least εd1 |G||H1| copies of H1 in G. For each copy φ of H1 \ {v}
in G, let N(φ) be the set of all vertices u ∈ V (G) such that extending φ by mapping v to u gives a
copy of H1 in G, and let n(φ) = |N(φ)|. Let Φ be the set of all copies of H1 \ {v} in G; then∑

φ∈Φ

n(φ) ≥ εd1 |G||H1|.

Let Ψ be the set of all φ ∈ Φ such that n(φ) ≥ εd1+1|G|. Since∑
φ∈Φ\Ψ

n(φ) ≤
∑

φ∈Φ\Ψ

εd1+1|G| ≤ |G||H1|−1εd1+1|G|,

it follows that ∑
φ∈Ψ

n(φ) ≥ εd1 |G||H1|(1− ε) ≥ εd1+1|G||H1|.

Since n(φ) ≤ |G|, we deduce that |Ψ| ≥ εd1+1|G||H1|−1.
Let φ ∈ Ψ. Thus |N(φ)| = n(φ) ≥ εd1+1|G|. From the choice of d2, either there exists X ⊆

N(φ) with |X| ≥ εd2 |N(φ)| such that one of G[X], G[X] has edge-density at most ε, or there are
εd2 |N(φ)||H2| copies of H2 in G[N(φ)]. In the first case, since εd2 |N(φ)| ≥ εd2εd1+1|G| ≥ εd|G|, the
first bullet of (1) holds; so we may assume that there are at least

εd2 |N(φ)||H2| ≥ εd2ε(d1+1)|H2||G||H2|

copies of H2 in G[N(φ)], and hence each φ ∈ Ψ can be extended to at least εd2ε(d1+1)|H2||G||H2|

copies of H. Since |Ψ| ≥ εd1+1|G||H1|−1, there are at least

εd1+1|G||H1|−1εd2ε(d1+1)|H2||G||H2| = εd1+1+d2+(d1+1)|H2||G||H| = εd|G||H|

copies of H in G, and hence the second bullet of (1) holds. This proves (1), and hence shows that
H is viral, and proves 4.1.

Next we will deduce 1.6. The proof uses both 1.3 and a polynomial bound in the induced graph
removal lemma for P4. The induced graph removal lemma (see [1, 6, 11]) says that for each graph
H and 0 < ε ≤ 1/2 there exists δ > 0 such that every graph G with at most δ|G||H| copies of H can
be made H-free by adding or deleting at most ε|G|2 edges. For H = P4, Alon and Fox [3] proved a
polynomial bound:

4.2 There exists d > 0 such that, if 0 < ε ≤ 1/2, then every graph G containing at most εd|G||H|
copies of P4 can be made P4-free by adding or deleting at most ε|G|2 edges.
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We deduce 1.6, which we restate:

4.3 Every graph on at most four vertices is viral.

Proof. Every graph on at most two vertices is viral from the definition. Every graph on three or
four vertices, apart from P4, can be obtained through vertex-substitution from smaller graphs. So
from 1.7 it suffices to prove that P4 is viral. Let d be as in 4.2, and let 0 < ε ≤ 1/2. We will show
that either

• there exists X ⊆ V (G) with |X| ≥ ε|G|/4 ≥ ε3|G| such that one of G[X], G[X] has at most
ε
(|X|

2

)
edges; or

• there are at least (ε/4)3d|G|4 ≥ ε12d|G|4 copies of P4 in G.

We first dispose of a trivial case, when ε|G|/4 ≤ 3. Then the first bullet holds if |G| ≥ 6 (because then
G or G has a triangle), and also if |G| ≤ 5 (because then ε|G|/4 ≤ 5/8 and we can take |X| = 1).
So we may assume that ε|G|/4 > 3. From the choice of d (with ε replaced by (ε/4)3), either G
contains at least (ε/4)3d|G|4 copies of P4 (in which case we are done), or we can obtain a P4-free
graph G′ with the same vertex set as G by adding or deleting at most (ε/4)3|G|2 edges from G. In
the latter case, by 1.3, there exists X ⊆ V (G) with |X| ≥ ε|G|/4 > 3 such that one of G′[X], G′[X]
has maximum degree at most (ε/4)2|G|. Then one of G[X], G[X] has at most

(ε/4)3|G|2 + (ε/4)2|G||X|/2 ≤ 3

8
ε|X|2 ≤ ε

(
|X|
2

)
edges (since |X| ≥ 4). This proves 4.3.

5 Partitioning cographs into Rödl sets: some counterexamples

For ε > 0, let us say X ⊆ V (G) is ε-restricted if one of G[X], G[X] has maximum degree at most
ε|X|. There is a strengthening of Rödl’s theorem proved in [5]:

5.1 For every graph H and every ε > 0, there exists N > 0 such that if G is H-free, there is a
partition of V (G) into at most N ε-restricted subsets.

(Note that being ε-restricted involves maximum degree rather than edge-density. The edge-density
version is a simple consequence of 1.1.)

There is a corresponding strengthening of the Fox-Sudakov conjecture: perhaps in 5.1, N can
always be taken to be a polynomial in ε−1 (depending on H). This seems very intractible, and we
have not been able to show it even when H is a triangle. But it works when H = P4, as we will show
in the next section.

It would be even nicer to get a version of 5.1 that is strong enough to imply 1.3 when H = P4,
but that eludes us. The obvious attempt is false:

5.2 For all ε with 0 < ε < 1/2 such that ε−1 is not an integer, there is a cograph G such that there
is no partition of V (G) into at most 1/ε ε-restricted sets.
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Proof. Let k = bε−1c, let m be an integer with (1−kε)m ≥ 1, and let n be some large integer. Let G
be the graph consisting of k+ 1 disjoint cliques C0, . . . , Ck, where |C0| = n and |C1|, . . . , |Ck| = mn.
Suppose that there is a partition of V (G) into at most 1/ε (and hence at most k) ε-restricted sets,
and so there is an ε-restricted set X with |X| ≥ mn+n/k. Let xi := |X ∩Ci| for 0 ≤ i ≤ k. Suppose
first that G[X] has maximum degree at most ε|X|. It follows that xi − 1 ≤ ε|X| for 1 ≤ i ≤ k, and
x0 ≤ n, and summing,

|X| = x0 + x1 + · · ·+ xk ≤ n+ kε|X|+ k;

so
n/(1− εk) + n/k ≤ mn+ n/k ≤ |X| ≤ (k + n)/(1− kε),

a contradiction when n is large. Thus, G[X] has maximum degree at most ε|X|. Since |X| > |Ci|
for 0 < i ≤ k, there exists i ∈ {0, . . . , k} such that 0 < xi ≤ |X|/2. Choose v ∈ X ∩ Ci; then v has
at least |X|/2 > ε|X| non-neighbours in X, contradicting that G[X] has maximum degree at most
ε|X|. This proves 5.2.

What happens in 5.2 when ε−1 is an integer? Is it true that for every integer k ≥ 1, every cograph
G can be vertex-partitioned into at most k parts, each 1/k-restricted? For k = 2 this is true, and
for k = 3 it is false. Let us see both those things now.

To show it is true for k = 2, let us say X ⊆ V (G) is thin if every component of G[X] has at most
(|X|+ 1)/2 vertices, and thick if every component of G[X] has at most (|X|+ 1)/2 vertices. So thick
and thin sets are both 1/2-restricted. We will prove:

5.3 If G is a cograph, there is a partition of V (G) into a thin set and a thick set.

Proof. Let G be a cograph. Choose a partition A,B,C of V (G) with C minimal such that |C| >
|G|/2, A is anticomplete to C, and B is complete to C. (This is possible since we may take A =
B = ∅.) We may assume that |C| ≥ 2, and so one of G[C], G[C] is not connected, by 2.1. By taking
complements if necessary, we may assume that G[C] is not connected. Partition C into two nonempty
sets P,Q complete to each other. From the minimality of C, it follows that |P |, |Q| ≤ |G|/2. In
summary, we have a partition of V (G) into four sets A,B, P,Q, where A or B may be empty,
but P,Q 6= ∅; |A| + |B| < |G|/2 and |P |, |Q| ≤ |G|/2; B,P,Q are mutually complete, and A is
anticomplete to P ∪Q. (The edges between A,B are unrestricted.)

We may assume that |Q| ≥ |P |. Define m := max(0, |Q| − |P | − |B|).

(1) |A|+m ≤ 2|Q|, and |A| −m ≤ 2|P |.

Suppose first that m = 0. Then |Q| ≤ |P | + |B|, and we must show that |A| ≤ 2|P | (≤ 2|Q|).
But |P | ≥ |Q| − |B|, so 2|P | ≥ |P ∪ Q| − |B| ≥ |A| as required. Now suppose that m > 0, and so
m = |Q|−|P |−|B|; and we must show that |A|+|Q|−|P |−|B| ≤ 2|Q| and |A|−(|Q|−|P |−|B|) ≤ 2|P |.
The first says |A| − |B| ≤ |P |+ |Q|, and the second that |A|+ |B| ≤ |P |+ |Q|, and both of these are
true. This proves (1).

Consequently, we may choose subsets P ′ ⊆ P and Q′ ⊆ Q with |P \ P ′| = d(|A| − m)/2e and
|Q \Q′| = b(|A|+m)/2c. We claim that X := A ∪ (P \ P ′) ∪ (Q \Q′) is thin and Y := B ∪ P ′ ∪Q′
is thick, and so the theorem holds. Since |(P \ P ′) ∪ (Q \Q′)| = |A|, and so |X| = 2|A|, and each of
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its components has vertex set a subset of either A or (P \ P ′) ∪ (Q \Q′), and therefore has at most
|A| vertices, it follows that X is thin. To show that Y is thick, we need:

(2) Each of B,P ′, Q′ has cardinality at most (|Y |+ 1)/2.

Certainly |B| ≤ n/2 − |A| = |Y |/2 since |A| + |B| < n/2. For the other two inequalities, we
have |Y | = |P ′|+ |Q′|+ |B|, and |P ′| = |P | − d(|A| −m)/2e, and |Q′| = |Q| − b(|A|+m)/2c, so we
must show that

|P | − d(|A| −m)/2e ≤ |Q| − b(|A|+m)/2c+ |B|+ 1

and
|Q| − b(|A|+m)/2c ≤ |P | − d(|A| −m)/2e+ |B|+ 1.

These simplify to showing that |P |+m ≤ |Q|+ |B|+ 1, and |Q| ≤ |P |+ |B|+m, which both follow
from the choice of m, and since |Q| ≥ |P |. This proves (2).

From (2), we deduce that Y is thin. This proves 5.3.

Now a counterexample for k = 3.

5.4 There is a cograph that admits no vertex-partition into three 1/3-restricted sets.

Proof. Take four disjoint sets A,B,C,D (we will specify their sizes later). Make A,B,C stable sets
complete to each other, and make D a clique anticomplete to A ∪B ∪ C, forming a graph G.

(1) Every 1/3-restricted subset X of V (G) satisfies either

• X ⊆ D; or

• X is disjoint from two of A,B,C, and its intersection with the third has cardinality at least
2|X ∩D| − 3; or

• X is disjoint from one of A,B,C, and its intersections with the other two and with D have
cardinalities that differ by at most one; or

• X ∩D = ∅, and |X ∩A|, |X ∩B|, |X ∩ C| differ by at most two; or

• |X| ≤ 6.

Suppose first that G has maximum degree at most |X|/3. Consequently not both X∩(A∪B∪C)
and X ∩ D are nonempty, and so we may assume that X ⊆ A ∪ B ∪ C, since otherwise the first
bullet holds. We may assume that |X ∩ A| ≥ |X|/3; but each vertex in X ∩ A has at most |X|/3
non-neighbours in X, and so |X ∩A| ≤ |X|/3 + 1; and so the fourth bullet holds.

Now we assume that G has maximum degree at most |X|/3. Hence |X ∩D| ≤ |X|/3 + 1, and so
|X ∩ (A∪B ∪C)| ≥ 2|X|/3− 1. We may assume that X ∩A 6= ∅; and so |X ∩ (B ∪C)| ≤ |X|/3, and
consequently |X ∩A| ≥ |X|/3−1. If also X ∩B,X ∩C are nonempty, then all three have cardinality
at least |X|/3− 1 by the same argument, and so vertices in X ∩A have at least 2|X|/3− 2 > |X|/3
neighbours in X; so |X| ≤ 6 and the fifth bullet holds. So we may assume that X ∩ C = ∅. If also
X ∩B = ∅ then X ∩A ≥ 2|X|/3− 1 ≥ 2|X ∩D| − 3 and the second bullet holds, so we assume that
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X ∩ B 6= ∅. Consequently |X ∩ A|, |X ∩ B| ≤ |X|/3, and so |X ∩D| ≥ |X|/3, and the third bullet
holds. This proves (1).

We say that a 1/3-restricted set X has type 1–5 depending which bullet of (1) it satisfies. Now
let n be a large integer, and let |A| = 2n, |B| = 3n, |C| = 4n and |D| = 5n. Suppose that
V (G) can be partitioned into three 1/3-restricted sets X,Y, Z. If X has type 2, 3, 4 or 5, then
2|X ∩ D| ≤ |X ∩ (A ∪ B ∪ C)| + 12; so if none of X,Y, Z has type 1, then, summing these three
inequalities, we deduce that 2|D| ≤ |A|+ |B|+ |C|+ 36, a contradiction since n is large. So we may
assume that Z has type 1. If say Y has type 1, 4 or 5, then |X ∩A|, |X ∩B|, |X ∩C| pairwise differ
by at least n − 6, contrary to (1). So X,Y both have types 2 or 3. They cannot both have type
2 since their union includes A,B,C, so we assume that Y has type 3. If X has type 2, then the
intersections of two of A,B,C with X ∪ Y differ by at most one, a contradiction; so both X,Y have
type 3. But then the sum of two of |A|, |B|, C| should be equal to the third (±2), a contradiction.
This proves 5.4.

6 Partitioning cographs into polynomially many Rödl sets

As we just explained, we have not not been able to give a version of 5.1 that implies 1.3. But at
least a “polynomial” version of 5.1 is true when H = P4, because of 1.9, which we will now prove.
The proof breaks into several steps, that follow.

A pair (P,Q) of disjoint subsets of V (G) is pure if Q is either complete or anticomplete to P .

6.1 Let G be a cograph with |G| ≥ 2, and let 0 < ε ≤ 1. Then there is a partition of V (G) into four
(possibly empty) sets A0, A1, A2, A3, with the following properties:

• A0 is ε-restricted;

• every two of A1, A2, A3 form a pure pair;

• for 1 ≤ i ≤ 3, if Ai 6= ∅, then there exists B ⊆ V (G) \Ai with |B| ≥ ε2

4 |G| such that (Ai, B) is
a pure pair.

Proof. For convenience, we say a subset of V (G) is big if its cardinality is more than ε2

4 |G|, and
small otherwise. Choose a maximal sequence S1, . . . , Sk of nonempty, pairwise disjoint, small subsets
of V (G), such that

• for 1 ≤ i ≤ k, Si is complete or anticomplete to V (G) \ (S1 ∪ · · · ∪ Si), and

• |S1 ∪ · · · ∪ Sk| < |G|/2.

Let A = V (G) \ (S1 ∪ · · · ∪ Sk). Let I be the set of i ∈ {1, . . . , k} such that Si is complete to
V (G) \ (S1 ∪ · · · ∪ Si), and J = {1, . . . , k} \ I. Let P =

⋃
i∈I Si and Q =

⋃
j∈J Sj . Thus the sets

Si (i ∈ I) and A are pairwise complete, and the sets Sj (j ∈ J) and A are pairwise anticomplete.
We may assume that |A| ≥ 2, since otherwise |G| ≤ 2 and the theorem is true. So one of G[A], G[A]
is not connected, by 2.1. Choose a partition B,C of A with B,C both nonempty, such that B is
complete or anticomplete to C. We may assume that |B| ≥ |C|, and so |B| ≥ |G|/4.

From the maximality of the sequence, either:
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• |B| ≤ |G|/2 and C is small; or

• C is big.

In the first case, by taking complements if necessary, we may assume that B,C are complete. Let
P ′ = P ∪C. Thus every component of G[P ′] has at most ε2

4 |G| vertices; so if |P ′| ≥ ε|G|/4, then P ′

is ε-restricted, and the theorem is satisfied taking A0 = P ′, A1 = B, A2 = Q and A3 = ∅, since B,Q
are anticomplete. Note that the third condition of the theorem is satisfied, since A1 = B is complete
to the big set A0 = P ′ and A2 = Q is anticomplete to the big set A1 = B. So we may assume
that |P ′| < ε|G|/4. Similarly, if |Q| ≥ ε|G|/4, then Q is ε-restricted, and the theorem is satisfied by
setting A0 = Q, A1 = B and A2 = P ′, since A1 is anticomplete to the big set A0, and A2 is complete
to the big set A1. But P ′ ∪Q = V (G) \ B, and |B| ≤ |G|/2, and so one of P ′, Q has cardinality at
least |G|/4 ≥ ε|G|/4, and the theorem holds.

In the second case, since |B| ≥ |G|/4, 1.3 implies that there exists X ⊆ B with |X| ≥ ε|B| such
that one of G[X], G[X] has maximum degree at most ε2|B|; and by replacing X by a subset, we
may assume that |X| = dε|B|e. Thus X is ε-restricted. By taking complements if necessary, we may
assume that G[X] has maximum degree at most ε|X|. Let Q′ = Q∪X; then |Q′| ≥ ε|G|/4. If v ∈ Q
then its degree in G[Q′] is at most ε2

4 |G| ≤ ε|X| ≤ ε|Q′|; so Q′ is ε-restricted, and the theorem is
satisfied by setting A0 = Q′, A1 = B \X, A2 = C, and A3 = P . To see the last, note that (A1, A2)
is a pure pair; A3 is complete to both A1, A2; A1 is complete or anticomplete to the big set A2; A2

is complete or anticomplete to the big set A1; and A3 is complete to the big set A1. This proves
6.1.

Let X ⊆ V (G) with X 6= ∅. A ribbon attached to X is a sequence B = (B1, . . . , Bk) of pairwise
disjoint subsets of V (G) \ X, where k ≥ 0, such that Bi is complete or anticomplete to X ∪ B1 ∪
· · · ∪Bi−1 for 1 ≤ i ≤ k. Its length is k, and its breadth is the minimum of |Bi|/|X| for 1 ≤ i ≤ k (or
1 if k = 0). We say X is the attachment of the ribbon.

We will be concerned with partitions of V (G) into parts, such that for each part X, either X
is ε-restricted, or there is a ribbon attached to X; and moreover, that for every two parts X,Y
that are not ε-restricted, X is either complete or anticomplete to Y . We must take care that the
total number of sets in the partition is not too large, that the number of beribboned sets is not too
large, and that the ribbons are long enough, and have breadth not too small. For ε > 0, let us say
an (ε, k)-beribboning of a graph G is a partition P of V (G) (together with, implicitly, a choice of
ribbons), such that

• for each X ∈ P, either X is ε-restricted or there is a ribbon of length k attached to X; and

• if X,Y ∈ P are different and not ε-restricted, then (X,Y ) is a pure pair.

(The ribbons attached to distinct members of P may overlap. We will tidy them up later.) The
dimensions of the beribboning are (m,n), where n = |P| and m is the number of members of P that
are not ε-restricted; and its breadth is the minimum of the breadth of its ribbons. From 6.1, we see
that every cograph admits an (ε, 1)-beribboning with dimensions at most (3, 4) and breadth at least
ε2/4.

6.2 If k ≥ 0 is an integer, and 0 < ε ≤ 1, and G is a cograph that admits an (ε, k)-beribboning
with dimensions at most (m,n) and breadth at least β, then it also admits an (ε, k)-beribboning with
dimensions at most (ε−2, n) and breadth at least β.
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Proof. We will prove that if G admits an (ε, k)-beribboning P with dimensions (m,n) and breadth
β, where m ≥ ε−2, then it also admits one with dimensions at most (m − 1, n) and breadth at
least β. Let t = dε−1e. Since m ≥ ε−2 > (t − 1)2, and every cograph with more than (t − 1)2

vertices has a clique or stable set of size t, we may choose distinct X1, . . . , Xt ∈ P, not ε-restricted,
such that either X1, . . . , Xt are pairwise anticomplete or X1, . . . , Xt are pairwise complete. We may
assume that |Xt| ≤ |X1|, . . . , |Xt−1|. Choose Yi ⊆ Xi with |Yi| = |Xt| for 1 ≤ i ≤ t − 1. Then
Y1 ∪ · · · ∪ Yt−1 ∪ Xt is ε-restricted (because t ≥ ε−1). Let P ′ be the partition obtained from P by
replacing the sets X1, . . . , Xt by the sets

X1 \ Y1, . . . , Xt−1 \ Yt−1, Y1 ∪ · · · ∪ Yt−1 ∪Xt.

Thus P ′ has the same number of members as P, but at least one more of them is ε-restricted.
Moreover, each of the sets Xi \ Yi has a ribbon attached of length k and breadth at least β. So P ′
is an (ε, k)-beribboning with dimensions at most (m − 1, n) and breadth ≥ β. By repeating, this
proves 6.2.

6.3 If G is a cograph, and 0 < ε ≤ 1, and k ≥ 0 is an integer, then G admits an (ε, k)-beribboning
with dimensions at most (ε−2, 1 + 3kε−2) and breadth at least ε2/4.

Proof. We proceed by induction on k. For k = 0, the result is trivial. Inductively, we assume that
k ≥ 1, and G admits an (ε, k− 1)-beribboning P with dimensions at most (ε−2, 1 + 3(k− 1)ε−2) and
breadth at least ε2/4. Let X1, . . . , Xm be the members of P that are not ε-restricted. For 1 ≤ i ≤ m,
since |Xi| ≥ 2, there is, by 6.1, a partition of Xi into four (possibly empty) sets Ai0, Ai1, Ai2, Ai3,
with the following properties:

• Ai0 is ε-restricted;

• every two of Ai1, Ai2, Ai3 form a pure pair;

• for 1 ≤ j ≤ 3, if Aij 6= ∅, then there exists B ⊆ Xi \Aij such that |B| ≥ ε2

4 |Xi| and (Aij , B) is
a pure pair.

Let P ′ be obtained from P by replacing Xi by Ai0, Ai1, Ai2, Ai3 for 1 ≤ i ≤ m. We claim that this is
a (ε, k)-beribboning with dimensions at most (3m, 1 + 3kε−2) and breadth at least ε2/4. Certainly

|P ′| ≤ |P|+ 3m ≤ 1 + 3kε−2

and the number of members of P ′ that are not ε-restricted is at most 3m. We need to check the
ribbons. Let 1 ≤ i ≤ m. There is a (ε, k − 1)-ribbon (B1, . . . , Bk−1) attached to Xi with breadth
at least ε2/4. Let 1 ≤ j ≤ 3 with Aij 6= ∅. From the third bullet above, there exists a subset

B ⊆ Xi \ Aij such that |B| ≥ ε2

4 |Xi| and (Aij , B) is a pure pair. But then (B,B1, . . . , Bk−1) is a
ribbon attached to Aij of breadth at least ε2/4 and length k. This proves our claim that P ′ is a
(ε, k)-beribboning with dimensions at most (3m, 1 + 3kε−2) and breadth at least ε2/4, and then an
application of 6.2 gives the result. This proves 6.3.
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Let us say a ribbon (B1, . . . , Bk) attached at X is pure if either all the sets X,B1, . . . , Bk are
pairwise complete, or all the sets X,B1, . . . , Bk are pairwise anticomplete. An (ε, k)-beribboning is
pure if all the ribbons it uses are pure.

6.4 If G is a cograph, and 0 < ε ≤ 1/2, then G admits a pure (ε, dε−1e)-beribboning with dimensions
at most (ε−2, 10ε−3) and breadth at least ε2/4.

Proof. Taking k = 2dε−1e ≤ 3ε−1, we deduce from 6.3 that G admits an (ε, k)-beribboning with
dimensions at most (ε−2, 1 + 3kε−2) ≤ (ε−2, 10ε−3) and breadth at least ε2/4. Let (B1, . . . , Bk) be
a ribbon attached to some X ⊆ V (G). Let I be the set of i ∈ {1, . . . , k} such that Bi is complete to
X ∪B1 ∪ · · · ∪Bi−1, and J = {1, . . . , k} \ I. Then both of (Bi : i ∈ I), (Bj : j ∈ J) are pure ribbons
attached to X, and one of them has length at least k/2 = dε−1e. Hence, for each X ∈ P that is not
ε-restricted, there is a pure ribbon of length at least ε−1 and breadth at least ε2/4 attached to X.
This proves 6.4.

The purpose of the ribbons is: suppose we have a pure ribbon (B1, . . . , Bk) attached to a set
X, and its length is at least ε−1, and B1, . . . , Bk all have the same size. Then we can partition
X ∪ B1 ∪ · · · ∪ Bk into ε-restricted sets, as follows. We can partition almost all of X into a few
ε-restricted subsets, greedily, in such a way that the remainder, Y say, has size at most |B1|; and
then Y ∪ B1 ∪ · · · ∪ Bk is also ε-restricted. But to use this method, we first need to tidy up the
ribbons. We want to arrange that:

• the ribbons are vertex-disjoint from one another;

• for each set of the partition P, at most half its vertices belong to ribbons; and

• for each ribbon, all its members have the same size.

We call these the prettification conditions. Let us say a (ε, k)-beribboning is prettified if it is pure
and satisfies the three conditions above. All these things will be accomplished by replacing the sets
of the ribbons by subsets of themselves. This will reduce the breadth, so we must be careful that
the breadth does not get too small. In particular, if the sets of a ribbon are already very small, we
may not be able to shrink them by the required factors, and we must treat such ribbons differently.
But in this case, the corresponding attachment is also very small, a polynomial in ε−1, and we can
easily partition it into a few ε-restricted sets, and need not use the ribbon at all.

Let us see the last statement above. By repeatedly applying 1.3, we evidently have:

6.5 If G is a cograph, and X ⊆ V (G), and 0 ≤ ε ≤ 1, and t ≥ 0 is an integer, then there are t
pairwise disjoint ε-restricted subsets of X with union X\Y say, such that |Y | ≤ (1−ε)t|G| ≤ e−εt|X|.

So in particular, there is a partition of X into t ε-restricted sets, if we take t so large that eεt > |X|.

6.6 For 0 < ε ≤ 1/2, if G is a cograph, then G admits a prettified (ε, dε−1e)-beribboning P with
dimensions at most (ε−2, 21ε−4) and breadth at least ε4/32.

Proof. Let k = dε−1e. By 6.4, G admits a pure (ε, k)-beribboning P0 with dimensions at most
(ε−2, 10ε−3) and breadth at least ε2/4. Let q = 16. If X ∈ P0 and |X| < ε−q, then by 6.5
there is a partition of X into at most qε−1 log(ε−1) ≤ qε−2 ε-restricted sets. For each X ∈ P0
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that is not ε-restricted and has cardinality less than ε−q, let us replace X in P0 by the sets of
the corresponding partition. We obtain a pure (ε, k)-beribboning P of G with dimensions at most
(ε−2, 10ε−3 + qε−4) ≤ (ε−2, (q + 5)ε−4) and breadth at least ε2/4, such that each X ∈ P that is not
ε-restricted has cardinality at least ε−q. Now we will prettify the ribbons.

LetX1, . . . , Xm be the members of P that are not ε-restricted, and for 1 ≤ i ≤ m, let (Bi1, . . . , Bik)
be a pure ribbon attached to Xi with breadth at least ε2/4.

(1) For 1 ≤ i ≤ m and 1 ≤ j ≤ k there exists Cij ⊆ Bij, with |Cij | ≥ b|Bij |/mc such that all
the sets Cij (1 ≤ i ≤ m, 1 ≤ j ≤ k) are pairwise disjoint.

For each i, j, let Qij be a partition of Bij into d|Bij |/me sets, of which b|Bij |/mc have size m,

and possibly one has size less than m. For each Q ∈ Qij take a new vertex uQij , and let U be the set
of all these new vertices; that is,

U = {uQij : 1 ≤ i ≤ m, 1 ≤ j ≤ n,Q ∈ Qij}.

Let H be the graph with bipartition (U, V (G)) in which uQij is adjacent to v ∈ V (G) if v ∈ Q. Then
H has maximum degree at most m, and so its edge-set can be partitioned into m matchings. Let M
be one of these matchings. For each vertex h ∈ V (H) with degree m in H, there is an edge of M
incident with h. Consequently, for 1 ≤ i ≤ m and 1 ≤ j ≤ k, there are at least b|Bij |/mc edges in
M with ends in Qij . Let Cij be the set of vertices of G that are joined by an edge of M to a vertex
in Qij . This proves (1).

For 1 ≤ i ≤ m, since |Xi| ≥ ε−q, it follows that each |Bij | ≥ ε2−q/4 ≥ ε−2 ≥ m, and hence

|Cij | ≥ b|Bij |/mc ≥ |Bij |/(2m) ≥ (ε4/8)|Xi|.

Consequently (Ci1, . . . , Cik) is a ribbon attached to Xi with breadth at least ε4/8. These ribbons
are pairwise vertex-disjoint, so we have satisfied the first prettification condition.

For the second condition, for each i, j, choose Dij ⊆ Cij such that for each Y ∈ P, |Dij ∩ Y | =
b|Cij ∩ Y |/2c. Then

|Dij | ≥ |Cij |/2− |P|/2 ≥ |Cij |/2− (q + 5)ε−4/2 ≥ |Cij |/4 ≥ (ε4/32)|Xi|.

since
|Cij | ≥ (ε4/8)|Xi| ≥ ε4−q/8 ≥ 2(q + 5)ε−4.

Then for each Y ∈ P, at most half the vertices of Y belong to the union of the sets Dij ; so the ribbons
(Di1, . . . , Dik) have breadth at least ε4/32 and satisfy the first and second prettification conditions.
Finally, for the third, for each i, j choose Eij ⊆ Dij of cardinality d(ε4/32)|Xi|e; then the ribbons
(Ei1, . . . , Eik) for 1 ≤ i ≤ m satisfy all the prettification conditions, and have breadth at least ε4/32.
This proves 6.6.

Finally, let us deduce 1.9, which we restate, with ε replaced by ε/2 for convenience:

6.7 If G is a cograph, then for every ε with 0 < ε ≤ 1/2, there is a partition of V (G) into at most
30ε−4 sets, all 2ε-restricted.
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Proof. From 6.6, G admits a prettified (ε, dε−1e)-beribboning P with dimensions at most (ε−2, 21ε−4)
and breadth at least ε4/32. Let X1, . . . , Xm be the members of P that are not ε-restricted, and for
1 ≤ i ≤ m let (Bi1, . . . , Bik) be a pure ribbon attached to Xi with breadth at least ε4/32, satisfying
the prettification conditions. Let F be the union of the sets Bij for 1 ≤ i ≤ m and 1 ≤ j ≤ k. Thus
|F ∩ Y | ≤ |Y |/2 for each Y ∈ P. Let Z = F ∪X1 ∪ · · · ∪Xm. We will partition Z and V (G) \Z into
2ε-restricted sets.

Let t = d8ε−2e ≤ 9ε−2. By 6.5, for 1 ≤ i ≤ m, since

|Xi \ F | ≤ |Xi| ≤ (32ε−4)|Bi1|,

we may choose t pairwise disjoint ε-restricted subsets Ai1, . . . , Ait of Xi \F , with union (Xi \F ) \Yi
say, such that |Yi| ≤ |Bi1|. But then the sets

Aij (1 ≤ i ≤ m, 1 ≤ j ≤ t)
Yi ∪Bi1 ∪ · · · ∪Bik (1 ≤ i ≤ m)

are all ε-restricted, and pairwise disjoint, and have union Z.
For each ε-restricted set Y ∈ P, the set Y \ F is 2ε-restricted, since |Y \ F | ≥ |Y |/2; and the

union of all these sets Y \ F (where Y ∈ P is not ε-restricted) is V (G) \ Z. So altogether we have
found a partition of V (G) into at most

|P|+mt ≤ 21ε−4 + ε−2(9ε−2) ≤ 30ε−4

2ε-restricted sets. This proves 6.7.
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