Polynomial Constraint Satisfaction Problems,
Graph Bisection, and the Ising Partition Function

ALEXANDER D. SCOTT
University of Oxford

and

GREGORY B. SORKIN
IBM Research

We introduce a problem class we call Polynomial Constraint Satisfaction Problems, or PCSP.
Where the usual CSPs from computer science and optimization have real-valued score functions,
and partition functions from physics have monomials, PCSP has scores that are arbitrary multi-
variate formal polynomials, or indeed take values in an arbitrary ring.

Although PCSP is much more general than CSP, remarkably, all (exact, exponential-time)
algorithms we know of for 2-CSP (where each score depends on at most 2 variables) extend to
2-PCSP, at the expense of just a polynomial factor in running time. Specifically, we extend
the reduction-based algorithm of Scott and Sorkin; the specialization of that approach to sparse
random instances, where the algorithm runs in polynomial expected time; dynamic-programming
algorithms based on tree decompositions; and the split-and-list matrix-multiplication algorithm
of Williams.

This gives the first polynomial-space exact algorithm more efficient than exhaustive enumer-
ation for the well-studied problems of finding a maximum bisection of a graph, and calculating
the partition function of an Ising model. It also yields the most efficient algorithm known for
certain instances of counting and/or weighted Maximum Independent Set. Furthermore, PCSP
solves both optimization and counting versions of a wide range of problems, including all CSPs,
and thus enables samplers including uniform sampling of optimal solutions and Gibbs sampling
of all solutions.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Exponential-time algorithm, exact algorithm, constraint
satisfaction, discrete optimization, partition function, generating function

Author’s address: A.D. Scott, Mathematical Institute, University of Oxford, 24-29 St Giles’,
Oxford, OX1 3LB, UK, scott@maths.ox.ac.uk. Research supported in part by EPSRC grant
GR/S26323/01.

Author’s address: G.B. Sorkin, Department of Mathematical Sciences, IBM T.J. Watson Research
Center, Yorktown Heights NY 10598, USA, sorkin@watson.ibm.com.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

2 . Scott and Sorkin

1. INTRODUCTION

Many decision and optimization problems, such as 3-colorability, Max Cut, Max
k-Cut, and Max 2-Sat, belong to the class Max 2-CSP of constraint satisfaction
problems with at most two variables per constraint. A Max 2-CSP (or for short,
simply CSP) instance defines a “score function” or “soft constraint” on each vertex
and edge of a “constraint graph”, and its solution is a vertex coloring or “assign-
ment” maximizing the total score.

We define a more general class we call Polynomial 2-CSP, or simply 2-PCSP or
PCSP. (The PCSP definition extends obviously to longer clauses, but much less is
known about algorithms even for 3-CSP.) Comparing with a CSP, the vertex and
edge scores of a PCSP are (potentially multivariate) polynomials (rather than real
numbers), the score of a coloring is the product of all vertex and edge scores (rather
than their sum), and an instance’s “value”, or “partition function”, is the sum of
scores over all colorings (rather than the maximum). In fact the scores may be
“generalized polynomials”, whose powers are not restricted to positive integers but
may be arbitrary reals, but we use “polynomial” for want of a better term.

Compared with the “max—sum” CSP formulation typical in the CSP commu-
nity, PCSP has a “sum—product” form commonly seen as the “partition function”
in statistical physics: a sum over configurations, of a product of exponentials of
“energies”. In the physics settings we are familiar with, the partition function is
always a product of monomials (sometimes multivariate, for example with energy
and magnetization), whereas our PCSPs permit polynomials. With general polyno-
mials, PCSP is closed under a variety of operations enabling its (relatively) efficient
solution by a number of algorithmic approaches.

PCSP includes many optimization problems not in the class CSP, including Max-
imum Bisection, Maximum Clique, Sparsest Cut, various judicious partitioning
problems, Max Omnes 2-Sat, and many others. Capitalizing on the fact that a
PCSP’s score functions may be multivariate polynomials, in all these cases, we
simply track several score functions at once. For example, for Max Bisection we
track the size of one side of the partition as well as the size of the cut.

PCSPs give a powerful technique for counting and sampling solutions. Given a
CSP, there is a natural way to obtain a corresponding PCSP. Solving the PCSP
gives a generating function for the number of CSP assignments of each possible
score, which allows us to count or (by successively solving subinstances) to sample
uniformly from solutions of maximum score, or to sample all solutions according to
the Gibbs distribution or any other score-based distribution.

PCSP is interesting because, despite being more general than CSP, all the best
CSP algorithms we know of can be extended to solve PCSP, with the same running-
time bounds. (Exact CSP algorithms are generally exponential-time, and solv-
ing a PCSP takes just a polynomial factor longer than solving a CSP instance
of the same size, for the extra overhead of adding and multiplying polynomials
rather than reals.) Specifically, four algorithms that extend are: the split-and-list
matrix-multiplication algorithm of Williams [Williams 2004]; the reduction-based
algorithm of Scott and Sorkin [Scott and Sorkin 2007]; the specialization of that
approach to sparse random instances, where the algorithm runs in polynomial ex-
pected time [Scott and Sorkin 2006b]; and dynamic-programming algorithms based

Polynomial CSP : 3

on tree decompositions [Jansen et al. 2005; Scott and Sorkin 2007; Kneis et al.
2009]. Both the definition of PCSP and all our algorithms only require us to take
sums and products of polynomial “scores”. It is thus natural to work in a still more
general class that we call Ring CSP, where each score function and the “value” of
an instance are given by element of an arbitrary ring R; PCSPs are a special case
where R is a polynomial ring.

2. OUTLINE

Following a small amount of notation in Section 3, Section 4 defines the classes
CSP, PCSP and RCSP. Section 5 provides examples of CSPs and related PCSPs;
because this includes many problems beyond CSP, such as graph bisection, the
Ising partition function, and judicious partitioning, it is a focal point of the paper.

In Sections 6-9, we show how four CSP algorithms extend to PCSP/RCSP, and
analyze them in terms of the number of ring operations (or sums and products of
polynomials in the case of PCSPs) that they require. In Section 10 we consider
the time and space complexity of the ring operations for PCSPs. We put the
two together in Section 11, summarizing the time and space complexity of each
algorithm, and noting the circumstances favoring one algorithm over another.

In addition to counting maximum CSP solutions, a PCSP’s partition function also
enables construction of an optimal solution, and various forms of perfect random
sampling from optimal solutions or all solutions; this is taken up in Section 12.

3. NOTATION

In the next section we will define the class of CSPs and our new class PCSP of
Polynomial CSPs. An instance of either has a “constraint graph” G = (V,E)
with vertex set V' and edge set E, and we reserve the symbols G, V and E for
these roles. An instance of CSP or PCSP also has a domain of wvalues or colors
that may be assigned to the vertices (variables), for example {true,false} for a
satisfiability problem, or a set of colors for a graph coloring problem. In general
we will denote this domain by [k], interpreted as {0,...,k — 1} or (it makes no
difference) {1,...,k}. At the heart of both the CSP and PCSP instance will be
cost or “score” terms s,(i) (for v € V(G), i € [k]) and s4y(4,7) (for xy € E(G),
i,7 € [k]).

For CSPs the scores s are real numbers, while for PCSPs they are polynomi-
als which we write in the variable z if univariate, or if multivariate over z,w or
Z, w1, Wa,.... Just as CSP scores s need not be positive integers, exponents in
the PCSP score “polynomials” may be fractional or negative (or both). (The term
“fractional polynomial” is used in the literature of statistical regression.)

We use W to indicate disjoint union, so Vo & V7 = V means that Vj and V; parti-
tion V, i.e., VoNV; = and VoUV; = V. The notation O* hides polynomial factors
in any parameters, so for example O(n2°5+19m/100) ig contained in O* (219m/100).

4. CSP, POLYNOMIAL CSP, AND RING CSP

41 CSP

Let us begin by defining the problem class CSP over a domain of size k. An
instance I of CSP with constraint graph G = (V, E) and domain [k] has the following

4 . Scott and Sorkin

ingredients:

(1) a real number sy;
(2) for each vertex v € V and color i € [k], a real number s, (¢);
(3) for each edge zy € E and any colors ¢, j € [k], a real number sg,(1, 7).

We shall refer to these quantities as, respectively, the nullary score, the vertex
scores, and the edge scores. Note that we want only one score for an edge {i,j}
with given colors {x,y} assigned its respective endpoints, S0 Sgy (i, 7) and s,;(J,%)
are taken to be equivalent names for the same score (or one may simply assume
that = < y).

Given an assignment (or coloring) o: V — [k], we define the score of o to be the
real number

L) :=sp+) su(0(v)) + D suy(o(@),a(y)).

veV ryck

The instance’s solution is the maximum possible score

max I(0) = max (sg + Z sy(o(v)) + Z Swy(0($)70(y))) (1)

o:V—[k] o:V—lk] ey oy

or the assignment ¢ achieving the maximum; it is straightforward to get either
from the other. For obvious reasons, (1) is commonly referred to as a maz—sum
formulation.

In this paper we take a generating-function approach, among other things en-
abling us to count the number of solutions satisfying various properties. Given an
instance I of CSP, the corresponding generating function is the polynomial

PR (2)

o:V—lk]

More generally, if we want to keep track of several quantities simultaneously, say
I(0),J(c),- -+, we can consider a multivariate generating function >°_ z/(@w’(?) ...
Calculating the generating function in the obvious way, by running through all &!V!
assignments, is clearly very slow, so it is desirable to have more efficient algorithms.

In working with generating functions, we borrow some notions from statistical
physics. We think of the score I(c) as a “Hamiltonian” measuring the “energy”
of a configuration o. Thus edge scores correspond to “pair interactions” between
adjacent sites, while vertex scores measure the effect of a “magnetic field”. (From
this perspective, the nullary score is just a constant that disappears after normal-
ization.) The generating function is then the “partition function” for this model.
(The partition function is often written in the form) _exp(—31(c)), where 3 is
known as the inverse temperature, but substituting z for e=? yields the partition
function in polynomial form.)

A crucial element of our approach is that the score I(o) can be broken up as a
sum of local interactions, and thus an expression such as z/(?) can be expressed as
a product of monomials corresponding to local interactions:

@) = g0 [@) T oevte@rot,
veV zyeE

Polynomial CSP : 5

In order to provide a framework for this approach, we introduce a generalized
version of constraint satisfaction where the scores are polynomials (in some set of
variables) instead of real numbers, and the score of an assignment is taken as a
product rather than a sum.

4.2 Polynomial CSP

An instance I of Polynomial CSP, with constraint graph G and domain [k], has the
following ingredients:
(1) a set of formal variables, and various polynomials over the reals in these vari-
ables:

(2) a polynomial pg;
(3) for each vertex v € V and color i € [k], a polynomial p,(7);
(4) for each edge xzy € E and pair of colors 4, j € [k], a polynomial py, (4, j).
We refer to these three types of polynomial as, respectively, the nullary polynomial,
the vertex polynomials, and the edge polynomials. (Reiterating from Section 3, we
use “polynomial” in a general sense, allowing negative and fractional powers.) We
want only one polynomial for a given edge with given colors on its endpoints, so
again we either take pg, (4, j) and py.(j,4) to be equivalent or simply assume that
xr<y.

Given an assignment o: V — [k], we define the score of o to be the polynomial

I(c) :==py- H pu(o(v)) - H pzy(a—(x)v a(y)). (3)
veV zyeE
We then define the partition function Z; of I by
Zi= Y 10 = S w [[o) I] punlo@)ot). @)
o: V—[k] o: V—[k] veV zy€eE

The partition function is the “solution” of a PCSP instance. In contrast with
the max—sum formulation of (1), (4) is referred to as a sum—product formulation.
The sense of the PCSP formulation will become clearer with examples in the next
section.

4.3 Ring CSP

The definition of I(c) in equation (3), and for the most part our analysis in later
sections, requires only addition and multiplication of scores. It therefore makes
sense to work in a still more general context where the score functions are elements
of an arbitrary ring. We define an instance I of RCSP over a ring R, with constraint
graph G and domain [k], to have the following ingredients:

(1) a ring element r¢;

(2) for each vertex v € V and color i € [k], a ring element 7, (%);

(3) for each edge zy € E and pair of colors 4, j € [k], a ring element 74, (7, 7).

The score of an assignment o: V — [k] is the ring element

I(U) =T H TU(O'(”U)) : H sz(U(IE),J(y)),

veV zyeE

6 . Scott and Sorkin

and the partition function Zy of I is
Zr= > I0).
o: V—lk]

Thus PCSPs are the special case of RCSPs where the ring R is a polynomial ring
over the reals.

5. EXAMPLES

In this section we show how some standard problems can be written as PCSPs.
First we show that for every CSP there is a naturally corresponding PCSP; then
we illustrate how various problems, including some that are not CSPs, can be
expressed as PCSPs. We will turn to algorithms in later sections, but for now bear
in mind that a PCSP over a constraint graph G can be solved about as efficiently
as a CSP over the same graph.

5.1 Generating function of a simple CSP

Any CSP can naturally be encoded as a PCSP by considering its generating func-
tion.

DEFINITION 1 GENERATING FUNCTION OF AN INSTANCE. Given an instance I
of CSP on a constraint graph G = (V, E) and variable domain [k], we can define a
corresponding instance I* of PCSP with the same graph and variable domain, and
polynomials

py = 2%
(weV,Vielk]) po(i)=z"®
(Vey € B, Vi,j € [K]) pay(i,j) = 2°9.
The connection between I and I* is given by the following simple observation.

LEMMA 2. Let I be an instance of CSP, and let I* be the corresponding PCSP
instance. Then the partition function Zp« is the generating function (2) for the
instance I.

PRrROOF. For any assignment o, we have

(o) =z][=@ [] #*+7

veV zyel
— ZS®+Z vev Sv ()+> zy€eE Szy (4,3)

= 1),
It therefore follows that the partition function

Zp =Y I'(o)=Y_2'®

is the generating function for the original constraint satisfaction problem. O

Similar results are easily seen to hold for generating functions in more than one
variable.

Polynomial CSP : 7

5.2 Max Cut and Max Dicut

Max Cut provides a simple illustration of Definition 1 and Lemma 2. Let us first
write Max Cut as a CSP (Example 1) and then construct the corresponding PCSP
(Example 2).

ExaMPLE 1 Max Cut CSP. Given a graph G = (V, E), set k = 2 and define
a CSP instance I by

sp=0
(MveV) $u(0) =5,(1) =0
(Vzy € E) S24(0,1) = 854(1,0) =1, 544(0,0) = 54,(1,1) =0.

With o~ 1(i) = {v: o(v) = i}, note that (Vo, V1) = (¢71(0),071(1)) is a partition
of V', and

I(o) = > 1=e(Vy, V1) (5)
zyel:
o(z)=0, o(y)=1
is the size of the cut induced by o. The corresponding PCSP instance is obtained
as in Definition 1.

ExaMPLE 2 Max Cut PCSP. Given a graph G = (V, E), set k = 2 and define
a PCSP instance I by

pp =1
(VweV) p(0)=p,(1)=1
(Vay € B) pay(0,1) = pay(1,0) =2, puy(0,0) = puy(1,1) = 1.

(In all such cases, a 1 on the right hand side may be thought of as 2°.)
By Lemma 2, the partition function Z; is therefore the generating function for
cuts:

Z[= ZQCizi, (6)

where ¢; is the number of cuts of size i, and the factor 2 appears because each cut
(Vo, V1) also appears as (V1,Vp). The size of a maximum cut is the degree of Zj,
and the number of maximum cuts is half the leading coefficient.

Note that the partition function (6) is the partition function of the Ising model
with no external field (see below for a definition). Thus we have recovered the
familiar fact that, up to a change of variables, the partition function of the Ising
model is the generating function for cuts.

We can also encode weighted instances of Max Cut with edge weights p: E — R
by modifying the third line of the definition above to

Pay(0,1) = pay(1,0) = 2P(@) Vay € E.
Similarly, we can encode weighted Max Dicut (maximum directed cut) by setting
pp=1
(Vv eV) P (0) = py(1) =1
(ny € E) pmy(ov 1) = Zp(acy) ; pzy(l,o) = Zp(ya:)) pzy(()?O) = pmy(la 1) =1,

8 . Scott and Sorkin

where p(zy) denotes the weight of the directed edge xy, and we define p(zy) = 0
if there is no such edge. Max k-Cut is encoded the same way, only with k-valued
variables in place of binary ones.

5.3 Graph Bisection

A slight generalization of the previous example allows us to handle graph bisection.
This is important because most CSP algorithms (other than dynamic programming)
can solve Max Cut, but cannot be applied to Max Bisection because there is no way
to force them to generate a balanced cut. A PCSP can do this by using a second
variable: z tracks the size of the cut, while w tracks the size of one side.

ExXAMPLE 3 CUT GENERATING FUNCTION PCSP. Given a graph G = (V,E),
set k =2 and define a PCSP instance I by

pp =1
(VU € V) pv(o) =1 s pv(l) =w
(Voy € E) pay(0,1) = pry(1,0) = 2, p2y(0,0) = pay(1,1) = 1.

By Lemma 2, the partition function Z; is a bivariate generating function for cuts:

Zr = Zciwszi, (7)

where ¢; is the number of cuts of size ¢ with s vertices in the “1” side of the cut.
This formulation simultaneously encodes Max Cut (the size of a maximum cut is
the largest power of z), Max Bisection (the largest power of z in a monomial with
wl/2]), Min Bisection (similarly), and Sparsest Cut (the smallest ratio of the power
of z to that of w in any monomial), and counting versions of all of these (simply
attending to the corresponding coefficients and adjusting for double-counting as
appropriate). Instances with vertex and/or edge weights can be modeled using
non-unit powers of w and z respectively. The fact that Max and Min Bisection can
be modeled as PCSPs has algorithmic implications.

5.4 The Ising model
The same PCSP also encodes the Ising model.

ExAMPLE 4 IsING CSP MODEL. The Ising model with edge weights J and ex-
ternal field h on a graph G is defined in terms of its Hamiltonian H. For an
assignment o: V. — {0,1}, we define

H(o)=1J Y d(o(x),0y) +hY_ o)
rycelE veV

Here §(a,b) is the delta function, returning 0 if @ = b, and 1 otherwise, J is
the interaction strength, and h is the external magnetic field. In analogy with (5),
taking V; = 0~ 1(i), we may rewrite H as

H(o) = Je(Vo, V1) + h|V4l.

Note that H is an instance of (plain) CSP.

Polynomial CSP : 9

The partition function of the Ising model at inverse temperature (3 is

ZISing = Ze_BH(”) = Z wIVI‘ZG(VO;VI)’ (8)
g VowVi=V

where we have written w = e P and z = ¢/, and the last sum is taken over
ordered pairs (Vp, V1) that partition V. With this change of variables, the Ising
partition function is given by Example 3.

More generally, the Potts model can be written in a similar way.

5.5 Max Independent Set and Max Clique
Maximum Independent Set (MIS) is easily expressed as a CSP:

ExamMPLE 5 MIS CSP.

Sp = 0
MveV) $,(0) =0, s,(1) =1
(Vzy € E) S24(0,0) = 854(0,1) = 55(1,0) =0, s4(1,1) = —2.

Maximum clique cannot be modeled in the same way, because the clique constraint
is enforced by non-edges, which are not an element of the model. (We use clique
in the sense of a complete subgraph, not the stronger definition as a mazimal
complete subgraph.) Of course a maximum clique in G corresponds to a maximum
independent set in its complement graph G, but for our purposes this can be very
different, as we typically parametrize running time in terms of the number of edges,
and a Max Clique instance on a sparse graph G with |E| edges becomes an MIS
instance on the dense graph G with (%) — |E| edges. We discuss this further in
Section 13. However, by introducing a second variable as we did for Max Bisection,
it is possible to model a Max Clique instance as a PCSP whose constraint graph is
the input graph G.

ExaMPLE 6 MAX CLIQUE PCSP.

sp=1
MveV) $,(0) =1, s,(1) =w
(Vay € E) 524(0,0) = 554(0,1) = 55,(1,0) =1, 55(1,1) = 2.

An assignment o has score I(0) = w!V112¢(GIv1) | the power of w counting the
number of vertices in the chosen set V; = o~1(1), and the power of z counting the
number of edges induced by that set. In the partition function, k-cliques corre-

spond to terms of the form wh2(5), Of course, independent sets of cardinality &
correspond to terms with w*z0: the PCSP simultaneously counts maximum cliques
and maximum independent sets (among other things).

The same approach also counts maximum-weight cliques and independent sets, in

a graph with vertex and/or edge weights p, if we introduce a third formal variable

1p(v) 1p(z,y)

w’ and set the scores as before except for s, (1) = ww and sgy(1,1) = zw .

k
Cliques are represented in terms w2 (2) ' , and maximum-weight cliques in such
terms with the largest power of w'.

10 . Scott and Sorkin

5.6 Judicious partitions

Similar techniques may be applied to various judicious partitioning problems [Bol-
lobés and Scott 1999; Scott 2005], such as finding a cut of a graph which minimizes
max{e(Vp),e(V1)}.

EXAMPLE 7 JUDICIOUS BIPARTITION PCSP.

sp=1
(Vv eV) $u(0) = s,(1) =1
(ny € E) smy(oa 1) = sxy(]-vo) =1, sacy(oao) =21, Smy(L 1) = z2.

A simple calculation shows that I(o) = zf(vo)zg(vl), where V; = o~ 1(i). Thus
the problem of minimizing max{e(V;),e(V1)} (or, for instance, the problem of max-
imizing min{e(Vp), e(V1)}) can be solved by examining the partition function.

We might further ask for a bisection that minimizes max{e(Vp), e(V1)}, and this
is easily achieved by introducing a third variable: we set s,(0) = w and examine
only terms of the partition function that have degree ||V|/2] in w.

5.7 Simultaneous assignments

We can think of the foregoing example, of finding a balanced bisection minimizing
max{e(Vp),e(V1)}, as a case of having more than one CSP on a single set of vari-
ables. In other examples, we might have two instances of Max Sat that we wish
to treat as a bi-criterion optimization problem; or a Max Sat instance to optimize
subject to satisfaction of a Sat instance; or we might wish to find a partition of a
vertex set yielding a large cut for two different graphs on the same vertices. All
such problems are now straightforward: use a variable z to encode one problem and

a variable w to encode the second. (Thus, the initial edge scores are of the form
Zﬁrstscorewsecondscore.)

5.8 H-coloring

The H-coloring of a graph G has received much recent attention, including the book
[Hell and Nesetfil 2004], the application to soft constraints in [Bulatov and Grohe
2005], and the application to asymmetric hard constraints in [Dyer et al. 2006]. H-
coloring can be encoded as a PCSP by giving every edge of G the same (symmetric)
score function. However, PCSP can also give a different (and asymmetric) score
function to each edge, and indeed this is an essential feature as it leaves the class
closed under various reductions.

6. SPLIT-AND-LIST, MATRIX-MULTIPLICATION ALGORITHM

The algorithmic approach introduced by Williams [Williams 2004], which he calls
“split and list”, is characterized by its use of fast matrix multiplication. For binary
2-CSPs it runs in time O* (2“’"/ 3), where w is the “matrix multiplication exponent”
such that two n x n matrices can be multiplied together in time O(n*). It also
requires exponential space, O(22*/3). The best known bound on the matrix mul-
tiplication constant is w < 2.37..., from the celebrated algorithm of Coppersmith
and Winograd [Coppersmith and Winograd 1990], which works over arbitrary rings.

Polynomial CSP : 11

Koivisto [Koivisto 2006b] extended Williams’ algorithm from CSP (with a max—
sum formulation) to counting-CSP (with sum—product formulation), and Koivisto’s
version transfers immediately to the PCSP and RCSP context. While the sum—
product formulation is common in statistical physics, Koivisto’s use of it appears
to be one of the few besides the present work in the field of exact algorithms. For
Williams’ algorithm, the sum—product formulation is not only more general but
also simpler.

6.1 Algorithm

We follow the algorithm of Koivisto [Koivisto 2006b]. Arbitrarily partition the
variables V into 3 equal-sized sets, A, B and C. Explicitly list every possible
assignment a: A — [k] of variables in A and similarly every assignment (§ for B
and ~ for C. Explicitly construct My, a k4! x k14! diagonal matrix with elements

MAA(O‘,O‘) = H pv(a(v)) : H pwy<a($)7 a(y))7

vEA zyc EN{AxA}

and likewise Mpp and Mge. Also explicitly construct Mg, a KAl x k1Bl matrix
with elements

MAB(a7ﬁ) = H pwy(a(x>7ﬁ(y))a
zyc EN{AxB}
and likewise Mpc and Mg 4. Finally, explicitly calculate

M = pyMaaMapMppMpcMccMca,

the multiplication by py being a scalar product and the others matrix products.
Triples (a, 8,7) are in one to one correspondence with assignments o: V +— [k], so
the terms of the trace of M,

tr(M) =3 " ppMaa(e,) Map(e, B)Mpp(B, 8)Mpc(8, 7)Mo (v, v) Mca(y,),
a B8 v

are in one to one correspondence with the terms of I(o), merely distinguishing
whether each monadic score is associated with A, B, or C, and each dyadic score
with A x A, A x B, etc. Thus, the partition function is the trace,

Zr = tI‘(M).

6.2 Complexity

Given that two n X n matrices over an arbitrary ring can be multiplied using O(n*)
ring operations, we have established the following result.

THEOREM 3. Let R be a ring and let G be a graph with n vertices. Let I be any
RCSP over R, with constraint graph G and domain [k]. Then the algorithm above
calculates the partition function Z; with O (k“’"/ 3) ring operations.

For PCSPs, as we discuss in Section 10, under modest conditions each ring op-
eration takes time O*(1), that is, time polynomial in the input size. In this case,
the algorithm will run in time and space O* (k“”/?’).

12 . Scott and Sorkin

6.3 A remark

This version of the algorithm is simpler than Williams’ because matrix multiplica-
tion provides exactly the sum-of-products that RCSP calls for, not the maximum-of-
sums needed for the usual 2-CSP. To get the latter, Williams combines the monadic
scores with the dyadic ones (this would correspond to incorporating M4 into
Map); “guesses” an optimal score s and how it is partitioned as s = sap+$pc+sca
among A x B, B x C, and C x A; defines zero-one matrices so that Myp(a,) =1
if the assignments o and § produce the desired value sap, and 0 otherwise; and
multiplies these binary matrices to find (and count) triangles, which correspond to
assignments (a, 8,7) yielding sag + spc + sca. Williams’ original algorithm must
iterate over all guesses, of which there are ©(m?) even for 0-1 score functions, while
no such guessing is involved in the sum—product version.

7. A REDUCTIVE ALGORITHM

The preponderance of algorithms for CSPs such as Max 2-Sat work by reduction:
they reduce an input instance to one or more “smaller” instances in such a way
that the solutions to the latter, found recursively, yield a solution to the former.
The fastest polynomial-space algorithm for general Max 2-CSP is the reductive
algorithm of [Scott and Sorkin 2007], running in time O* (k;lgm/ 100) for an instance
with m 2-variable constraints and domain [k]. While we will not describe that
paper’s “Algorithm B” in detail, if an instance I has (a constraint graph with) a
vertex of degree 0, 1, or 2, a Type 0, 1, or 2 reduction (respectively) replaces I with
an equivalent, smaller instance I’. Otherwise, a Type 3 reduction replaces I with
k smaller instances Iy, ..., I;_1, the largest of whose solutions is the solution to I.
If a Type 3 reduction results in a disconnected graph, the components are solved
separately and summed.

The algorithm extends to PCSP (and indeed RCSP), the key point being that the
Type 0, 1, 2, and 3 CSP reductions have PCSP (and RCSP) analogues. By working
with polynomials rather than real numbers we are able to carry substantially more
information: for instance, the old CSP reductions correspond to the new PCSP
reductions with the polynomials truncated to their leading terms.

7.1 Complexity

We exhibit the extended reductions below, where it will also be evident that each
can be performed using O(k?) ring operations. The extension of [Scott and Sorkin
2007]’s Algorithm B to RCSPs can then be seen to satisfy the following.

THEOREM 4. Let R be a ring and let G be a graph with n vertices and m edges.
Let I be any RCSP over R, with constraint graph G and domain [k]. Then the
extended Algorithm B calculates the partition function Zy in polynomial space and
with O* (k19m/100) ring operations.

7.2 The reductions

A Type 0 reduction expresses the partition function of an RCSP as a product of
partition functions of two smaller instances (or in an important special case, a single
such instance). Type 1 and 2 reductions each equate the generating function of an
instance to that of an instance with one vertex less. Finally, a Type 3 reduction

Polynomial CSP : 13

produces k instances, whose partition functions sum to the partition function of
the original instance. In each case, once the reduction is written down, verifying
its validity is just a matter of checking a straightforward identity.

A word of intuition, deriving from the earlier CSP reductions, may be help-
ful (though some readers may prefer to go straight to the equations). A CSP
2-reduction was performed on a vertex v of degree 2, with neighbors u and w. The
key observation was that in a maximization problem, the optimal assignment o (v)
is a function of the assignments o(u) and o(w). That is, given any assignments
o(u) =i and o(w) = j, the optimal total Sy, (i,7) of the scores of the vertex v,
the edges uv and vw, and the edge uw (if present, and otherwise taken to be the 0
score function) is

Suw (1, 1) = max { sy (1,) + suv (i,1) + 80(1) + svw(l,) }- (9)

By deleting v from the CSP instance and replacing the original score s,, with
the score §,,,, we obtain a smaller instance with the same maximum value. A 2-
reduction in the RCSP context works the same way, except that the max-of-sums
of (9) is replaced by the sum-of-products of (11).

Type 0 Reduction. Suppose [is an RCSP instance whose constraint graph G is
disconnected. Let V' = V5 U V4 be a nontrivial partition such that e(V4,V2) = 0.
Let I; and Is be the subinstances obtained by restriction to V; and Vs, except that
we define the nullary scores by

g =py Py = 1.

A straightforward calculation shows that, for any assignment o: V — [k], we have

I(c) = py - H pu(o(v)) - H pmy(a(x),o(y))

veV zycel

= v [[polo@)- I palol@)ow) | |1 I pole@))- I

veVy zy€E(G[V1]) veEVa zy€E(G[Va])
= -71(01)]2(02)7
where o; denotes the restriction of o to V;. It follows easily that
Zy=27Z1,71,.

Thus in order to calculate Z; it suffices to calculate Z;, and Z,.
When one component of G is an isolated vertex v, with V/ = V' \ v, one term
becomes trivial: Z; = (py - D ic(k] pu(i)) - Z1,. So in this case

Zr =73,
where I is the instance obtained from I by deleting v, defining
po(I) =py- Y _ puli)
i€ [k]

(a trivial calculation), and leaving all other scores unchanged. This reduces the
computation of the partition function of I to that of an instance one vertex smaller.

Pay(0(2),0(y))

14 . Scott and Sorkin

Type 1 Reduction. Suppose that I is an instance with constraint graph G,
and v € V has degree 1. Let w be the neighbor of v. We shall replace I by
an “equivalent” instance I (one with the same partition function) with constraint
graph G\ v.

We define the instance I by giving w vertex scores

k
Puw(i) = pw(i) (Pwo (i, 7) - pu(5))- (10)

|
—

.
Il
o

All other scores remain unchanged except for p, () and py., (*, *), which are deleted
along with v.

To show that Z; = Z3, let o: V \ v — [k] be any assignment and, for j € [k],
extend o to 07: V — [k] defined by ¢7(v) = j and o7y, = 0. Using (10), we have

[1 pelo@) I Fulol@).ow)

zeV\v zy€E(G\v)

k—1
=|po- J[welo@) JI 2elo(@)o@) |- |pulow) D puslow)
§=0

zeV\{v,w} zye E(G\v)
k—1
= Do Hpv Uj)) H pxy(g](l')7gj(y))
7=0 veV ryel
k—1
= I(o7)
j=0

and so

k—1
-y S
o:V\v—[k] =0
= > I
o:V\v—lk]

= 7.

~

Type 2 Reduction. Suppose that [is an instance with constraint graph G, and
v € V has degree 2. Let v and w be the neighbors of v in G. We define an instance
I with constraint graph G which will have fewer vertices and edges than G. G is
obtained from G by deleting v and adding an edge uw (if the edge is not already
present). By analogy with the plain CSP 2-reduction from [Scott and Sorkin 2007]
and recapitulated above around (9), we define I by setting, for 4,5 € [k],

k—1

ﬁuw(ivj) = puw(ivj) : Zpuv(iﬂ l)pv(l)pvw(lvj)7 (11)
=0

7.7) 'pv(j)

Polynomial CSP : 15

where we take pu.,(i,7) = 1 if edge uw was not previously present. All other scores
remain unchanged except for p, (), Pyu(*, *) and Py, (*, *), which are deleted.

To show that Z; = Z7, let 0: V' \v — [k] be any assignment. As before, we write
o' for the assignment with o'|y, = o and ¢'(v) = I. Then

o) =pp- [pelo(@)- [Puylo@) o))

zEV\v 2y€E(G)
k—1
=Po H pw(a(x)) : H pzy(O’(x), U(:‘/))) Zpuv(a(u)7 l)pv(l)pvw(lv U(w))
z€V\v zyeE(G\v) =0
k—1
=> oo [] p@'@)- [paylc'@).0'®)
=0 z€V\v zy€E(G\v)
k—1
=) I(dh)
=0

As with Type 1 reductions, this implies that Z; = Z7.

Type 3 Reduction. Suppose that I is an instance with constraint graph G, and
v € V has degree 3_or more. Let U be the set of neighbors of v in G. We define
k instances Iy,. .., I;_1 each with constraint graph G = G \ v. For i € [k], the ith
instance I; corresponds to the set of assignments where we take o(v) = 1.

We define nullary scores for I; by setting

]3(97:) =Py - po(i)

and, for each neighbor u € U of v, and each j € [k], vertex scores

(ﬁ“))u(]) = pu(]) : puv(ja Z)
All other scores remain unchanged from I except for p, (*) and p,.(*, *), which are
deleted along with v.

For any assignment : V' \v — [k], and i € [k] we write (as usual) o%: V — [k] for
the assignment with 0’|y, = ¢ and ¢*(v) = i. Then, writing W =V \ (v UT(v)),

Lo)y=po-] Belo@@)- [Beylo’(@).0'(y))

z€V\v ey€E(G\v)
= (popo®) - (T palo@)- IT [pulc@puot.i])- (T polo@)o))
zEW uelU TY€E(G\v)
=po [[pe(0'(@)) - [] pay(o’(@),0"(v))
zeV zyelE

= I(o").

16 . Scott and Sorkin

Then

Il
&
—

Q
~—

Thus the partition function for I is the sum of the partition functions for the E

We can also write down another reduction, generalizing the Type 0 reduction
above, although we will not employ it here.

Cut Reduction. Suppose that I is an instance with constraint graph G, and let
Vo C V be a vertex cut in G. Let Gy, ..., G, be the components of G\ V. We can
calculate Z; by dividing assignments into classes depending on their restriction to
Vo. Indeed, for each assignment og: Vo — [k], let us define

L=pp- [[poloo(®) [I = peyloo(@)o0(v)),

veVy zy€eE(G[Vo])
and r instances I7°, ..., I7° where I7° has score polynomials
pp=1
Yo Vo o (i) =pu(i) - J] puwloo(w),i)
weVy

\V/UUJEE[G\VE)] 5Uw(i7j):pUUJ(iaj)’

where we take pu.,(i,j) =1 if wv € E.
Then for any o: V — [k], we have

1(0) = Io(o|Vo) - [T 17" (01Vi)

=1

and so

Z]: Z IO(JO)HZ[fO-
i=1

o0:Vo—[k]
Thus the partition function Z; is the sum of V5| products: if |Vp| is small, this
provides an effective reduction to smaller cases. Note that this is what we have

Polynomial CSP : 17

done in the Type 2 reduction above, where we also use the fact that, for a cutset of
size two, the partition functions for the subinstance consisting of the single vertex
v can be encoded using constraints on its neighbors. Unfortunately, this is not in
general possible for larger cutsets.

8. AN ALGORITHM FOR SPARSE SEMI-RANDOM INSTANCES

An algorithm closely related to the CSP Algorithm B referenced above, and using
the same reductions, solves sparse boolean CSP instances in expected linear time
[Scott and Sorkin 2006b]. Specifically, for A = A(n) > 0 and a random graph
G(n,c/n) with ¢ < 1+ An~'/3 (below the giant-component threshold or in its so-
called scaling window), a boolean CSP instance I with constraint graph G is solved
in expected time O(n)exp(1 + \?).

8.1 Complexity

Because the reductions extend to RCSP, it follows the algorithm extends immedi-
ately to boolean RCSP instances on such a constraint graph.

THEOREM 5. Let A = A(n) > 0. Forc < 14+ An~'/3, let G € G(n,c/n) be a
random graph, and let I be any boolean RCSP over any ring R with constraint graph
G. Then the algorithm above calculates the partition function Z; with an expected
O(n) exp(1 + \3) ring operations.

9. DYNAMIC PROGRAMMING FOR GRAPHS OF SMALL TREEWIDTH

Roughly, a tree decomposition of a graph G = (V, E) consists of a tree T each
of whose vertices is associated with a “bag” B C V, such that every vertex of G
appears in some bag, every edge of G has both endpoints in some bag, and the set
of bags containing any given vertex v of G forms a subtree of T. The “width” of
a tree decomposition is one less than the cardinality of the largest bag, and the
treewidth of GG is the minimum width of any tree decomposition. For our purposes
we will assume that a tree decomposition is given, though for graphs of constant-
bounded treewidth, a minimum-treewidth decomposition can be found in linear
time [Robertson and Seymour 1995; Reed 1992; Bodlaender 1996].

Efficient algorithms for various sorts of constraint satisfaction and related prob-
lems on graphs of small treewidth have been studied since at least the mid-1980s,
with systematic approaches dating back at least to [Dechter and Pearl 1987; 1989;
Arnborg and Proskurowski 1989]. A special issue of Discrete Applied Mathematics
was devoted to this and related topics in 1994 [Arnborg et al. 1994], and the field
remains an extremely active area of research.

A recent series of results on treewidth is Monien and Preis’s proof that every
cubic graph with m edges has bisection width at most (1/6 + o(1))m [Monien and
Preis 2001], Fomin and Hgie’s use of this to show that the pathwidth of a cubic
graph is bounded by (1/6 + o(1))m [Fomin and Hgie 2006], and the use of this
to prove that any graph has treewidth at most (13/75 + o(1))m [Scott and Sorkin
2007; Kneis et al. 2009].

Focusing on two problems of particular interest to us, as a key part of an approx-
imation result of Jansen, Karpinski, Lingas and Seidel [Jansen et al. 2005], it was
shown that given a graph G and a tree decomposition 7' of width b — 1, an exact

18 . Scott and Sorkin

maximum (or minimum) bisection of G can be found in time and space O*(2"),
using dynamic programming on the tree decomposition. To find a maximum clique
in time O* (2”) is even easier, and may be done in polynomial space, using the
well-known fact that any clique of G is necessarily contained in a single bag of T'.

Here, we generalize these results for bisection and clique to the entire class RCSP.
While the extension is reasonably straightforward, the details are confusing enough
that it is valuable to have the general result available in this neatly packaged form,
and not have to apply the approach (or wonder if it can be applied) to a particular
problem.

9.1 Complexity

THEOREM 6. Let G be a graph with n vertices, m edges, and a tree decomposition
T of widthb—1. Let I be any RCSP instance over G. Given I and T, the partition
function Z; can be calculated in space O*(() k*~) and with O* (k®) ring operations.

We sketch the proof before detailing it. We express an assignment score as a
product of bag scores, fp for a bag B. In computing the partition function, we
reduce on any leaf bag B; of T and its parent Bs, in a way closely related to the
Type 1 reductions of Section 7: variables appearing only in B; can be “integrated
out” to yield a function f3 on a smaller set of variables. By the definition of a tree
decomposition, that smaller set is a subset of the variables of By, so we can absorb
[5, into fp, by defining fi = fp, - fp,. Deleting By from T', and forgetting fp,,
completes the reduction. We now present this more formally.

PRrROOF. We first show how to express the score of an assignment as a product
of bag scores. Let B be the collection of all bags. While a vertex is typically found
in several bags, associate each vertex v € V(G) with just one bag that contains
it; similarly, associate each edge e € E(G) with some bag containing both its
endpoints. For a bag B, let V(B) be the set of associated vertices and E(B) the set
of associated edges, so that WpepV (B) = V(G) and WpepE(B) = E(G). Define
each bag score as the product of its associated vertex and edge scores:

feels)= T polc@)- [peloc@), o). (12)
veEV(B) zy€E(B)

(Note that for an edge zy € E(B), the endpoints = and y need not be in V(B),
but they must be in B itself, and thus fg(c|p) is well defined, depending only on
assignments of vertices in B.) It is clear that for the original PCSP instance I,

ARES Z Py - H Po(o(v)) - H pxy(o'(x)aa(y))

o: V—[k] veV ryelE
= > -] fsels). (13)
o: V—lk] BeB

We begin the algorithm by explicitly computing each bag score. Each such com-
putation takes O(b*k*~1) ring operations (for a bag of size b — 1, each of the k*~1
assignments requires evaluating O(b) vertex scores and O(k?) edge scores), and the
resulting bag score function is explicitly represented as a table of size at most k?~ 1.

Polynomial CSP : 19

We now show a reduction that will preserve the form of (13), but with one bag
fewer. After reduction, the bag scores themselves will no longer depend simply on
vertex and edge scores as in (12), which is why we work with (13) instead.

Let B; be a leaf bag and By its parent. Let V' = Bj \ Bs. By the nature of a tree
decomposition, V' is the set of vertices found exclusively in By. Let V" =V \ V'.
Correspondingly, we will use ¢’ and ¢” for assignments from these sets to [k], and
(¢’,0") for a complete assignment from V to [k]. In the following rewriting of (13),
lines (15) and (16) are implicit definitions of the functions f; and f3, .

Zr= Y - II 7806"B) | - fea(olB.) - f5.(0l8,) (14)
o: V—[k] BeB\{B1,B2}
= > - [T 70"s) | - f(0"lB) - Y. fe(”.0)m)
o' V' —lk] BeB\{B1,B2} o' V'—k]

= > - II 780"I) | - fB.(0"18.) - [, (0" |BirB) (15)

ol VI [k] BeB\{B1,B2}

= > T 780"8) | f5,(0"|5,). (16)

o' VI [k BeB\{B1,B2}

This reduces the number of bags by one, as desired.
Note that the definition implicit in (15), that for any ¢”: V" — [k],

50" Binss) = Y. fei((0”,0))m,), (15)

ol V/I—[k]

is well defined because the right-hand side depends only on values of (¢, ¢’) on the
set B1 N By. Computing f]’31 adds nothing to the algorithm’s space requirement,
as the table for f; is smaller than and replaces that for fp,. The time required
is that for O(k!/P1!) ring operations, since for each of the klP17P2l assignments
(0”,0")| B,nB,, the right-hand side takes a summation over the k/51\B2| assignments
o' of V' with each function evaluation done by table lookup. (We remark that the
summation over assignments in (15") is why the bag scores cease to depend simply
on vertex and edge scores as in (12).)
Likewise, the definition implicit in (16), that for any ¢”: V" — [k],

fﬁ% (J//|Bz) = fB2 (U/I|BQ) : f]/31((0”)|31r132)7 (16/)

is well defined because the right-hand side depends only on values of (¢”,¢’) on the
set By. Computing fp again adds nothing to the algorithm’s space requirement,
as the table is the same size as that for fp , and takes O(k*~1) ring operations.
In going from (14) to (16) we reduced the decomposition tree size by one, using
O(k’~1) ring operations. In the process we did not increase the size of any bag
(specifically, Bs did not acquire any new variables from the deleted By), and thus
this same time bound applies throughout the algorithm. We conclude that alto-
gether the algorithm takes space O* (k"~!) and uses O* (k*~!) ring operations. [J

20 . Scott and Sorkin

10. CONTROLLING THE RING-OPERATION COMPLEXITY

In this section, we restrict to Polynomial CSPs, and consider the complexity of
performing the ring operations in our algorithms. In general, PCSP instances can be
intractable. For example, consider a boolean ([k] = {0,1}) PCSP instance I where
all dyadic scores are 1, and the monadic scores are p,(0) = 1, p,(1) = 2P, with
mutually incommensurable real values p,,. Then each of the 2™ variable assignments
corresponds to a different monomial in the partition function Z(I). Since the output
is of size ©(2"), there is no hope of a time- or space-efficient algorithm.

However, some modest restrictions suffice to control the size of the elements of
the polynomial ring with which we are working (including the output itself), and
thus the time and space efficiency of the various algorithms.

10.1 Polynomially bounded instances

The simplest well-behaved case is when an instance is over a single variable, and all
score polynomials are of low degree, with small coefficients. This is easily formalized
and generalized.

DEFINITION 7 POLYNOMIALLY BOUNDED. A family F of instances of PCSP is
polynomially bounded if for an instance I € F having n variables and m clauses,
with respect to m + n:

—the number of formal variables is O(1),
—all powers are integers with absolute value O*(1), and

—coefficients are integers of length O*(1), or sums and products of coefficients are
deemed to be elementary operations.

For convenience we will speak of “a polynomially bounded instance”.

LEMMA 8. In any of the four algorithms described, over a fized domain [k], solv-
ing a polynomially bounded instance I with n variables and m clauses, each ring
operation can be performed in time and space O*(1).

PROOF. Say that there are ¢ variables, each with maximum degree A. As a sum
of products, the partition function itself has maximum degree (in each variable)
at most (m + n + 1)A. This is also true of any polynomial that arises in the
course of the computation. This can be verified directly by looking at the details
of each algorithm. Alternatively, note that the algorithms compute “obliviously”
on the polynomials (the operations performed depend on the constraint graph but
not on the polynomials), the algorithms never subtract, and thus if on any input
an algorithm ever produced terms of higher degree than the degree bound on the
partition function, it would certainly do so when each input score polynomial is
1+ 24 -+ 22 (or the equivalent multivariate polynomial), and (in the absence
of any negative coefficients) such terms would survive to appear in the partition
function, a contradiction.

Since each intermediate polynomial has maximum degree at most (m +n+1)A,
it has at most ((m +n + 1)A)¢® = O*(1) terms, and two such polynomials can be
multiplied with O*(1) integer operations.

If we wish to further break down the time as a function of the lengths of the integer
coefficients, each arises as a sum of at most k™*"*! products of at most m +n+ 1

Polynomial CSP : 21

input coefficients, and therefore has length at most (m+n+1)logk-(m+n+1) =
O*(1) times that of the longest input coefficient. Thus, adding and multiplying
coefficients can also be done in time O*(1). O

10.2 Pruned instances

An alternative for a PCSP in a single variable z and with positive coefficients is
to allow arbitrary (real) powers in the score polynomials, but to avoid the blowup
in our motivating example by demanding not the full partition function but just
its leading term (the one with the highest power of z). We now generalize this
approach to multivariate polynomials with one distinguished variable z.

DEFINITION 9 2-PRUNABLE. An instance of PCSP with n variables and m clauses
(more precisely a family of instances) is z-prunable if, with respect to m + n:

—the number of formal variables is O(1),
—z may have arbitrary real powers,

—the remaining variables wi,ws, ... have integer powers with absolute value no
more than O*(1), and

—coefficients are nonnegative integers of length O*(1), or coefficients are nonneg-
ative reals and sums and products of coefficients are deemed to be elementary
operations,

where the O(+) notation is with respect to m + n.

Note that a PCSP arising as the generating function of a CSP (see Section 5.1) is
always z-prunable: there is just a single formal variable z, and all coefficients are 1.

Pruned polynomial. Given a polynomial p in one variable z, we define the pruned
polynomial (p), to be the polynomial obtained by removing all but the leading term.
If p is a polynomial in variables z,wq,wa, ..., we obtain (p), by throwing away all
terms T such that there is a term of the form cT'z?, where ¢ > 0 is real, and i > 0.
For instance,

(222 + 32 + 700 + zwq + 22wy + zwq + zlowlwg)z =222 + 22w + 2wy + 2wy ws.

Pruning a partition function often preserves all the information of interest. Con-
sider for example a PCSP [arising from a simple maximization CSP, say weighted
Max Cut. In the partition function Zj, the leading term’s power is the weight
of a largest cut, and its coefficient the number of such cuts. (For this informal
discussion, we will simply multiply-count cuts that are symmetric to one another.)
With real edge weights, Z; can have exponentially many terms, but the weight of
a largest cut, and the number of such cuts, is preserved in the pruned partition
function (Zy),, which consists solely of that leading term.

More generally, consider a CSP where we wish to maximize one (real-valued)
parameter for one or more values of several other (integer-valued) parameters. For
example, the maximum bisection of an edge-weighted graph means maximizing the
weight of cut edges, when the number of vertices in one side of the partition is
held to n/2. Terms in the partition function Z; of the corresponding bivariate
PCSP have real powers of the edge-weighing variable z, and integral powers of
the variable w that counts vertices in partition 1. Again (by definition) pruning

22 . Scott and Sorkin

to (Z1), preserves the maximum power of z and the corresponding coefficient for
any fixed power of w, so from (Z;), we may read off the weight of a maximum
bisection and the number of such bisections, and indeed the weight and cardinality
of maximum cuts of any specified sizes (say with exactly n/3 vertices in one side of
the partition).

Pruning in the algorithms. The key point about pruning is that for polynomials
p and ¢ (in any set of variables) if coefficients are nonnegative then (p + ¢), =
(pz + qz)z and (pq)z = ((p)z(q)z)z

With either of the reductive algorithms described, the pruned partition function
can be obtained efficiently, first pruning the input instance, then pruning as we
go. (Correctness of this can be seen inductively, working backwards from the last
reduction.) It is a trivial observation that for each reduction R (of Type 0-3), and
any instance I, (R(I)), = (R(I.)).. In particular, if we perform a full sequence of
reductions and z-prune at every stage, we will end up with (Z),.

Pruning can also be done for tree decomposition-based dynamic-programming
algorithms. Referring to the proof of Theorem 6, we simply note that the pruned
partition function can be obtained from pruned versions of fp,, f5 , fB,, and f .

This establishes the following lemma.

LEMMA 10. Given a z-prunable PCSP instance I with n variables and m clauses
over a fized domain [k], the pruned partition function can be calculated by the
reductive or dynamic programming algorithms (see Theorems 4, 5, and 6) with
each ring operation taking time and space O*(1).

It is not likely that the PCSP extension of Williams’ algorithm can accommo-
date real-valued powers, even with pruning. One problem is the use of fast matrix
multiplication as a “black box”: it is unlikely that we can prune within the multi-
plication algorithm. Another piece of evidence against being able to accommodate
real-valued PCSP powers is that in the CSP setting, Williams was unable to ac-
commodate real-valued scores (the analogue of the PCSP’s powers), and a solution
for PCSP would imply one for CSP. Williams noted that one could work around
real-valued scores by approximation methods, for example multiplying all scores by
a large constant and then replacing each with the nearest integer, and this can also
be done in the PCSP setting.

11. SUMMARY OF PCSP ALGORITHMIC RESULTS

Combining the results in Sections 6-9, phrased in terms of the number of ring
operations, with the bounds in Section 10 on the complexity of these operations for
PCSPs, gives the following general conclusions. Some applications are presented in
Section 13.

THEOREM 11. The PCSP extension of Williams split-and-list algorithm [Williams
2004] solves any polynomially bounded PCSP instance with n variables over domain
[k] in time and space O* (k:“’”/?’), where w is the matriz-multiplication exponent for
the ring of polynomials over reals.

Parametrizing by vertices, this exponential-space algorithm is the only known al-
gorithm faster than O* (k™) for PCSP, just as it is for CSP. In particular, it is the
only known algorithm efficient for dense general PCSP instances.

Polynomial CSP : 23

THEOREM 12. The PCSP extension of of Scott and Sorkin’s reductive algorithm
[Scott and Sorkin 2007] solves any polynomially bounded PCSP instance (or finds
the pruned partition function of any prunable PCSP instance) with n variables, m
clauses, and over domain [k], in time O* (klgm/loo) and space O*(1).

This algorithm is suitable for sparse instances (if m > (100/19)n then the naive
O(k™) algorithm is better). It is not as fast as dynamic programming (see Theo-
rem 14), but unlike that and Williams’ algorithm it runs in polynomial space, and
is potentially practical.

THEOREM 13. When G = G(n,c/n) is an Erddés-Rényi random graph with ¢ <
1+ An~Y3 an extension of Scott and Sorkin’s expected-linear-time CSP algorithm
[Scott and Sorkin 2006b] solves any boolean PCSP instance with constraint graph
G in expected time O*(1)exp(1 + \3) and in space O*(1).

This polynomial-space, polynomial-expected-time algorithm is of course the most
efficient for sparse semi-random instances (below the giant-component threshold or
in its scaling window).

THEOREM 14. Tree decomposition-based dynamic programming can solve any
polynomially bounded PCSP instance (or find the pruned partition function of any
prunable PCSP instance) with n variables, m clauses, over domain [k], and having
treewidth b— 1, in time and space O* (k®) or (since b—1 < (13/75+ o(1))m, from
[Scott and Sorkin 2007; Kneis et al. 2009]) time and space O* (k(13/75+o(1)m)

This exponential-space algorithm is suitable for instances of small treewidth,
including sparse instances with m < (75/13)n.

12. CONSTRUCTING AND SAMPLING SOLUTIONS

Wherever we can compute a CSP’s maximum value, we can also produce a corre-
sponding assignment; and wherever we can count assignments producing a given
value, we can also do exact random sampling from these assignments. The method
is standard, and we illustrate with sampling. We construct our assignment one
variable at a time, starting from the empty assignment. Given a partial assignment
oo: Vo — [K], and a vertex v & I, we calculate the partition functions

ZI;Ug(i) = Z I(U)a (17)
o: olvy=00, o(v)=i

and use these to determine the conditional distribution of o(v) given that o|;, = oo.
This enables us to sample from a variety of distributions. For instance, we get
the following result.

THEOREM 15. Let G be a graph with m edges. Then in time O* (219m/100) and
space O*(1) we can sample uniformly at random from the following distributions:
—mazimum cuts, mazrimum bisections, minimum bisections
—mazximum independent sets, cliques of mazimal size
—independent sets of any fizved size, cliques of any fized size.

In the same time, we can sample from the equilibrium (Gibbs) distribution of the
Ising model with any fixed interaction strength and external magnetic field.

24 . Scott and Sorkin

A similar result holds for edge- and/or vertex-weighted graphs, except that we
sample at random only from optimal assignments. Many other problems can be ex-
pressed in this framework. For example, we can count and sample proper k-colorings
in time O* (k‘lgm/loo) and space O*(1), or in time and space O* (k: 13/75+o(1))m)

If we wish to exhibit just one optimal assignment deterministically, we can do
so by a small modification of the sampling approach above: at each step, assign
the next vertex v the smallest ¢ such that o((i) can be extended to an optimal
assignment (this can be read off from Z;,,(;) given by (17)).

13. APPLICATIONS AND CONCLUSIONS

The PCSP / RCSP framework encompasses many problems that are not in CSP,
yet can be solved by extensions of any general CSP algorithm we know of, with
essentially equal efficiency. For several problems, this yields the best algorithms
known.

13.1 Graph bisection

Jansen, Karpinski, Lingas and Seidel [Jansen et al. 2005] showed how to use dynamic
programming based on tree decomposition to find a maximum or minimum bisection
of a graph. Combined with the bounds from [Scott and Sorkin 2007; Kneis et al.
2009] on the treewidth of a graph with m edges, this gave an algorithm with a time
and space bound of O* (2(13/75+°(1))m).

Until now, no polynomial-space algorithm was known for this problem other
than the naive enumeration running in time O*(2"). Once bisection is phrased as a
PCSP, our results (Theorem 12) immediately imply that in time O* (219m/100) and
polynomial space, we can solve maximum and minimum bisection, count maximum
and minimum bisections, and indeed count bisections of all sizes. We can do this
also in weighted bisection models, as long as they are polynomially bounded or
z-prunable. Our results (Theorem 11) also mean that dense instances of bisection
can be solved by Williams’ algorithm, in time and space O* (2“’”/ 3), again yielding
the full generating function of cuts.

13.2 Cliques and Independent Sets

Maximum Independent Set is in Max 2-CSP and has been studied extensively, but,
surprisingly, PCSP offers an advantage for some MIS variants. For simple MIS,
for any graph with average vertex degree d, all four of our general-purpose PCSP
algorithms are dominated either by [Bourgeois et al. 2008] (for average degree < 3,
time O* (20-1331™)) or by [Fomin et al. 2006] (time O* (20-288") otherwise). However,
for weighted MIS, counting MIS, or weighted counting MIS, the fastest algorithm
we are aware of is the vertex-parametrized O*(293299") algorithm of Fiirer and
Kasiviswanathan [Fiirer and Kasiviswanathan 2005], based on an improved analysis
of an algorithm of Dahll6f, Jonsson, and Wahlstrom [Dahlléf et al. 2005]. For
any of these problems the O* (219m/ 100) reductive algorithm of Theorem 12 is the
fastest polynomial-space algorithm known if the average degree is below about 3.46,
and the O* (2(13/ 75+0(1))m) exponential-space dynamic-programming algorithm of
Theorem 14 the fastest algorithm known if the average degree is below about 3.79.

We noted earlier that Maximum Clique is not in the class 2-CSP, because con-
straints are given by non-edges, not edges, but that it is in the class PCSP. This

Polynomial CSP : 25

is nice, but does not currently offer any algorithmic advantage. If G has average
degree d = o(n), the following simple algorithm has running time O* (20(”))7 dom-
inating all other algorithms under consideration here. For any k of our choosing,
any clique either is contained in the < n/k-order subgraph induced by vertices of
degree > kd, which is checkable in time O* (2”/ k), or contains a vertex of degree
< kd, which is checkable in time O* (2"“1). Taking k = /n/d gives running time
o~ (2m>. If on the other hand d is not o(n) then certainly d = w(1). This rules

out edge-parametrized algorithms, leaving us only Williams’ algorithm, which is
less efficient than applying a vertex-parametrized MIS algorithm such as that of
[Fiirer and Kasiviswanathan 2005] to the complement graph G.

13.3 Ising partition function

The Ising partition function, a canonical object in statistical physics, is a PCSP,
and can be solved by any of the algorithms presented here. We know of no other
algorithm to find the partition function other than naive enumeration over all 2"
configurations.

13.4 Potts and other g-state models

The Potts (g-coloring) partition function can trivially be evaluated in time O*(¢"),
but it is by no means obvious that one can remove the dependence on ¢q. A break-
through result of Bjorklund, Husfeldt, Kaski, and Koivisto [Bjorklund et al. 2008]
(see also [Bjorklund and Husfeldt 2006; Koivisto 2006a; Bjorklund et al. ; Bjorklund
et al. 2007; Bjorklund and Husfeldt 2008]) shows how to evaluate the Potts partition
function (and therefore by the Fortuin-Kasteleyn identity also the Tutte polyno-
mial) using the Inclusion—Exclusion method, in time O*(2") in exponential space,
or time O*(3") in polynomial space.

Our PCSP model includes the Potts model and more general models where the
“energy” is not simply a function of equality or inequality of neighboring colors. Our
algorithms unfortunately do have have exponential dependence on ¢, but with the
greater generality of PCSP this may be unavoidable: as noted in [Bjorklund et al.
2008], Traxler [Traxler 2008] shows that if the g-state Potts model is generalized
even to 2-CSPs on variables with ¢ states, exponential dependence on g cannot be
avoided, at least in the vertex-parametrized case, assuming the Exponential Time
Hypothesis.

13.5 Conclusions

As we have shown, the PCSP formulation is clean and offers quantifiable advan-
tages for several important problems. However, the greatest benefit is its broad
applicability. For example, exponential time algorithms have not previously been
considered for problems such as judicious partitioning, and for virtually any form of
this problem such algorithms now follow instantly from its membership in PCSP.
Moreover, when solving optimization problems coded into PCSP form, we auto-
matically get solutions to the corresponding counting problems.

Finally, we note that algebraic formulations appear to be playing a newly impor-
tant role in the development of exponential-time algorithms for CSPs and related
problems. Our work along these lines began with [Scott and Sorkin 2006a], and

26 . Scott and Sorkin

we have already discussed Koivisto’s sum-of-products variation on Williams’ split-
and-list algorithm [Koivisto 2006b]. The methods leading to the O*(2") Tutte
polynomial computation [Bjoérklund et al. 2008] work in a fairly general algebraic
setting, and a new algorithm of Williams [Williams 2008] that finds a k-path in an
order-n graph in time O* (2’“) works in an algebra carefully chosen for properties
including making walks other than simple paths cancel themselves out. PCSPs
should be considered one piece of this new algebraic toolkit.

REFERENCES

ARNBORG, S., HEDETNIEMI, S., AND (EDS.), A. P. 1994. Discrete Applied Mathematics 54, 2-3.
special issue.

ARNBORG, S. AND PROSKUROWSKI, A. 1989. Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23, 1, 11-24.

BJORKLUND, A. AND HUSFELDT, T. 2006. Inclusion-exclusion algorithms for counting set par-
titions. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science
(FOCS 2006). 575-582.

BJORKLUND, A. AND HUSFELDT, T. 2008. Exact algorithms for exact satisfiability and number of
perfect matchings. Algorithmica 52, 2, 226-249.

BJORKLUND, A., HUSFELDT, T., Kaski, P., AND KorvisTo, M. 2007. Fourier meets Mobius:
fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC 2007). ACM, New York, 67-74.

BJORKLUND, A., HUSFELDT, T., Kaski, P.; AND KorvisTo, M. 2008. Computing the Tutte polyno-
mial in vertex-exponential time. In Proceedings of the 49th IEEE Symposium on Foundations
of Computer Science (FOCS 2008).

BJORKLUND, A., HUSFELDT, T., AND KOIvISTO, M. Set partitioning via inclusion-exclusion. STAM
Journal on Computing. special issue dedicated to selected papers from FOCS 2006, to appear.

BODLAENDER, H. L. 1996. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 6, 1305-1317.

BoLLOBAS, B. AND ScoTT, A. D. 1999. Exact bounds for judicious partitions of graphs. Combi-
natorica 19, 4, 473-486.

Bourceois, N., ESCOFFIER, B., AND PascHos, V. T. 2008. An O*(1.0977™) exact algorithm for
max independent set in sparse graphs. In JWPEC, M. Grohe and R. Niedermeier, Eds. Lecture
Notes in Computer Science, vol. 5018. Springer, 55-65.

BuraTov, A. AND GROHE, M. 2005. The complexity of partition functions. Theoret. Comput.
Sci. 348, 2-3, 148-186.

COPPERSMITH, D. AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressions. J.
Symbolic Comput. 9, 3, 251-280.

DAHLLOF, V., JONSSON, P., AND WAHLSTROM, M. 2005. Counting models for 2SAT and 3SAT
formulae. Theoret. Comput. Sci. 332, 1-3, 265—291.

DECHTER, R. AND PEARL, J. 1987. Network-based heuristics for constraint-satisfaction problems.
Artif. Intell. 34, 1, 1-38.

DECHTER, R. AND PEARL, J. 1989. Tree clustering for constraint networks (research note). Artif.
Intell. 38, 3, 353-366.

DyER, M. E., GOLDBERG, L. A.; AND PATERSON, M. 2006. On counting homomorphisms to
directed acyclic graphs. In ICALP (1). 38-49.

FomiN, F. V., GRANDONI, F., AND KRATSCH, D. 2006. Measure and conquer: a simple O(20-2887)
independent set algorithm. In Proceedings of the 17th annual ACM-SIAM symposium on
Discrete Algorithms (SODA 2006). ACM, New York, NY, USA, 18-25.

FomMmin, F. V. AND Hgig, K. 2006. Pathwidth of cubic graphs and exact algorithms. Inform.
Process. Lett. 97, 5, 191-196.

FURER, M. AND KASIVISWANATHAN, S. P. 2005. Algorithms for counting 2-SAT solutions and col-
orings with applications. Tech. Rep. 33, Electronic Colloquium on Computational Complexity.

Polynomial CSP : 27

HEeLL, P. AND NESETRIL, J. 2004. Graphs and homomorphisms. Oxford Lecture Series in Mathe-
matics and its Applications, vol. 28. Oxford University Press, Oxford.

JANSEN, K., KARPINSKI, M., LINGAS, A., AND SEIDEL, E. 2005. Polynomial time approximation
schemes for max-bisection on planar and geometric graphs. SIAM J. Comput. 35, 1, 110-119
(electronic).

KNEIS, J., MOLLE, D., RICHTER, S., AND ROSSMANITH, P. 2009. A bound on the pathwidth of
sparse graphs with applications to exact algorithms. In SIAM J. Discrete Math. Vol. 23. STAM,
407-427.

Ko1visTo, M. 2006a. An O*(2™) algorithm for graph colouring and other partitioning problems via
inclusion-exclusion. In Proceedings of the 47th IEEE Symposium on Foundations of Computer
Science (FOCS 2006). 583-590.

Korvisto, M. 2006b. Optimal 2-constraint satisfaction via sum-product algorithms. Inform.
Process. Lett. 98, 1, 24-28.

MOoONIEN, B. AND PREIS, R. 2001. Upper bounds on the bisection width of 3- and 4-regular graphs.
In Mathematical foundations of computer science, 2001 (Maridnské Ldzné). Lecture Notes in
Comput. Sci., vol. 2136. Springer, Berlin, 524-536.

REED, B. A. 1992. Finding approximate separators and computing tree width quickly. In STOC.
ACM, 221-228.

ROBERTSON, N. AND SEYMOUR, P. D. 1995. Graph minors XIII: The disjoint path problem. J.
Combinatorial Theory (Series B) 63, 65-110.

ScoTT, A. D. 2005. Judicious partitions and related problems. In Surveys in combinatorics 2005.
London Math. Soc. Lecture Note Ser., vol. 327. Cambridge Univ. Press, Cambridge, 95-117.
ScorT, A. D. AND SORKIN, G. B. 2006a. Generalized constraint satisfaction problems. Tech.

Rep. cs:DM/0604079v1, arxiv.org. Apr. See http://arxiv.org/abs/cs.DM/0604079.

ScoTT, A. D. AND SORKIN, G. B. 2006b. Solving sparse random instances of Max Cut and Max
2-CSP in linear expected time. Comb. Probab. Comput. 15, 1-2, 281-315.

ScotT, A. D. AND SORKIN, G. B. 2007. Linear-programming design and analysis of fast algorithms
for Max 2-CSP. Discrete Optim. 4, 3-4, 260—287.

TRAXLER, P. 2008. The time complexity of constraint satisfaction. In Proceedings of the 3rd
International Workshop on Parameterized and Ezact Computation (IWPEC 2008). Lecture
Notes in Computer Science, vol. 5018. Springer, 190-201.

WIiLLIAMS, R. 2004. A new algorithm for optimal constraint satisfaction and its implications. In
Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP).
WiLLiAMS, R. 2008. Finding paths of length k in O*(2F) time. Tech. Rep. cs.DS/0807.3026v3,

arxiv.org. Nov. See http://arxiv.org/abs/cs.DM/0604080.

