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Abstract. A colouring of a hypergraph’s vertices is polychromatic if ev-
ery hyperedge contains at least one vertex of each colour; the polychro-
matic number is the maximum number of colours in such a colouring.
Its dual, the cover-decomposition number, is the maximum number of
disjoint hyperedge-covers. In geometric settings, there is extensive work
on lower-bounding these numbers in terms of their trivial upper bounds
(minimum hyperedge size & degree). Our goal is to get good lower bounds
in natural hypergraph families not arising from geometry. We obtain al-
gorithms yielding near-tight bounds for three hypergraph families: those
with bounded hyperedge size, those representing paths in trees, and those
with bounded VC-dimension. To do this, we link cover-decomposition to
iterated relaxation of linear programs via discrepancy theory.

1 Introduction

In a set system on vertex set V , a subsystem is a set cover if each vertex of
V appears in at least 1 set of the subsystem. Suppose each vertex appears in
at least δ sets of the set system, for some large δ; does it follow that we can
partition the system into 2 subsystems, such that each subsystem is a set cover?

Many natural families of set systems admit a universal constant δ for which
this question has an affirmative answer. Such families are typically called cover-
decomposable. But the family of all set systems is not cover-decomposable, as
the following example shows. For any positive integer k, consider a set system
which has 2k− 1 sets, and where every subfamily of k sets contain one mutually
common vertex not contained by the other k − 1 sets. This system satisfies the
hypothesis of the question for k = δ. But it has no set cover consisting of ≤ k−1
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sets, and it has only 2k − 1 sets in total; so no partition into two set covers is
possible. This example above shows that some sort of restriction on the family
is necessary to ensure cover-decomposability.

One positive example of cover-decomposition arises if every set has size 2:
such hypergraphs are simply graphs. They are cover-decomposable with δ = 3:
any graph with minimum degree 3 can have its edges partitioned into two edge
covers. More generally, Gupta [1] showed (also [2,3]) that we can partition the
edges of any multigraph into b 3δ+1

4 c edge covers. This bound is tight, even for
3-vertex multigraphs.

Set systems in many geometric settings have been studied with respect to
cover-decomposability; many positive and negative examples are known and
there is no easy way to distinguish one from the other. In the affirmative case,
as with Gupta’s theorem, the next natural problem is to find for each t ≥ 2 the
smallest δ(t) such that when each vertex appears in at least δ(t) sets, a partition
into t set covers is possible. The goal of this paper is to extend the study of
cover-decomposition beyond geometric settings. A novel property of our studies
is that we use iterated linear programming to find cover-decompositions.

1.1 Terminology and Notation

A hypergraph H = (V, E) consists of a ground set V of vertices, together with
a collection E of hyperedges, where each hyperedge E ∈ E is a subset of V .
Hypergraphs are the same as set systems. We will sometimes call hyperedges
just edges or sets. We permit E to contain multiple copies of the same hyperedge
(e.g. to allow us to define “duals” and “shrinking” later), and we also allow
hyperedges of cardinality 0 or 1. We only consider hypergraphs that are finite.
(In many geometric cases, infinite versions of the problem can be reduced to finite
ones, e.g. [4]; see also [5] for work on infinite versions of cover-decomposability.)

To shrink a hyperedge E in a hypergraph means to replace it with some
E′ ⊆ E. This operation is useful in several places.

A polychromatic k-colouring of a hypergraph is a function from V to a set
of k colours so that for every edge, its image contains all colours. (Equivalently,
the colour classes partition V into sets which each meet every edge, so-called
vertex covers/transversals.) The maximum number of colours in a polychromatic
colouring of H is called its polychromatic number, which we denote by p(H).

A cover k-decomposition of a hypergraph is a partition of E into k subfamilies
E =

⊎k
i=1{Ei} such that each

⋃
E∈Ei E = V . In other words, each Ei must be

a set cover. The maximum k for which the hypergraph H admits a cover k-
decomposition is called its cover-decomposition number, which we denote by
p′(H).

The dual H∗ of a hypergraph H is another hypergraph such that the vertex
set of H∗ corresponds to the edge set of H, and vice-versa, with incidences
preserved. Thus the vertex-edge incidence matrices for H and H∗ are transposes
of one another. E.g., the standard notation for the example in the introduction

is
(
[2k−1]
k

)∗
. From the definitions it is easy to see that the polychromatic and
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cover-decomposition numbers are dual to one another,

p′(H) = p(H∗).

The degree of a vertex v in a hypergraph is the number of hyperedges con-
taining v; it is d-regular if all vertices have degree d. We denote the minimum
degree by δ, and the maximum degree by ∆. We denote the minimum size of
any hyperedge by r, and the maximum size of any hyperedge by R. Note that
∆(H) = R(H∗) and δ(H) = r(H∗). It is trivial to see that p ≤ r in any hy-
pergraph and dually that p′ ≤ δ. So the cover-decomposability question asks
if there is a converse to this trivial bound: if δ is large enough, does p′ also
grow? To write this concisely, for a family F of hypergraphs, let its extremal
cover-decomposition function p′(F , δ) be

p′(F , δ) := min{p′(H) | H ∈ F ; ∀v ∈ V (H) : degree(v) ≥ δ},

i.e. p′(F , δ) is the best possible lower bound for p′ among hypergraphs in F with
min-degree ≥ δ. So to say that F is cover-decomposable means that p′(F , δ) > 1
for some constant δ. We also dually define

p(F , r) := min{p(H) | H ∈ F ; ∀E ∈ E(H) : |E| ≥ r}.

In the rest of the paper we focus on computing these functions. When the family
F is clear from context, we write p′(δ) for p′(F , δ) and p(r) for p(F , r).

1.2 Results

In Section 2 we generalize Gupta’s theorem to hypergraphs of bounded edge size.
Let Hyp(R) denote the family of hypergraphs with all edges of size at most R.

Theorem 1. For all R, δ we have p′(Hyp(R), δ) ≥ max{1, δ/(lnR+O(ln lnR))}.

In proving Theorem 1, we first give a simple proof which is weaker by a constant
factor, and then we refine the analysis. We use the Lovász Local Lemma (LLL)
as well as discrepancy-theoretic results which permit us to partition a large
hypergraph into two pieces with roughly-equal degrees. Next we show that
Theorem 1 is essentially tight:

Theorem 2. (a) For a constant C and all R ≥ 2, δ ≥ 1 we have p′(Hyp(R), δ) ≤
max{1, Cδ/ lnR}. (b) For any sequence R, δ → ∞ with δ = ω(lnR) we have
p′(Hyp(R), δ) ≤ (1 + o(1))δ/ ln(R).

Here (a) uses an explicit construction while (b) uses the probabilistic method.
By plugging Theorem 1 into an approach of [3], one obtains a good bound

on the cover-decomposition number of sparse hypergraphs.

Corollary 3. Suppose H = (V, E) satisfies, for all V ′ ⊆ V and E ′ ⊆ E, that
the number of incidences between V ′ and E ′ is at most α|V ′| + β|E ′|. Then

p′(H) ≥ δ(H)−α
ln β+O(ln ln β) .
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(Duality yields a similar bound on the polychromatic number.) The proof is
analogous to that in [3]: a max-flow min-cut argument shows that in this sparse
hypergraph, we can shrink all edges to have size at most β, while keeping the
minimum degree at least δ(H)− α.

In Section 3 we consider the following family of hypergraphs: the ground
set is the edge set of an undirected tree, and each hyperedge must correspond
to the edges lying in some path in the tree. We show that such systems are
cover-decomposable:

Theorem 4. For hypergraphs defined by edges of paths in trees, p′(δ) ≥ 1 +
b(δ − 1)/5c.

To prove Theorem 4, we exploit the connection to discrepancy and iterated
rounding, using an extreme point structure theorem for paths in trees from [6].
We also determine the extremal polychromatic number for such systems:

Theorem 5. For hypergraphs defined by edges of paths in trees, p(r) = dr/2e.

This contrasts with a construction of Pach, Tardos and Tóth [7]: if we also allow
hyperedges consisting of sets of “siblings,” then p(r) = 1 for all r.

The VC-dimension is a prominent measure of set system complexity used
frequently in geometry: it is the maximum cardinality of any S ⊆ V such that
{S ∩ E | E ∈ E} = 2S . It is natural to ask what role the VC-dimension plays
in cover-decomposability. We show the following — the proof is deferred to the
full version§.

Theorem 6. For the family of hypergraphs with VC-dimension 1, p(r) = dr/2e
and p′(δ) = dδ/2e.

By duality, the same holds for the family of hypergraphs whose duals have VC-
dimension 1. We find Theorem 6 is best possible in a strong sense:

Theorem 7. For the family of hypergraphs {H | VC-dim(H),VC-dim(H∗) ≤
2}, we have p(r) = 1 for all r and p′(δ) = 1 for all δ.

To prove this, we show the construction of [7] has primal and dual VC-dimension
at most 2.

All of our lower bounds on p and p′ can be implemented as polynomial-time
algorithms. In the case of Theorem 1 this relies on the constructive LLL frame-
work of Moser-Tardos [8]. In the tree setting (Theorem 4) the tree representing
the hypergraph does not need to be explicitly given as input, since the structural
property used in each iteration (Lemma 15) is easy to identify from the values
of the extreme point LP solution. Note: since we also have the trivial bounds
p ≤ r, p′ ≤ δ these give approximation algorithms for p and p′, e.g. Theorem 1
gives a (lnR+O(ln lnR))-approximation for p′.

§ http://arxiv.org/abs/1009.6144

http://arxiv.org/abs/1009.6144
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1.3 Related Work

One practical motive to study cover-decomposition is that the hypergraph can
model a collection of sensors [9,10], with each E ∈ E corresponding to a sensor
which can monitor the set E of vertices; then monitoring all of V takes a set
cover, and p′ is the maximum “coverage” of V possible if each sensor can only be
turned on for a single time unit or monitor a single frequency. Another motive
is that if p′(δ) = Ω(δ) holds for a family closed under vertex deletion, then the
size of a dual ε-net is bounded by O(1/ε) [11].

A hypergraph is said to be weakly k-colourable if we can k-colour its vertex
set so that no edge is monochromatic. Weak 2-colourability is also known as
Property B, and these notions coincide with the property p ≥ 2. However, weak
k-colourability does not imply p ≥ k in general.

For a graph G = (V,E), the (closed) neighbourhood hypergraph N (H) is de-
fined to be a hypergraph on ground set V , with one hyperedge {v}∪{u | {u, v} ∈
E} for each v ∈ V . Then p(N (G)) = p′(N (G)) equals the domatic number of
G, i.e. the maximum number of disjoint dominating sets. The paper of Feige,
Halldórsson, Kortsarz & Srinivasan [12] obtains upper bounds for the domatic
number and their bounds are essentially the same as what we get by applying
Theorem 1 to the special case of neighbourhood hypergraphs; compared to our
methods they use the LLL but not discrepancy or iterated LP rounding. They
give a hardness-of-approximation result which implies that Theorem 1 is tight
with respect to the approximation factor, namely for all ε > 0, it is hard to
approximate p′ within a factor better than (1 − ε) lnR, under reasonable com-
plexity assumptions. A generalization of results in [12] to packing polymatroid
bases was given in [13]; this implies a weak version of Theorem 1 where the logR
term is replaced by log |V |.

A notable progenitor in geometric literature on cover-decomposition is the fol-
lowing question of Pach [14]. Take a convex set A ⊂ R2. Let R2|Translates(A)
denote the family of hypergraphs where the ground set V is a finite subset of
R2, and each hyperedge is the intersection of V with some translate of A. Pach
asked if such systems are cover-decomposable, and this question is still open. A
state-of-the-art partial answer is due to Gibson & Varadarajan [10], who prove
that p(R2|Translates(A), δ) = Ω(δ) when A is an open convex polygon.

The paper of Pach, Tardos and Tóth [7] obtains several negative results with
a combinatorial method. They define a family of non-cover-decomposable hyper-
graphs based on trees and then they “embed” these hypergraphs into geometric
settings. By doing this, they prove that the following families are not cover-
decomposable: R2|Axis-Aligned-Rectangles; R2|Translates(A) when A
is a non-convex quadrilateral; and R2|Strips and its dual. In contrast to the
latter result, it is known that p(R2|Axis-Aligned-Strips, r) ≥ dr/2e [15]. Re-
cently it was shown [16] that R3|Translates(R3

+) is cover-decomposable, giv-
ing cover-decomposability of R2|Homothets(T ) for any triangle T and a new
proof (c.f. [17]) for R2|Bottomless-Axis-Aligned-Rectangles; the former
contrasts with the non-cover-decomposability of R2|Homothets(D) for D the
unit disc [7].
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Pálvölgyi [4] poses a fundamental combinatorial question: is there a function
f so that in hypergraph families closed under edge deletion and duplication,
p′(δ0) ≥ 2 implies p′(f(δ0)) ≥ 3? This is open for all δ0 ≥ 2 and no counterex-
amples are known to the conjecture f(δ0) = O(δ0).

Given a plane graph, define a hypergraph whose vertices are the graph’s
vertices, and whose hyperedges are the faces. For this family of hypergraphs, it
was shown in [3] that p(δ) ≤ b(3δ− 5)/4c using Gupta’s theorem and a sparsity
argument. This is the same approach which we exploit to prove Corollary 3.

Several different related colouring notions for paths in trees are considered
in [18,19,20].

2 Hypergraphs of Bounded Edge Size

To get good upper bounds on p′(Hyp(R), δ), we will use the Lovász Local Lemma
(LLL):

Lemma 8 (LLL, [21]). Consider a collection of “bad” events such that each one
has probability at most p, and such that each bad event is independent of the
other bad events except at most D of them. (We call D the dependence degree.)
If p(D + 1)e ≤ 1 then with positive probability, no bad events occur.

Our first proposition extends a standard argument about Property B [22,
Theorem 5.2.1].

Proposition 9. p′(Hyp(R), δ) ≥ bδ/ ln(eRδ2)c.

I.e. given any hypergraph H = (V, E) where every edge has size at most R
and such that each v ∈ V is covered at least δ times, we must show for t =
bδ/ ln(eRδ2)c that p′(H) ≥ t, i.e. that E can be decomposed into t disjoint set
covers. It will be helpful here and later to make the degree of every vertex exactly
δ, (this bounds the dependence degree). Indeed this is without loss of generality:
else as long as deg(v) > δ shrink some E 3 v to E\{v} until deg(v) drops to δ;
then observe that if we applying unshrinking to a vertex cover, it is still a vertex
cover.

Proof of Proposition 9. Consider the following randomized experiment: for each
hyperedge E ∈ E , assign a random colour between 1 and t to E. If we can show
that with positive probability, every vertex is incident with a hyperedge of each
colour, then we will be done. In order to get this approach to go through,

For each vertex v define the bad event Ev to be the event that v is not incident
with a hyperedge of each colour. The probability of Ev is at most t(1− 1

t )
δ, by

using a union bound. The event Ev only depends on the colours of the hyperedges
containing v; therefore the events Ev and Ev′ are independent unless v, v′ are
in a common hyperedge. In particular the dependence degree is less than Rδ. It
follows by LLL that if

Rδt(1− 1
t )
δ ≤ 1/e,

then with positive probability, no bad events happen and we are done. We can
verify that t = δ/ ln(eRδ2) satisfies this bound.
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We will next show that the bound can be raised to Ω(δ/ lnR). Intuitively,
our strategy is the following. We have that δ/ ln(Rδ) is already Ω(δ/ lnR) unless
δ is superpolynomial in R. For hypergraphs where δ � R we will show that we
can partition E into m parts E =

⊎m
i=1 Ei so that δ(V, Ei) is at least a constant

of δ/m, and such that δ/m is polynomial in R. Thus by Proposition 9 we can
extract Ω((δ/m)/ lnR) set covers from each (V, Ei), and their union proves p′ ≥
Ω(δ/ lnR).

In fact, it will be enough to consider splitting E into two parts at a time,
recursively. Then ensuring δ(V, Ei) & δ/2 (i = 1, 2) amounts to a discrepancy-
theoretic problem: given the incidence matrix with rows for edges and columns
for vertices, we must 2-colour the rows by ±1 so that for each column, the sum
of the incident rows’ colours is in [−d, d], with the discrepancy d as small as
possible. To get a short proof of a weaker version of Theorem 1, we can use an
approach of Beck and Fiala [23]; moreover it is important to review their proof
since we will extend it in Section 3.

Proposition 10 (Beck & Fiala [23]). In a δ-regular hypergraph H = (V, E) with
all edges of size at most R, we can partition the edge set into E = E1 ] E2 such
that δ(V, Ei) ≥ δ/2−R for each i ∈ {1, 2}.

Proof. Define a linear program with nonnegative variables {xe, ye}e∈E subject to
xe+ye = 1 and for all v, degree constraints

∑
e:v∈e xe ≥ δ/2 and

∑
e:v∈e ye ≥ δ/2.

Note x ≡ y ≡ 1
2 is a feasible solution. Let us abuse notation and when x or y

is 0-1, use them interchangeably with the corresponding subsets of E . So in the
LP, a feasible integral x and y would correspond to a discrepancy-zero splitting
of E . We’ll show that such a solution can be nearly found, allowing an additive
R violation in the degree constraints. We use the following fact, which follows
by double-counting. A constraint is tight if it holds with equality.

Lemma 11. In any extreme-point solution (x, y) to the linear program, there is
some tight degree constraint for whom at most R of the variables it involves are
strictly between 0 and 1. This holds also if some variables are fixed at integer
values and some of the degree constraints have been removed.

Now we use the following iterated LP rounding algorithm. Each iteration
starts with solving the LP and getting an extreme point solution. Then perform
two steps: for each variable with an integral value in the solution, fix its value
forever; and discard the constraint whose existence is guaranteed by the lemma.
Eventually all variables are integral and we terminate.

For each degree constraint, either it was never discarded in which case the
final integral solution satisfies it, or else it was discarded in some iteration. Now
when the constraint was discarded it had at most R fractional variables, and
was tight. So in the sum (say)

∑
e:v∈e xe = δ there were at least δ −R variables

fixed to 1 on the left-hand side. They ensure
∑
e:v∈e xe ≥ δ −R at termination,

proving what we wanted.

Here is how the Beck-Fiala theorem gives a near-optimal bound on p′.
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Proposition 12. p′(Hyp(R), δ) ≥ δ/O(lnR).

Proof. If δ < 4R this already follows from Proposition 9. Otherwise apply Propo-
sition 10 to the initial hypergraph, and then use shrinking to make both the
resulting (V, Ei)’s into regular hypergraphs. Iterate this process; stop splitting
each hypergraph once its degree falls in the range [R, 4R), which is possible since
δ ≥ 4R⇒ δ/2−R ≥ R. Let M be the number of hypergraphs at the end.

Observe that in applying the splitting-and-shrinking operation to some (V, E)
to get (V, E1) and (V, E2), the sum of the degrees of (V, E1) and (V, E2) is at least
the degree of (V, E), minus 2R “waste”. It follows that the total waste is at most
2R(M − 1), and we have that 4RM + 2R(M − 1) ≥ δ. Consequently M ≥ δ/6R.
As sketched earlier, applying Proposition 9 to the individual hypergraphs, and
combining these vertex covers, shows that p′ ≥ MbR/ ln(eR3)c which gives the
claimed bound.

Now we get to the better bound with the correct multiplicative constant.

Proof of Theorem 1: ∀R, δ, p′(Hyp(R), δ) ≥ max{1, δ/(lnR+O(ln lnR))}. Now
Proposition 9 gives us the desired bound when δ is at most polylogarithmic in R,
so we assume otherwise. Due to the crude bound in Proposition 12, we may as-
sume R is sufficiently large when needed. We will need the following well-known
discrepancy bound which follows using Chernoff bounds and the LLL; see also
the full version.

Proposition 13. For a constant C1, in a d-regular hypergraph H = (V, E) with
all edges of size at most R, we can partition the edge set into E = E1 ] E2 such
that δ(V, Ei) ≥ d/2− C1

√
d ln(Rd) (i = 1, 2).

Let d0 = δ and di+1 = di/2 − C1

√
di ln(Rdi). Thus each hypergraph ob-

tained after i rounds of splitting has degree at least di; evidently di ≤ δ/2i. We
stop splitting after T rounds, where T will be fixed later to make dT and δ/2T

polylogarithmic in R. The total degree loss due to splitting is

δ − 2T dT =

T∑
i=0

2i(di − 2di+1) ≤
T−1∑
i=0

2i2C1

√
di lnRdi ≤

T−1∑
i=0

2i2C1

√
δ

2i
ln
Rδ

2i

= 2C1

√
δ

T−1∑
i=0

√
2i ln

Rδ

2i
.

This sum is an arithmetic-geometric series dominated by the last term, so that
we deduce δ − 2T dT = O(

√
δ2T ln(Rδ/2T )). Pick T such that δ/2T is within a

constant factor of ln3R, then we deduce

dT ≥ δ/2T (1−O(
√

2T /δ ln(Rδ/2T ))) ≥ δ/2T (1−O(ln−1(R))).

Consequently with Proposition 9 we see that

p′ ≥ 2T dT /(lnR+O(ln lnR)) ≥ δ(1−O(ln−1(R)))/(lnR+O(ln lnR))

which gives the claimed bound.
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2.1 Lower Bounds

Now we show that the bounds obtained previously are tight.

Proof of Theorem 2(a). We want to show, for a constant C and all R ≥ 2, δ ≥
1 we have p′(Hyp(R), δ) ≤ max{1, Cδ/ lnR}. Consider the hypergraph H =(
[2k−1]
k

)∗
in the introduction. It is k-regular, it has p′(H) = 1, and R(H) =(

2k−2
k−1

)
.

Since p′(Hyp(R), δ) is non-increasing in R, we may reduce R by a constant
factor to assume that either R = 2, (in which case we are done by Gupta’s
theorem) or R(H) =

(
2k−2
k−1

)
for some integer k. Note this gives k = Θ(logR).

Moreover, if δ ≤ k then H proves the theorem, so assume δ ≥ k. Again by
monotonicity, we may increase δ by a constant factor to make δ a multiple of k.
Let µ = δ/k.

Consider the hypergraph µH obtained by copying each of its edges µ times,
for an integer µ ≥ 1; note that it is δ-regular. The argument in the introduction
shows that any set cover has size at least k and therefore average degree at
least k

(
2k−2
k−1

)
/
(
2k−1
k

)
= k2/(2k− 1) = Θ(lnR). Thus p′(µH) = O(δ/ lnR) which

proves the theorem.

Proof of Theorem 2(b). We want to show as R, δ → ∞ with δ = ω(lnR), we
have p′(Hyp(R), δ) ≤ (1 + o(1))δ/ ln(R). We assume an additional hypothesis,
that R ≥ δ; this will be without loss of generality as we can handle the case
δ > R using the µ-replication trick from the proof of Theorem 2(a), since our
argument is again based on lower-bounding the minimum size of an set cover.

Let δ′ = δ(1+o(1)) and R′ = R(1−o(1)) be parameters that will be specified
shortly. We construct a random hypergraph with n = R′2δ′ vertices and m =
R′δ′2 edges, where for each vertex v and each edge E, we have v ∈ E with
independent probability p = 1/R′δ′. Thus each vertex has expected degree δ′

and each edge has expected size R′. A standard Chernoff bound together with
np = ω(lnm) shows the maximum edge size is (1+o(1))R′ asymptotically almost
surely (a.a.s.); pick R′ such that this (1 + o(1))R′ equals R. Likewise, since
mp = ω(lnn) a.a.s. the actual minimum degree is at least (1− o(1))δ′ which we
set equal to δ.

We will show that this random hypergraph has p′ ≥ (1+o(1))δ/ lnR a.a.s. via
the following bound, which is based off of an analogous bound for Erdős-Renyi
random graphs in [12, §2.5]:

Claim 14. A.a.s. the minimum set cover size is at least 1
p ln(pn)(1− o(1)).

The proof is given in the full version. This claim finishes the proof since it
implies that the maximum number of disjoint set covers p′ is at most (1 +
o(1))mp/ ln(pn) = (1 + o(1))δ′/ ln(R′) = (1 + o(1))δ/ ln(R).

Aside from the results above, not much else is known about specific values
of p′(Hyp(R), δ) for small R, δ. The Fano plane gives p(Hyp(3), 3) = 1: if its
seven sets are partitioned into two parts, one part has only three sets, and it is
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not hard to verify the only covers consisting of three sets are pencils through a
point and therefore preclude the remaining sets from forming a cover. Moreover,
Thomassen [24] showed that every 4-regular, 4-uniform hypergraph has Property
B; together with monotonicity we deduce that p(Hyp(3), 4) ≥ p(Hyp(4), 4) ≥ 2.

3 Paths in Trees

Let TreeEdges|Paths denote the following family of hypergraphs: the ground
set is the edge set of an undirected tree, and each hyperedge must correspond to
the edges lying in some path in the tree. Such systems are cover-decomposable:

Theorem 4. p′(TreeEdges|Paths, δ) ≥ 1 + b(δ − 1)/5c.
Proof. In other words, given a family of paths covering each edge at least δ =
5k+ 1 times, we can partition the family into k+ 1 covers. We use induction on
k; the case k = 0 is evidently true.

We will use an iterated LP relaxation algorithm similar to the one used
in Proposition 10. However, it is more convenient to get rid of the y variables;
it is helpful to think of them implicitly as y = 1 − x. Thus our linear program
will have one variable 0 ≤ xP ≤ 1 for every path P . Fix integers A,B such that
A + B = δ, and the LP will aim to make x the indicator vector of an A-fold
cover, and 1 − x the indicator vector of a B-fold cover. So for each edge e of
the tree, we will have one covering constraint

∑
P :e∈P xe ≥ A and one packing

constraint
∑
P :e∈P xe ≤ |P : e ∈ P | −B (corresponding to coverage for y). Note

that the linear program has a feasible fractional solution x ≡ A/δ.
As before, the iterated LP relaxation algorithm repeatedly finds an extreme

point solution of the linear program, fixes the value of variables whenever they
have integral values, and discards certain constraints. We will use the following
analogue of Lemma 11, which is an easy adaptation of a similar result for packing
in [6]; we give more details in the full version.

Lemma 15. Suppose some x variables are fixed to 0 or 1, and some cover-
ing/packing constraints are discarded. Any extreme point solution x∗ has the
following property: there is a tight covering or packing constraint involving at
most 3 variables which are fractional in x∗.

When such a constraint arises, we discard it. As before, any non-discarded
constraint is satisfied by the integral x at termination. Additionally, consider a
discarded constraint, say a covering one

∑
P :e∈P xe ≥ A for some P . When it is

discarded, it holds with equality, and the left-hand side consists of 0’s, 1’s, and
at most 3 fractional values. Since A is an integer, it follows that there are at
least A − 2 1’s on the LHS. The final x still has these variables equal to 1; so
overall, x is the characteristic vector of an (A− 2)-fold cover, and likewise 1− x
is the characteristic vector of a (B − 2)-fold cover.

Finally, fix A = 3 and B = δ − 3. The final integral x covers every edge
at least 3 − 2 times — it is a cover. The final 1 − x covers every edge at least
δ − 5 = 5(k − 1) + 1 times. Hence we can use induction to continue splitting
1− x, giving the theorem.
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For the related settings where we have paths covering nodes, or dipaths covering
arcs, more involved combinatorial lemmas [6, full version] give that p′(δ) is at
least 1 + b(δ − 1)/13c. We think Theorem 4 is not tight; the best upper bound
on p′ we know is b(3δ + 1)/4c.

For polychromatic numbers and systems of paths in trees, we have:

Theorem 5. p(TreeEdges|Paths, r) = dr/2e.

Proof Sketch. For the lower bound, colour the edges of the tree by giving all
edges at level i the colour i mod dr/2e.

In the upper bound, it is enough to consider even r. We use a Ramsey-like
argument. Take a complete t-ary tree with r

2 levels of edges, so each leaf-leaf
path has r edges. In any ( r2 + 1)-colouring, t/( r2 + 1) of the edges incident on
the root have the same colour. Iterating the argument, for large enough t, two
root-leaf paths have the same sequence of r

2 colours, and their union shows the
colouring is not polychromatic.

4 Future Work

In the sensor cover problem (e.g. [10]) each hyperedge has a given duration; we
seek to schedule each hyperedge at an offset so that every item in the ground set
is covered for the contiguous time interval [0, T ] with the coverage T as large as
possible. Cover-decomposition is the special case where all durations are unit.
Clearly T is at most the minimum of the duration-weighted degrees, which we
denote by δ. Is there always a schedule with T = Ω(δ/ lnR) if all hyperedges
have size at most R? The LLL is viable but splitting does not work and new
ideas are needed. In the full version we get a positive result for graphs (R = 2):

Theorem 16. Every instance of sensor cover in graphs has a schedule of cov-
erage at least δ/8.

Acknowledgments. We thank Jessica McDonald, Dömötör Pálvölgyi, and Oliver
Schaud for helpful discussions on these topics.
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