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Abstract

In this short paper we study the game of cops and robbers, which is played on the vertices of
some fixed graph G. Cops and a robber are allowed to move along the edges of G and the goal
of cops is to capture the robber. The cop number c(G) of G is the minimum number of cops
required to win the game. Meyniel conjectured a long time ago that O(

√
n) cops are enough for

any connected G on n vertices. Improving several previous results, we prove that the cop number
of n-vertex graph is at most n2−(1+o(1))

√
logn. A similar result independently and slightly before

us was also obtained by Lu and Peng.

1 Introduction

Let G be a simple, undirected, connected graph on n vertices. The game of Cops and Robbers, which

was introduced almost thirty years by Nowakowski and Winkler [12] and by Quilliot [13], is played on

the vertices of G as follows. There are two players, a set of k ≥ 1 cops and one robber. The game

begins by the cops occupying some set of k vertices of G and then the robber also chooses a vertex.

Afterward they move alternatively, first cops and then robber, along the edges of graph G. At every

step each cop or robber is allowed to move to any neighboring vertex or do nothing and stay where

they are. Multiple cops are allowed to occupy the same vertex. The cops win if at some time there is

a cop at the same vertex as the robber; otherwise, the robber wins. The minimum number of cops for

which there is a winning strategy, no matter how robber plays, is called the cop number of G and is

denoted by c(G). Note that this number is clearly at most n and also that the initial position of cops

does not matter, since G is connected.

The cop number was introduced by Aigner and Fromme [1] who proved for example that if G is

planar, then c(G) ≤ 3. They also observed that if G has girth at least 5 (i.e., no cycles of length

≤ 4) then its cop number is at least the minimum degree of G. In particular, this together with the

well known construction of dense graphs of girth 5 shows that there are n-vertex graphs which require

at least Ω(
√
n) cops. A quarter century ago, Meyniel conjectured that this is tight and O(

√
n) cops

is always sufficient. The first nontrivial upper bound for this problem was obtained by Frankl [8],

who proved that c(G) ≤ O(n log logn
logn ). This was later improved by Chiniforooshan [7] to O( n

logn). All

logarithms in this paper are binary.

The game of cops and robbers was also studied by Andreae [4], Berardicci and Intrigila [5], Alspach

[3] and for random graph by Bollobás, Kun and Leader [6] and by  Luczak and Pra lat [11]. The aim

of this short paper is to prove the following new bound for the cops and robber problem.

Theorem 1.1 The cop number of any connected n-vertex graph is at most n2−(1+o(1))
√
logn.
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2 Proof of the main result

The proof of the main theorem has two ingredients. The first is a result of Aigner and Fromme which

says that one cop can control the shortest path between two vertices. Let P be the shortest path in

G between two vertices u and v. Then the following lemma was proved in [1].

Lemma 2.1 One cop can move along the vertices of P such that, after a finite number of steps, if

the robber ever visits P then he will be caught in the next step.

This result can be used for graphs with large diameter, since we can delete a long path from such

a graph and use induction. The case when G has relatively small diameter will be treated using the

following key lemma, which we think has independent interest.

Lemma 2.2 Let G be a graph on n ≥ 230 vertices with diameter D ≤ 2
√
logn/ log3 n. Then c(G) ≤

n(log n)32−
√
logn.

Proof. Throughout the proof, we assume that n is large enough for our estimates to hold. Let

t =
√

log n−3 log log n. Consider random subsets C1, . . . , Ct+1 of G. For every vertex of G we put it into

each Cj with probability (log n)22−
√
logn (so a single vertex may be in many Ci). Since |Cj | is binomially

distributed with expectation µ = n(log n)22−
√
logn, by the standard Chernoff-type estimates (see, e.g.,

Appendix A in [2]), we have that the probability that Cj has more than 2µ = 2n(log n)22−
√
logn

vertices is at most e−µ/3 < n−2. Then, with probability at least 1 − logn
n2 > 0.9, the sum of the sizes

of these sets is at most n(log n)32−
√
logn which will give our final bound.

For every subset A of G and integer i let B(A, i) be the ball of radius i around A, i.e., all the

vertices of G which can be reached from some vertex in A by a path of length at most i. We need the

following simple claim.

Claim 2.3 The following statement holds with probability 0.9: for every A ⊂ V (G) such that |A| ≤
n2−

√
logn, every i ≤ t such that |B(A, 2i)| ≥ 2

√
logn|A|, and every j,

|B(A, 2i) ∩ Cj | ≥ |A|.

Proof. Let |A| = a. Note that for any fixed A, i, j the number of points from Cj in B(A, 2i)

is binomially distributed with expectation at least a log2 n. Thus by Chernoff type estimates the

probability that it is smaller than a is at most e−a log
2 n/3. The number of sets of size a is

(
n
a

)
and the

number of pairs of indices i, j is at most log n, and the result follows since log n
∑

a

(
n
a

)
e−a log

2 n/3 < 0.1.
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Thus we can choose subsets C1, . . . , Ct+1 that satisfy the assertion of this claim and such that the

sum of their sizes is at most n(log n)32−
√
logn. We place at each vertex u of G one cop for each set Cj

that contains u. We will show that these cops can always catch the robber.

Suppose that the robber is located at vertex v of the graph G. Since the cops move first, note

that the degree of this vertex is at most 2
√
logn. Otherwise by the claim we already have a cop in

its neighborhood who will catch the robber in the first move. Consider the following sequence of sets

Ai, Di for i = 1, . . . t+ 1 defined recursively.

Let A1 be the largest subset of B(v, 1) such that |B(A1, 1)| < 2
√
logn|A1| and let D1 = B(v, 1)−A1.

Note that for any X ⊂ D1 we have that |B(X, 1)| ≥ 2
√
logn|X| since otherwise we could increase A1
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by adding X to it. Thus by Claim 2.3 we have that B(X, 1) contains more than |X| points from C1.
Consider an auxiliary bipartite graph with vertex classes D1 and C1, where we join a vertex u in D1 to

w in C1 if w is within distance at most one from u. Note that, by the above discussion, it follows from

Hall’s Theorem that this bipartite graph has a complete matching from D1 to C1. Therefore for every

vertex u ∈ D1 we can choose a corresponding vertex w in C1, which is within distance one from u, and

such that all w are distinct. We can therefore ask the cops in C1 to occupy D1 in the first round.

Now suppose we have already defined Ai, Di. Consider the ball B(Ai, 2
i−1). Let Ai+1 be the

largest subset of B(Ai, 2
i−1) such that |B(Ai+1, 2

i)| < 2
√
logn|Ai+1| and let Di+1 = B(Ai, 2

i−1)−Ai+1.

Again for any subset X ⊂ Di+1 we have that |B(X, 2i)| ≥ 2
√
logn|X|. Thus by Lemma 2.3 we have

that B(X, 2i) contains more than |X| points from Ci+1. As above, we consider an auxiliary bipartite

graph with parts Di+1 and Ci+1 such that a vertex u in Di+1 is joined to w in Ci+1 if w is within

distance at most 2i from u. The bipartite graph has a complete matching from Di+1 to Ci+1 and so

for every vertex u ∈ Di+1 we can choose a corresponding vertex w in Ci+1, which is within distance at

most 2i from u, and such that all w are distinct. We will ask the cops in Ci+1 to occupy Di+1 by the

end of the first 2i rounds (by rounds we mean here that cops will move first, then robber moves and

so on until both cops and robber have each made 2i moves).

Next we claim that there is an index s ≤ t + 1 such that As is empty. Indeed note that by

construction we have |Ai+1| ≤ |B(Ai, 2
i−1)| ≤ 2

√
logn|Ai|. Therefore if At+1 is not empty we have that

|At+1| ≤
(

2
√
logn

)t+1
≤ n2−2

√
logn.

Moreover we also have that B(At+1, 2
t) has size at most 2

√
logn|At+1| � n and this contradicts the

assumption that the diameter of G is at most 2
√
logn/ log3 n.

Let s ≤ t + 1 be such that As is empty. We have shown that we can move cops from the

sets Ci, 1 ≤ i ≤ s, such that after 2i−1 rounds they will occupy the set Di. Also we have that

B(As−1, 2
s−2) = Ds. Now we claim that after 2s−1 rounds we have already caught the robber.

After one round the robber has made one step so he is in B(v, 1). Note that D1 is already occupied

by cops after the first round so in order to survive the robber must be in A1 = B(v, 1)−D1. Suppose

by induction that after 2i−1 rounds the robber is in the set Ai. Consider the next 2i−1 rounds (so in

total 2 · 2i−1 = 2i rounds). After this many additional rounds, the robber is in B(Ai, 2
i−1). Since we

know that Di+1 is occupied by the cops by time 2i, the robber must be in B(Ai, 2
i−1)−Di+1 = Ai+1.

Thus, arguing by induction, the only place the robber can be after 2i−1 rounds without having been

caught is in the set Ai. Since As is empty we are done. This completes the proof of the lemma. 2

Proof of Theorem 1.1. Let G be a connected graph on n vertices. We prove by induction that

c(G) ≤ f(n) = 2n(log n)32−
√
logn. Since c(G) ≤ n, the result holds trivially when 2(log n)32−

√
logn ≥

1. Thus we can assume that log n ≥ 400. If the diameter of G is at most 2
√
logn/ log3 n then we are

immediately done by Lemma 2.2. Otherwise G contains two vertices such that the shortest path P

between them has length at least D = 2
√
logn/ log3 n. Put one cop on this path. By Lemma 2.1, after

finite number of steps this cop can prevent the robber entering path P . Thus we can continue the

game on the graph obtained from G by deleting P . If this graph is disconnected we continue playing

on the connected component which contains the robber. Thus c(G) ≤ 1 + c(G− P ). By induction we

know that

c(G− P ) ≤ f(n−D) ≤ 2(n−D)(log n)32−
√

log(n−D) ≤ 2n(log n)32−
√

log(n−D) − 2. (1)

Since log n ≥ 400, we have D ≤ 2−20n. Then log(n−D) ≥ log n− 2D/n and therefore√
log(n−D) ≥

√
log n− 2D/n ≥

√
log n− 2D/(n

√
log n).
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We also have that 22D/(n
√
logn) ≤

(
1 + 2D/(n

√
log n)

)
. Substituting this into (1) we get that

c(G− P ) ≤ 2n(log n)32−
√

log(n−D) − 2 ≤ 2n(log n)32−
√
logn+2D/(n

√
logn) − 2

≤ 2n(log n)32−
√
logn

(
1 + 2D/(n

√
log n)

)
− 2 = f(n) +

4√
log n

− 2 < f(n)− 1.

Therefore c(G) ≤ 1 + c(G− P ) < 1 + f(n)− 1 = f(n) which completes the induction step. 2

Finally, let us note that the strategy in Lemma 2.2 does not require the cops to see the robber’s

movements after the first round. The cops therefore have the following randomized strategy against

an invisible robber (see [9] for a discussion of cops-and-robbers games where there is a cop with limited

vision). The cops move to their assigned positions, then guess the position of the robber and follow

the strategy of Lemma 2.2, repeating this process until the robber is caught. This algorithm catches

the robber in polynomial expected time. On a general graph, we can add a further cop on each path

P that we have deleted in the proof of Theorem 1.1: if these cops move at random on their paths, the

robber will be caught in finite (although not necessarily polynomial) expected time.

Note added in proof. When this paper was written we learned that a similar result independently

and slightly before us was also obtained by Lu and Peng [10]. We’d like to thank Krivelevich for

bringing their paper to our attention.
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