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Abstract

Given p ∈ (0, 1), we let Qp = Qdp be the random subgraph of the

d-dimensional hypercube Qd where edges are present independently
with probability p. It is well known that, as d → ∞, if p > 1

2 then
with high probability Qp is connected; and if p < 1

2 then with high
probability Qp consists of one giant component together with many
smaller components which form the ‘fragment’.

Here we fix p ∈ (0, 1
2), and investigate the fragment, and how it

sits inside the hypercube. For example, we give asymptotic estimates
for the mean numbers of components in the fragment of each size, and
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describe their asymptotic distributions, much extending earlier work
of Weber.

1 Introduction

The hypercube Q = Qd is the graph with vertex set {0, 1}d and with two
vertices adjacent when they differ in exactly one co-ordinate. Alternatively
it can be considered as the graph on the power set of [d] = {1, 2, . . . , d} in
which two sets are adjacent when their symmetric difference is a singleton.
We consider the random subgraph Qp = Qd

p where the edges appear inde-
pendently with fixed probability p, and examine the component structure
as d → ∞. We say that Qp has a property with high probability (or whp)
if the property holds with probability tending to 1 as d → ∞, and Qp has
a property with very high probability (or wvhp) if it holds with probability
1− e−Ω(d).

Burtin [10] considered random subgraphs in the dense case and showed
that, for fixed p < 1/2, whp Qp is disconnected and, for fixed p > 1/2, whp
Qp is connected. Erdős and Spencer [11] showed that for p = 1/2, Qp is con-
nected with probability tending to e−1 (see also Bollobás [4, Theorem 14.3]).
Also Weber [17] considered the dense case – we will discuss his work shortly.
Ajtai, Komlós and Szemerédi [1] looked at the sparse case, and demonstrated
that a phase transition occurs at p = 1/d : for p = λ/d with λ > 1, whp the
largest component of Qp has size Ω(2d) and the second largest has size o(2d),
while for λ < 1 whp the largest component has size o(2d). Bollobás, Ko-
hayakawa and  Luczak [5, 6, 7, 8] gave more detailed results around the phase
transition at p = 1/d, and investigated the minimum degree, connectedness
and the existence of a complete matching in the sequence of subgraphs of Qd

formed by adding edges randomly, one at a time. They showed that, almost
surely, this graph process becomes connected exactly at the moment when
the last isolated vertex disappears, and at this time a complete matching
emerges. See [9, 13] for more recent work concerning behaviour around the
phase transition and for further references.

This paper looks at the sizes of the components ofQp for a fixed p with 0 <
p < 1/2. These graphs Qp will be disconnected with a single large component
whp. Note that we cannot expect some sort of elegant ‘symmetry rule’ as for
Erdős-Rényi random graphs G(n, p), where (roughly speaking), given the size
of the largest component in a supercritical random graph G(n, p), the rest of
the graph looks like a subcritical G(n′, p′) (see for example [14, section 5.6]):
the geometry of the hypercube makes life more interesting and complicated.

We denote the number of vertices in a graph G by v(G), and call this
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the size of G; and denote the number of edges by e(G). In Qp, we order the
components by size (where components having the same size are ordered say
by the position of the ‘smallest’ vertex of each component in some canonical
ordering of the vertices). Denote the j-th component by Lj and let Lj =
v(Lj) be the size of Lj (where Lj = ∅ and Lj = 0 if G has less than j
components). The giant component is L1. The fragment Z is the graph
formed by all the components other than L1, and we let Z = v(Z) = 2d−L1.
Let Xt denote the number of components of Qp of size t, and let µt = E[Xt].
Let X =

∑
t≥1Xt be the total number of components of Qp. Finally let

q = 1− p.
Observe that µ1 = (2q)d; and that µ1 →∞ as d→∞, since 2q > 1. The

quantity mp defined by
mp = b1/ log2(1/q)c (1)

is central to our results. Observe that mp is large for small p and decreases
to 1 as p increases to 1/2. For an integer t, we have 2qt ≥ 1 ⇔ t ≤ mp. In
particular, we always have mp ≥ 1 since 2q > 1;

Weber [17] showed that whp the fragment size Z satisfies Z ∼ µ1 (that
is, Z = (1+o(1))µ1), the second largest component size L2 satisfies L2 = mp,
and the number Xt of components of size t satisfies Xt ∼ µt = Θ(dt−1(2qt)d)
for each t = 1, . . . ,mp; and it follows that the total number X of components
satisfies X ∼ µ1 whp. We much extend and sharpen these results, presenting
our results in six theorems. Weber’s results in [17] are contained within
Theorems 1 and 4 below. (Weber later introduced also a probability for
vertices to appear in the random subgraph of Qd [19], but we do not pursue
that extension here.)

Our first three theorems concern the global behaviour of components in
Qp; the next two theorems concern more local behaviour (and are needed to
prove the earlier ones); and our last theorem, Theorem 6, concerns the joint
distribution of random variables like the Xt.

Throughout, we fix 0 < p < 1/2 and let q = 1− p. The first theorem can
be introduced now, with no further definitions. It describes the total number
X of components in Qp, the size Z = 2d − L1 of the fragment, and the size
L2 of the second largest component. Note that, as d→∞, we have d� µ1

and so
√
dµ1 � µ1.

Theorem 1. For fixed 0 < p < 1/2, the random graph Qp = Qd
p satisfies the

following.

(a) Let Y be either the number X of components of Qp or the fragment
size Z. Then E[Y ] = µ1(1 + Θ(dqd)); and for each ε > 0 we have
|Y − E[Y ]| < ε

√
dµ1 wvhp.
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(b) The second largest component size L2 in Qp satisfies L2 = mp wvhp,
where mp is as in (1). Also, the mean and variance satisfy |E[L2]−mp| =
e−Ω(d) and Var(L2) = e−Θ(d).

Our second theorem concerns how the fragment sits in Qd. How much
do the components of the fragment cluster together? How far is it typically
from a fixed vertex to the fragment Z of Qp? Given a vertex u in Qd and
r > 0, the r-ball Br(u) around u is the set of vertices v at graph distance at
most r from u (in Qd). Recall that, for 0 < η < 1, the entropy h(η) is defined
to be −η log2 η− (1−η) log2(1−η), and it is strictly increasing on (0, 1

2
) with

image (0, 1). Let η∗ = η∗(p) be the unique solution to h(η) = log2
1

1−p with

0 < η < 1
2
. For example, if p = 1

4
then η∗ ≈ 0.08.

Theorem 2. For fixed 0 < p < 1/2, the random graph Qp = Qd
p satisfies the

following.

(a) There exists δ = δ(p) > 0 such that wvhp each δd-ball in Qd contains at
most mp vertices of the fragment.

(b) For each ε > 0 there is γ = γ(ε, p) > 0 such that wvhp a proportion
at most e−γd of the vertices in Qd are within distance (η∗ − ε)d of the
fragment Z, but all vertices are within distance (η∗ + ε)d. (All distances
are in Qd.)

In part (a) above, clearly wvhp there are δd-balls containing at least
mp vertices of the fragment – consider for example any ball with centre in
a component of size mp. Thus the statement that wvhp no δd-ball in Qd

contains strictly more than mp vertices of the fragment is saying strongly
that the components of the fragment Z do not cluster together in Qd. For
example, wvhp no component of Z of size mp is within distance δn of any
other component of Z.

In part (b), many vertices are at a short distance in Qd from the fragment
Z, including of course the vertices in Z, but only a very small proportion of
the total are at distance at most (η∗ − ε)d. However, when r = (η∗ + ε)d,
wvhp every r-ball contains a vertex in Z (and indeed contains 2Ω(d) vertices
in Z). Overall, the giant gets everywhere, and indeed the fragment is heavily
outnumbered everywhere.

The next theorem amplifies part (a) of Theorem 1, concerning the number
X of components and the fragment size Z. Recall first that, for two random
variables Y and Y ′ taking values in a countable set, the total variation dis-
tance between their distributions is given by

dTV (Y, Y ′) =
1

2

∑
k

|P(Y = k)− P(Y ′ = k)|.
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We use dTV (Y,Po(λ)) to denote dTV (Y, Y ′) where Y ′ has the Poisson dis-
tribution Po(λ) with mean λ. Several of our proofs will involve bounding
dTV (Y,Po(E[Y ])) for relevant random variables Y (like Xt or X), using re-
sults on Poisson approximation based on the Stein-Chen method. By a stan-
dard tail bound (see, for example, inequality (2.9) and Remark 2.6 in [14]),
for any random variable Y and λ > 0, for each t > 0 we have

P(|Y − λ| ≥ t
√
λ) ≤ 2e−t

2/3 + dTV (Y,Po(λ)). (2)

Also, given a (non-trivial) random variable Y = Yd we let Y ∗ denote the
natural centred and rescaled version (Y −E[Y ])/

√
Var(Y ). It is well known

(see for example [2]) that if Yn is a sequence of random variables with mean λn
such that dTV (Yn,Po(λn))→ 0 and λn →∞ as n→∞, then (Yn−λn)/

√
λn

is asymptotically standard normal. Thus if also Var(Yn) ∼ λn then Y ∗n is
asymptotically standard normal.

Theorem 3. Fix 0 < p < 1/2 and let q = 1− p. In Qp = Qd
p, let Y either be

the number X of components or be the fragment size Z. Then the following
properties hold as d→∞.

(a) λ := E[Y ] = (1 + Θ(dqd))µ1 and Var(Y ) = (1 +O(dqd))µ1.

(b) dTV (Y,Po(λ)) is O(dqd), and Y ∗ is asymptotically standard normal.

Observe that part (a) of Theorem 1 follows directly from inequality (2) and
Theorem 3 : for

P(|Y − E[Y ]| ≥ ε
√
dµ1) ≤ 2e−

1
3
ε2dµ1/λ + dTV (Y,Po(λ))

≤ e−( 1
3

+o(1))ε2d +O(dqd).

The remaining theorems concern more local behaviour. The first counts
small components by size. It is needed in order to prove the earlier theorems.
Recall that Xt is the number of components of size t in Qp, and µt = E[Xt].
We noted earlier that µ1 = (2q)d. It is not hard to give exact formulae also
for µ2 and µ3 (assuming d ≥ 2), namely

µ2 = (p/2q2) d (2q2)d and µ3 = (p2/2q4) d(d−1) (2q3)d (3)

(see also the discussion following Theorem 5).

Theorem 4. Fix 0 < p < 1
2
, let q = 1 − p, and let 1 ≤ t ≤ mp. Then

the following results concerning the number Xt of components of size t in
Qp = Qd

p hold, as d→∞.
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(a) µt = (1 +O(1
d
)) tt−2

t!
( p
q2 )t−1 dt−1(2qt)d and Var(Xt) = (1 +O(dtqtd))µt.

(b) For each ε > 0, we have |Xt−µt| < ε
√
dµt wvhp, and so also |Xt−µt| <

εµt wvhp.

(c) dTV (Xt,Po(µt)) = O(dtqtd), and X∗t is asymptotically standard normal.

Observe from part (a) that µt = Ω(d) since 2qt ≥ 1 (and indeed µt � d unless
p = 1−1/

√
2 and t = mp = 2), so the first half of part (b) above implies

the second half. For a partial local limit result corresponding to part (c), see
Proposition 15 at the end of Section 3.

These results help us to visualise the asymptotic disappearance of small
components in Qp as p increases from 0 to 1/2. For each fixed p, there are
wvhp a giant component and many small components of every size up to a
maximum size mp. In particular µt → ∞ as d → ∞ for each t ≤ mp. We
noted that mp is large for small p and decreases to 1 as p increases to 1/2.
The typical number of components decreases exponentially as p increases and
the maximum size L2 of a component of the fragment drops as 1/ log2(1/q)
falls below each integer value. In particular, the last components of size 2
disappear as p increases past 1−1/

√
2 ≈ 0.29 and the last isolated vertices

disappear as p increases past 1/2. We recall that Q1/2 is connected with
probability tending to e−1 as d → ∞. Indeed, whp Q1/2 consists of X
isolated vertices and a connected component of 2d−X vertices, where X has
mean value 1 and asymptotic distribution Po(1) (see [11]).

Ambient isomorphisms
We shall in fact prove a much finer and more detailed version of Theo-

rem 4, namely Theorem 5, which uses a natural restricted version of isomor-
phism for subgraphs of the cube, so that we can consider also how components
‘sit’ in the host hypercube. We then deduce Theorem 4 from Theorem 5.

We call a graph a cube subgraph if it is a subgraph of the cube Qd for
some d. Let H be a connected cube subgraph. The support S(H) is the set
of indices i such that there is an edge xy in H with xi = 0 and yi = 1 (that is,
H meets both top and bottom faces in the i-th coordinate direction). Call
|S(H)| the span of H, denoted by span(H). Note that if H consists of a
single vertex then span(H) = 0, and otherwise span(H) ≥ 1. Indeed, if v(H)
is 1, 2 or 3 then span(H) = v(H)− 1, whereas for example if H is a 4-vertex
path then span(H) could be 2 or 3.

The canonical copy H∗ of H is defined as follows. If H is a single vertex
then its canonical copy is the graph Q0 (consisting of a single vertex). Sup-
pose that H has at least one edge, so s := span(H) ≥ 1. Let φ be the increas-
ing injection from [s] to [d] with image S(H). Given x = (x1, x2, . . . , xd) ∈ Qd
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let φ(x) = (xφ(1), xφ(2), . . . , xφ(s)) ∈ Qs. Then the vertices of the canonical
copy H∗ are the points φ(x) where x is a vertex of H; and the edges of H∗

are the pairs φ(x)φ(y) such that xy is an edge of H. (Note that the canonical
copy is a subgraph of Qs.) See Figure 1 for an illustration.

(0, 0, 0) (1, 0, 0)

(1, 1, 0)

(1, 1, 1)

1

3
2

(0, 0) (1, 0)

(1, 1)

H∗H
φ

V (H) = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}

S = {2, 3}
φ(1) = 2, φ(2) = 3

V (H∗) = {(0, 0), (1, 0), (1, 1)}

Figure 1: A subgraph H of Q3 with canonical copy H∗ in Q2

We say that connected subgraphs H1 of Qd1 and H2 of Qd2 are ambient
isomorphic if they have the same canonical copy. Of course, if H1 and H2 are
ambient isomorphic then they are isomorphic, but this definition is stronger
in that it requires the copies to ‘sit in the cube’ in the same way. For example,
let O denote the zero d-vector and let ek denote the kth unit d-vector: if i < j
then the three vertex path O, ei, ei + ej in Qd has canonical copy the path
(0, 0), (1, 0), (1, 1) in Q2 as in Figure 1, and so the original path in Qd is not
ambient isomorphic to the path O, ej, ei + ej which has canonical copy the
path (0, 0), (0, 1), (1, 1). There are four ambient isomorphism classes of three-
vertex paths. Observe that if s = span(H) then there is a unique subgraph
of Qs ambient isomorphic to H (namely the canonical copy of H).

Our fifth theorem concerns numbers of components ambient isomorphic
to given connected cube subgraphs Hi. Note that any two subcubes of Qd

with the same dimension are ambient isomorphic. Weber [18] considered
Poisson convergence of the number of subcube components of Qd

p of a given
dimension, for a range of values of p which could depend on d. Here we keep
p fixed, but we consider all kinds of components. Recall that (d)k means
d(d− 1) · · · (d− k + 1).

Theorem 5. Let 0 < p < 1/2 and q = 1−p. Let r ≥ 1 and let H1, H2, . . . , Hr

be pairwise non-ambient-isomorphic connected cube subgraphs each with at
most mp vertices. Let t = mini∈[r] v(Hi) and s = max{span(Hi) : v(Hi) = t}.
(All these quantities are fixed, not depending on d.)

For each i, let Yi = Yi(d) be the (random) number of components of Qd
p

ambient-isomorphic to Hi. Let Y = Y (d) =
∑

i Yi and let λ = λ(d) = E[Y ].
Then the following hold.
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(a) There is a constant c > 0, given explicitly in equations (4) and (5) below,
such that λ = (1+O(1/d)) c (d)s(2q

t)d; and if t is 1, 2 or 3 then s = t−1,
and we may replace the error bound O(1/d) by O(dqd). Also Var(Y ) =
(1 +O(dtqtd))λ.

(b) For each ε > 0, we have |Y −λ| < ε
√
dλ wvhp, and so also |Y −λ| < ελ

wvhp.

(c) dTV (Y,Po(λ)) = O(dtqtd), and Y ∗ is asymptotically standard normal.

By part (a), λ is Ω(d) (and indeed λ is Ω(d2) except if p = 1 − 1/
√

2 and
t = mp = 2), so the first half of part (b) implies the second half (as with
Theorem 4). See Lemma 12 for a fuller version of Theorem 5, which considers
more information about the components counted. That lemma, together
with the estimates of µt from Lemma 13, will yield Theorem 4, by letting
H1, . . . , Hr list all the t-vertex connected canonical cube subgraphs, so that
the random variable Y in Theorem 5 is Xt.

The constant c in part (a) may be specified as follows. Let I∗ = {i ∈ [r] :
v(Hi) = t, span(Hi) = s}. For each i ∈ I∗, let e′(Hi) be the number of edges
of Qd not in Hi but with both end vertices in Hi, and let

βi =
1

2ss!

(
p

q2

)e(Hi)(1

q

)e′(Hi)

. (4)

Now let
c =

∑
i∈I∗

βi. (5)

If t = 1 then c = 1. If t = 2 then c = p/2q2, so λ ∼ (p/2q2) d(2q2)d. If
t = 3 then 1 ≤ |I∗| ≤ 4 and each βi = 1

8
(p/q2)2, so if |I∗| = 4 we have

λ ∼ (p2/2q4) d2(2q3)d. These results are in accord with (3).
In Theorem 4 we saw that wvhp in Qp there are components of each size

up to mp. In Theorem 5 we see in much more detail that each connected
cube subgraph of size at most mp, with its way of sitting within the host
hypercube, appears wvhp as a component of Qp.

What we call ambient isomorphism could be called ‘ordered ambient iso-
morphism’, since we insist that the injection φ in the definition is increasing.
If we drop this requirement then essentially the same results hold (mutatis
mutandis), since the new isomorphism classes are unions of the old ones.
When we deduce Theorem 4 from Theorem 5/Lemma 12, we may think of
this as relaxing ambient isomorphism all the way to isomorphism.

Given a connected cube subgraph H, let pH = pH(d) be the probability
that Qp has a component ambient isomorphic to H. When p is fixed with
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0 < p < 1
2
, by Theorem 5, either pH or 1 − pH is e−Ω(d). To see this, let

t = v(H), let Y be the number of components ambient isomorphic to H
and λ = E[Y ]. If t > mp then 2qt < 1, so P(Y ≥ 1) ≤ λ = e−Ω(d); and
if t ≤ mp then λ → ∞ (as we saw above), and by part (b) of Theorem 5
wvhp Y ≥ λ/2 > 0. The situation described above is in contrast with the
situation at p = 1

2
, when (as we noted earlier) the number of isolated vertices

has asymptotic distribution Po(1).

Joint distribution of components
We saw in Theorem 4 that, for each t = 1, . . . ,mp the number Xt of

components of Qp of size t has close to the Poisson distribution Po(µt),
where µt = E[Xt]. In fact more is true: the joint distribution of X1, . . . , Xmp

is close to a product of these distributions. Write L(X1, . . . , Xmp) for the
joint law of X1, . . . , Xmp ; and write

∏mp

j=1 Po(µj) for the joint distribution of
independent random variables Po(µj). We shall see that

dTV
(
L(X1, . . . , Xmp),

mp∏
j=1

Po(µj)
)

= O(d2qd). (6)

Thus, the numbers of components in the fragment of each size t are asymp-
totically independent, with a Poisson distribution for t ≤ mp, and identically
0 for t > mp. Indeed, we have the following much more detailed theorem
concerning the small components, in the spirit of Theorem 5. Note that there
is a finite set of canonical cube subgraphs with at most mp vertices.

Theorem 6. Let H1, . . . , Hr be a list of r ≥ 1 distinct canonical cube sub-
graphs each with at most mp vertices. For each j ∈ [r], let Yj be the random
number of components of Qp = Qd

p ambient isomorphic to Hj, with mean λj.
Let t∗ = minj v(Hj). Then

dTV
(
L(Y1, . . . , Yr),

r∏
j=1

Po(λj)
)

= O(dt
∗+1qt

∗d). (7)

When the Hj include all the canonical cube subgraphs of size up to mp (so
t∗ = 1), Theorem 6 directly implies (6). We cannot quite use Theorem 6 to
deduce our earlier individual bounds on dTV , for example on dTV (Xt,Po(µt))
in Theorem 4 part (c), since in the bound (7) there is an ‘extra’ factor d.

Notation

We use standard notation throughout. For non-negative functions f
and g, we say that f(d) = Ω(g(d)) if lim infd→∞ f(d)/g(d) > 0, and f(d) =
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Θ(g(d)) if both f(d) = Ω(g(d)) and g(d) = Ω(f(d)). Also, we write f � g if
f(d) = o(g(d)).

Plan of the paper

Section 2 gives preliminary results, first concerning subgraphs in the hy-
percube Qd, and then concerning the variance of counting random variables
and their closeness to a Poisson distribution. In Section 3, Lemma 12 gives
several results concerning numbers of components ambient-isomorphic to a
given list of connected cube subgraphs. Lemma 13 gives quite precise results
on the expected value of Xt for 1 ≤ t ≤ mp. These lemmas allow us to prove
Theorem 5, and then Theorem 4, at the end of the section.

In order to prove Theorems 1, 2 and 3 we must show that with tiny failure
probability there is just one component of size strictly greater than mp. To
do this, in Section 4 we call a vertex ‘good’ if its degree in Qp is at least half
the expected value dp . We show that, with tiny failure probability, all good
vertices are in the same component; and then deduce that, for a suitable
constant N , with tiny failure probability each component of the fragment
has size at most N . From this result, we see in particular that wvhp mp is
an upper bound for the size L2 of a second largest component. In Section 5
we complete the proofs of Theorems 1, 2 and 3. In Section 6 we consider
joint distributions and prove Theorem 6. Finally, Section 7 contains some
very brief concluding remarks.

These investigations arose from work on multicommodity flows in the
cube Qd when edges have independent random capacities, see [16].

2 Preliminary results

2.1 Preliminary results on the hypercube Qd

Let us first consider span(H) for a connected cube subgraph H. We have
already noted that span(H) = v(H)− 1 if v(H) is 1, 2 or 3. It is easy to see
that always span(H) ≤ v(H) − 1, and the inequality is strict if H is not a
tree (since any cycle contains at least two edges in some dimension). If we
have equality we call H a spreading tree. Note that each edge of a spreading
tree sits in a distinct dimension, and if T1 and T2 are ambient isomorphic
trees then T1 is spreading if and only if T2 is spreading.

What are the subcubes in Qd? If we are given S ⊆ [d] and z ∈ {0, 1}[d]\S,
then clearly the vertices x such that xj = zj for each j ∈ [d]\S form a subcube
isomorphic to Q|S|. We shall need to consider such ‘cylinder’ subcubes, for
example in the proof of Lemma 8. As an aside, let us note that each cube
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subgraph H isomorphic to a hypercube Qs is obtained in this way. Since
v(H) = 2s, this is easily seen to be equivalent to showing that H has span s;
and it is a straightforward exercise to show the latter.

Proposition 7. Let H be a subgraph of Qd isomorphic to a hypercube Qs.
Then span(H) = s.

Next we investigate the number nH = nH(d) of subgraphs of Qd ambient-
isomorphic to a given subgraph H, the number of subgraphs which are
spreading trees of a given size t, and the total number of connected sub-
graphs of size t.

Lemma 8. (a) For each connected subgraph H of Qd, nH = 2d−s
(
d
s

)
, where

span(H) = s.

(b) For each d ≥ t − 1 ≥ 0, the number of ambient-isomorphism classes of
spreading trees of size t in Qd is 2t−1tt−3.

(c) For each d ≥ t−1 ≥ 0, the number of subgraphs of Qd which are spreading
trees of size t is 2d tt−3

(
d
t−1

)
.

(d) For each fixed t ≥ 1, the number of connected subgraphs of Qd of size t
is 2d tt−3

(
d
t−1

)
(1 +O(d−1)).

We see from parts (c) and (d) above that the population of connected
subgraphs of a given size t in Qd is asymptotically dominated by spreading
trees.

Proof. We first recall that any cube subgraph of size t can be embedded in
Qt−1 and so, for d ≥ t − 1, the number of pairwise non-ambient-isomorphic
connected cube subgraphs of size t depends only on t.

(a) There is a single ambient-isomorphic copy of H in each (cylinder) subcube
Qs of Qd, and there are 2d−s

(
d
s

)
copies of Qs in Qd, so nH = 2d−s

(
d
s

)
, as

required.

(b) By Cayley’s formula there are tt−2 trees on the set {0, 1, 2, . . . , t− 1} of t
vertices. Given one of these trees, call vertex 0 the root and move the other
vertex labels onto the edge leading towards the root. This constructs a vertex-
rooted, edge-labeled tree, with edge-labels 1, 2, . . . , t − 1. The construction
is reversible, so there are exactly tt−2 such trees.

Given such a rooted, edge-labeled tree T , we choose a vertex in Qt−1

for the root, then use the labels of the edges to specify the ‘dimension’ in
which that edge exists. This defines a t-vertex rooted spreading tree, and
all the rooted trees constructed are distinct; and furthermore every t-vertex
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rooted spreading tree in Qt−1 can be constructed in this way. Thus there
are 2t−1tt−2 t-vertex rooted spreading trees in Qt−1, and so 2t−1tt−3 t-vertex
unrooted spreading trees; and of these unrooted trees, no two distinct ones
are ambient-isomorphic since they have span t − 1 and so are their own
canonical copies.

(c) By parts (a) and (b), the number of t-vertex spreading trees in Qd is

2t−1tt−3 · 2d−(t−1)

(
d

t− 1

)
= 2dtt−3

(
d

t− 1

)
.

(d) If T is a spreading tree of size t, and H is a connected cube subgraph of
size t with span(H) < t − 1 = span(T ), then nH/nT = O(d−1) by part (a).
The number of ambient-isomorphism classes of connected subgraphs of Qd

of size t does not depend on d for d ≥ t− 1; and thus the contribution to the
total number of connected subgraphs of Qd of size t by those with span less
than t− 1 is O(d−1) of the total.

We will need one more lemma which we will apply to the hypercube Qd.
This result is ‘folk knowledge’ (and indeed a more precise result is known, see
equation (8)) but we give a short combinatorial proof here for completeness.

Lemma 9. Let the graph G be rooted at vertex r and have maximum degree
at most d. Then for each non-negative integer t, the number of subtrees
containing r and exactly t other vertices is at most (ed)t.

Proof. We first show (a) that the number of (t + 1)-vertex subtrees in G
containing r is at most the number f(d, t + 1) of (t + 1)-vertex subtrees
containing the root in an infinite d-ary tree T∞; and then show (b) that
f(d, t + 1) is at most the number of points x ∈ {0, 1}td with t 1’s. The
number of such points is

(
td
t

)
≤ (ed)t. Clearly we may assume that t ≥ 1.

The path tree T (G, r) [12] has a vertex for each path P in G from r,
adjacent to each vertex corresponding to a path extending P by one edge; and
as the root has the vertex corresponding to the path with a single vertex r.
It is easy to see that, for each tree in G containing r, there is a corresponding
tree in T (G, r) containing the root. Thus the the number of (t + 1)-vertex
subtrees in G containing r is at most the number of (t + 1)-vertex subtrees
containing the root in T (G, r); and since T (G, r) embeds in T∞, part (a) of
the proof follows.

For part (b), let T be a (t+1)-vertex subtree in T∞ containing the root.
We may suppose that T∞ is embedded in the plane, with the root at the top
and children listed in order from left to right. We construct x(T ) ∈ {0, 1}td
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with t 1’s as follows. Initially the vector x is null and the list L contains
just the root. We repeat the following t times. Remove the first vertex v in
L, and let y ∈ {0, 1}d indicate its children (with a 1 for each child): append
y to x and append the children to L (listed in order). The output x(T ) is
the final value of x. Clearly we can reconstruct T from x(T ), so the number
of possible trees T is at most the number of possible vectors x(T ), which
completes the proof.

We shall not use this result here, but the precise value of f(d, t) is given by

f(d, t) =
1

(d− 1)t+ 1

(
dt

t

)
for each d, t ≥ 1 , (8)

see exercise 11 in [15, section 2.3.4.4] (pages 397 and 589).

2.2 Preliminary results on variance and approximation
to Poisson distribution

Let (Ai : i ∈ I) be a family of events with a dependency graph L (so that Ai
and Aj are independent if i and j are not adjacent in L and i 6= j). Write
i ∼ j if i and j are adjacent in L. For each i, let πi = P(Ai) and let Ii be the
indicator function of Ai. Let X =

∑
i Ii (in this subsection we do not use X

as the number of components in Qp). Then

Var(X) =
∑
i

∑
j

(P(Ai ∧ Aj)− πiπj)

=
∑
i

(πi − π2
i ) +

∑
i

∑
j∼i

(P(Ai ∧ Aj)− πiπj)

=E[X] + ∆+ −∆−, (9)

where
∆+ =

∑
i

∑
j∼i

P(Ai ∧ Aj) (10)

and
∆− =

∑
i

π2
i +

∑
i

∑
j∼i

πiπj. (11)

The following lemma is essentially Theorem 6.23 of [14], proved by the
Stein-Chen method, which shows that a sum X as above has close to a
Poisson distribution, provided ∆+ and ∆− are small.

Lemma 10. With notation as above, and letting λ = E[X], we have

dTV (X,Po(λ)) ≤ min{λ−1, 1}
(
∆+ + ∆−

)
.
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We shall also need a minor extension of the above. Suppose that we are
given a family (ti : i ∈ I) of positive integers, and let X̃ =

∑
i tiIi. Then

much as above, we have

Var(X̃) =
∑
i

∑
j

titj (P(Ai ∧ Aj)− πiπj)

=
∑
i

t2i (πi − π2
i ) +

∑
i

∑
j∼i

titj(P(Ai ∧ Aj)− πiπj)

=E[X̃] + ∆̃+ − ∆̃− (12)

where
∆̃+ =

∑
i

ti(ti − 1)πi +
∑
i

∑
j∼i

titj P(Ai ∧ Aj) (13)

and
∆̃− =

∑
i

t2iπ
2
i +

∑
i

∑
j∼i

titj πiπj. (14)

Lemma 11. With notation as above, and letting λ = E[X̃], we have

dTV (X̃,Po(λ)) ≤ min{λ−1, 1}
(
∆̃+ + ∆̃−

)
.

Proof. Replace each event Ai by ti identical (not independent) copies. Note
that, for each i, the ti copies of Ai are dependent, and so they are adjacent to
each other in the natural extended dependency graph. Now apply Lemma 10.

3 The numbers of small components

The first lemma in this section, Lemma 12, gives expected values and vari-
ances for the numbers of small components in certain ambient-isomorphism
classes, and for the number of vertices in such components; and gives some
results on approximation by a Poisson distribution. The second lemma uses
Lemma 12, together with counting results from Subsection 2.1, to deduce
results corresponding to those in Lemma 12 when we consider all compo-
nents of a given size. Using these lemmas we prove Theorem 5 and then
Theorem 4.

In Lemma 12, we consider both the numbers of components in Qp am-
bient isomorphic to given graphs, and the total numbers of vertices in such
components.
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Lemma 12. Let 0 < p < 1
2

and let q = 1 − p. Let r be a positive integer
and let H1, H2, . . . , Hr be pairwise non-ambient-isomorphic connected cube
subgraphs. For each i ∈ [r], let si = span(Hi), and recall that e′(Hi) is the
number of cube edges not in Hi but with both end vertices in Hi. (All these
quantities are fixed, not depending on d.)

For each i ∈ [r], let Yi be the number of components of Qp ambient-
isomorphic to Hi. Let t = mini v(Hi), and let s = max{si : v(Hi) = t}. Let
I∗ = {i ∈ [r] : v(Hi) = t, si = s}, and let

c =
1

2ss!

∑
i∈I∗

(p/q2)e(Hi)q−e
′(Hi).

Then the following hold.

(a) For each i ∈ [r], once d ≥ si we have

E[Yi] = (p/q2)e(Hi)q−e
′(Hi) 2d−si

(
d

si

)
qv(Hi)d.

(b) The sum Y =
∑r

i=1 Yi satisfies (i) E[Y ] = (1 + O(1/d)) c (d)s(2q
t)d,

(ii) Var(Y ) = (1+O(dtqtd))E[Y ], and (iii) dTV (Y,Po(E[Y ])) = O(dtqtd).
Furthermore, if t is 1, 2 or 3 then s = t−1 and in the expression for E[Y ]
we can improve the error term, so E[Y ] = (1 +O(dqd)) c (d)t−1(2qt)d.

(c) The weighted sum Ỹ =
∑r

i=1 v(Hi)Yi satisfies (i) E[Ỹ ] = (1+O(dqd)) tE[Y ].
Furthermore, if t = 1 then (ii) Var(Ỹ ) = (1 + O(dqd))E[Ỹ ] and (iii)
dTV (Ỹ ,Po(E[Ỹ ])) = O(dqd).

Proof. (a) Consider a fixed graph Hi. Let G be a subgraph of Qd which is
ambient-isomorphic to Hi, and let A be the event that the subgraph of Qp

induced by the vertices of G is exactly G, and it is also a component of Qp.
Then

P(A) = pe(Hi)qe
′(Hi)qv(Hi)d−2e(Hi)−2e′(Hi) = (p/q2)e(Hi)q−e

′(Hi)qv(Hi)d. (15)

Hence, by Lemma 8 part (a)

E[Yi] = 2d−si
(
d

si

)
(p/q2)e(Hi)q−e

′(Hi) qv(Hi)d,

completing the proof of part (a).

(b) Observe from part (a) that E[Yi] = Θ
(
dsi(2qv(Hi))d

)
. Thus the dominant

contribution to E[Y ] is from graphs Hi with i ∈ I∗ (for if i ∈ I∗ and j ∈ I\I∗,
then E[Yj] = O(1/d)E[Yi]). Using part (a) we now see that

E[Y ] = (1 +O(1/d)) c(d)s(2q
t)d = (1 +O(1/d)) cds(2qt)d.
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Now suppose that t is 1, 2 or 3. If i ∈ I∗ and j ∈ I\I∗, then v(Hj) > t so
E[Yj] = O(dqd)E[Yi] (note that if v(Hj) = t + 1 then sj ≤ s + 1). Hence
E[Y ] = (1 + O(dqd)) c(d)s(2q

t)d. (If t ≥ 4 then there could be t-vertex
graphs Hi with different spans, and if one has span s − 1 then E[Y ] =
(1 + Θ(1/d)) c(d)s(2q

t)d.)

Now we prove parts (b)(ii) and (b)(iii). Given d, let S = S(d) be the set
of subgraphs of Qd ambient isomorphic to one of the graphs H1, . . . , Hr. List
the members of S as G1, . . . , GN (where N = N(d)); and let Ai be the event
that Gi is a component of Qp. For distinct i, j ∈ [N ] let i ∼ j if either the
vertex sets V (Gi) and V (Gj) intersect or there is an edge of Qd between them.
Observe that if i 6= j and i 6∼ j then the events Ai and Aj are independent,
so we have a dependency graph. Now by (9) Var(Y ) = E[Y ] + ∆+ − ∆−,
where ∆+ and ∆− are defined in (10) and (11) respectively. We next bound
∆+ then ∆−.

If i 6= j and the vertex sets V (Gi) and V (Gj) intersect, then P(Ai∧Aj) =
0, so in the sum for ∆+ in (10) we need consider only the case where the two
vertex sets V (Gi) and V (Gj) are disjoint but have connecting edges in Qd

(of which there can be at most v(Gi)v(Gj)). By (15), there is a constant α
such that

P(Ai) ≤ α qv(Gi)d for each i. (16)

Thus, if i 6= j then

P(Ai ∧ Aj) ≤ P(Ai)P(Aj) q
−v(Gi)v(Gj) ≤ P(Ai)αq

v(Gj)dq−v(Gi)v(Gj). (17)

For each integer k let h(k) be the number of graphs Hi in the list with
v(Hi) = k. Observe that for each set W of k vertices of Qd, there are at most
h(k) graphs Gj with vertex set W , and there are no such graphs Gj if the
induced subgraph Qd[W ] of Qd on W is not connected. For a given graph Gi

of size t1, the number of vertices v in Qd adjacent to vertices in Gi is at most
t1d. By Lemma 9 each vertex v is in at most (ed)t2−1 sets W of t2 vertices
such that the induced subgraph Qd[W ] is connected. But each such vertex
set W is the vertex set of at most h(t2) graphs Gj. Thus each vertex v could
be in at most (ed)t2−1h(t2) graphs Gj of size t2. In the sums below, t1 and t2
run over the possible sizes of the graphs Gi and Gj. From the definition (10),
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and using (17) and the last observation, we have

∆+ =
∑
t1

∑
t2

∑
i:v(Gi)=t1

∑
j:j∼i,v(Gj)=t2

P(Ai ∧ Aj)

≤
∑
t1

∑
t2

∑
i:v(Gi)=t1

P(Ai)(t1d)(ed)t2−1h(t2)αqt2dq−t1t2

≤ (1 + o(1))
∑
t1

∑
i:v(Gi)=t1

P(Ai)(t1d)(ed)t−1h(t)αqtdq−t1t

= E[Y ]O(dtqtd),

that is
∆+ = E[Y ]O(dtqtd). (18)

Now consider ∆−. By (16)∑
i

P(Ai)
2 ≤

∑
i

P(Ai) · αqtd = E[Y ] · αqtd,

and, as for ∆+ except without the factor q−t1t2 (also including pairs i, j with
V (Gi) ∩ V (Gj) 6= ∅), we have∑

i

∑
j∼i

P(Ai)P(Aj) = E[Y ]O(dtqtd);

thus
∆− = E[Y ]O(dtqtd). (19)

Now that we have (18) and (19), from (9) we have Var(Y ) = E[Y ](1 +
O(qtddt)), and by Lemma 10 we have dTV (Y,Po(E[Y ])) = O(dtqtd), as re-
quired.

(c) The contribution to E[Y ] from graphs Hi with v(Hi) > t is O(dqd) ·E[Y ],
and similarly for E[Ỹ ]. This gives equation (c)(i).

For parts (c) (ii) and (iii), we may argue as for parts (b) (ii) and (iii),
but using Lemma 11 instead of Lemma 10. Assume that t = 1. Let Gi

and Ai be as before, and let ti = v(Gi). Then Ỹ =
∑r

i=1 tiIAi
. Since the ti

are uniformly bounded, the quantity ∆̃− (as in (14)) is at most a constant
times the unweighted version ∆−, and similarly for the second term in ∆̃+

(as in (13)). For the first term in ∆̃+, there is no contribution from the
isolated vertices (graphs Gi with ti = 1), so the term is O(d(2q2)d) : but
E[Y ] ≥ µ1 = (2q)d, so the term is O(E[Y ] dqd). Hence by (18) and (19), both
∆̃+ and ∆̃− are O(E[Y ] dqd). Equation (12) and Lemma 11 now complete
the proof.
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Recall that Xt denotes the number of components of size t in Qp, and
that µt = E[Xt]. We noted earlier (more than once) that µ1 = (2q)d, and the
precise values of µ2 and µ3 are given in (3).

Lemma 13. Let 0 < p < 1
2

and let q = 1− p. Let t ≥ 1 be fixed. Then

µt = (1 +O(1
d
)) tt−2

t!
( p
q2 )t−1dt−1(2qt)d = Θ(dt−1(2qt)d).

Proof. IfHj is a spreading tree of size t, then span(Hj) = t−1 and e′(Hj) = 0,
and so by Lemma 12 (a),

E[Yj] = (p/q2)t−12d−t+1

(
d

t – 1

)
qtd, (20)

where Yj is the number of components of Qp ambient-isomorphic to Hj. To
calculate µt we need to sum E[Yj] over all the ambient-isomorphism classes
of t-vertex connected cube subgraphs Hj. We see from Lemma 12 (a) (and
equation (20)) that if Hj is a spreading tree and Hj′ is not (so span(Hj′) ≤
t− 2) then E[Yj′ ] = O(d−1)E[Yj]. Thus the only significant terms are those
corresponding to ambient-isomorphism classes of spreading trees, and by
Lemma 8 (b) there are 2t−1tt−3 such classes. Hence

µt = (1 +O(1
d
)) 2t−1tt−3 2d−t+1

(
d

t – 1

)
qtd(p/q2)t−1

= (1 +O(1
d
)) dt−1(2qt)d(tt−3/(t−1)!)(p/q2)t−1,

as required.

Let us now complete the proof of Theorem 5 and then of Theorem 4.

Proof of Theorem 5. In part (a), the expected value is from Lemma 12 part (b)(i),
and the variance is from Lemma 12 part (b)(ii); and the first half of part (c)
(on Poisson approximation) is from Lemma 12 part (b)(iii).

Consider part (b). By a Chernoff bound (see for example inequality (2.9)
and Remark 2.6 of [14]),

P(|Y −λ| ≥ ε(dλ)
1
2 ) ≤ P(|Po(λ)− λ| ≥ ε(dλ)

1
2 ) + dTV (Y,Po(λ))

≤ 2e−ε
2d/3 +O(dtqtd),

by the Poisson approximation bound. Thus P(|Y−λ| ≥ ε(dλ)
1
2 ) = e−Ω(d), as

required.
Finally, consider the second half of part (c). Since as d→∞ we have λ→

∞, dTV (Y,Po(λ))→ 0 and Var(Y ) ∼ λ, it follows that Y ∗ is asymptotically
standard normal – see the discussion before Theorem 3. This concludes the
proof of Theorem 5.
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Proof of Theorem 4. The expression for the mean µt in part (a) is from
Lemma 13. The rest follows directly from Theorem 5, with H1, . . . , Hr list-
ing a representative of each ambient-isomorphism class of t-vertex connected
cube subgraphs.

Remark 14. In Theorem 5 it was natural to restrict our attention to con-
nected graphs Hi with at most mp vertices, and similarly in Theorem 4 it
was natural to restrict our attention to components with at most mp vertices.
However, both these theorems are based on Lemma 12 in which there are no
such restrictions. Thus in fact both these theorems hold without any such
restrictions on the numbers of vertices, apart from in the two places in each
theorem where we need the expected value λ to be large, namely the second
half of part (b) and the second half of part (c) (in each of Theorems 4 and 5).
We shall use this remark in the proof of Theorem 1.

We have now proved Theorem 4, which says in particular that the distri-
bution of the number Xt of components in Qp of size t is close to the Poisson
distribution Po(µt). From what we have already proved, we can quickly give
a first corresponding local limit result, showing that for suitable t we have
P(Xt = ν) ∼ P(Po(µt) = ν) uniformly over the ‘central range’ of integers ν.
Recall from Theorem 4 that µt = Θ(dt−1(2qt)d).

Proposition 15. Let 0 < p < 1/2 and let t be an integer with mp/3 < t ≤
mp. Then for any fixed c > 0

sup
ν

∣∣P(Xt = ν)/P(Po(µt) = ν) −1
∣∣ = e−Ω(d)

where the sup is over integers ν with |ν − µt| ≤ c
√
µt.

Proof. Note first that P(Po(µt) = ν) = Θ(µ
− 1

2
t ), uniformly over integers ν

with |ν − µt| ≤ c
√
µt. By Theorem 4 part (c), dTV (Xt,Po(µt)) = O(dtqtd),

so |P(Xt = ν) − P(Po(µt) = ν)| = O(dtqtd) uniformly over integers ν; and
hence

|P(Xt = ν)/P(Po(µt) = ν) − 1| = O(dtqtdµ
1/2
t ),

uniformly over integers ν with |ν−µt| ≤ c
√
µt. But dtqtdµ

1/2
t = O(d3t/2(2q3t)d/2) =

o(1) provided 2q3t < 1. Finally, we have 2q3t < 1 if t > mp/3 (and indeed if
t = mp/3 unless (2q)mp = 1).

4 The fragment Z has no large components

It will be straightforward to handle components of any fixed size t > mp.
We need to show also that wvhp there are no components in Z larger than
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some constant size (see Lemma 18 below). We use two preliminary lemmas.
Given a spanning subgraph Q′ of Q, call a vertex Q′-good if its degree in Q′

is at least dp/2 and bad otherwise.

Lemma 16. The probability that there is a pair of Qp-good vertices at dis-
tance at most 3 in Q which are not joined by a path of length at most 7 in
Qp is 2−Ω(d2).

Proof. For a vertex v we let Γ(v) denote its neighbourhood in Qp. Fix vertices
u 6= v in Q at distance at most 3. Consider the case when dQ(u, v) = 3 (the
other cases are similar). For convenience, we consider Qd as a graph on the
power set of [d]. We may then suppose wlog that u = ∅ and v = {1, 2, 3}.
Let A and B be sets of at least dp/2 neighbours in Q of u and v respectively.

For each i 6= j in {4, . . . , d} with {i} ∈ A and v∪{j} ∈ B, there is a path

{i}, {i, j}, {i, j, 1}, {i, j, 1, 2}, {i, j, 1, 2, 3}, {j, 1, 2, 3}

in Q, not using any edges incident with u or v. These form at least (|A| −
3)(|B| − 4) ≥ (pd/2− 3)(pd/2− 4) paths in Q of length 5 between A and B;
and the paths are pairwise edge-disjoint since each edge identifies the pair
(i, j). But the number of paths is at least p2d2/5 for d sufficiently large, and
then

P(no u−v path of length 7 in Qp | Γ(u) = A,Γ(v) = B)

≤ (1− p5)p
2d2/5 ≤ e−p

7d2/5.

But P(no u−v path of length 7 in Qp | u, v are Qp-good) is a weighted av-
erage of such probabilities, so

P((no u−v path of length 7 in Qp) ∧ (u, v are Qp-good))

≤ P(no u−v path of length 7 in Qp | u, v are Qp-good) ≤ e−p
7d2/5.

Now, by a union bound, the probability that there is a pair of Qp-good
vertices at distance 3 in Q which are not joined by a path of length 7 in Qp

is at most
2dd3e−p

7d2/5 = 2−Ω(d2).

Similarly, with failure probability 2−Ω(d2), if dQ(u, v) = 2 then wvhp there is
a u−v path of length 6, and if dQ(u, v) = 1 then wvhp there is a u−v path
of length 1 or 5.

The second preliminary lemma is deterministic.
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Lemma 17. Let Q′ be a (fixed) spanning subgraph of Q. Suppose that each
vertex has a Q′-good neighbour in Q, and that for each pair u, v of Q′-good
vertices at distance at most 3 in Q there is a u− v path in Q′. Then for each
pair u, v of Q′-good vertices there is a u − v path in Q′, and so all Q′-good
vertices are in the same component of Q′.

Proof. Let u, v be Q′-good vertices at distance t > 3 in Q. We must show
that there is a u − v path in Q′. Let u = x0, x1, . . . , xt−1, xt = v be a u − v
path in Q of length t. For each i = 1, . . . , t−1, let yi be a Q′-good neighbour
in Q of xi, where we choose y1 = u and yt−1 = v. Then since dQ(yi, yi+1) ≤ 3
for each i = 1, . . . , t− 2 there is a yi− yi+1 path in Q′. Hence there is a u− v
path in Q′.

We may now deduce an upper bound for L2 as required. When applying
this upper bound, we shall later typically set γ = 3, so that failure probabil-
ities will be negligibly small.

Lemma 18. Let 0 < p < 1/2 and let γ > 0. Then there is a constant N
such that P(L2 > N) = o(2−γd).

Proof. By a Chernoff bound and a union bound,

P(some vertex has no Qp-good neighbour in Q)

≤ 2d P(Bin(d, p) < pd/2)d ≤ 2d e−(pd/8) d = 2−Ω(d2).

Let A be the event that all Qp-good vertices in Qp are in the same component.
From the above bound and the last two lemmas

P(Ā) = 2−Ω(d2). (21)

Now let N = b16(1+γ)
p
c. If some component of the fragment has size at

least N + 1, then also the giant component has size at least N + 1. Hence, if
L2 > N and the event A holds then there is a component with size at least
N + 1 consisting entirely of bad vertices, and so in Qp there is a subtree with
N + 1 vertices each of which is bad. But consider any subtree T of Q with
N + 1 vertices. Since Q is bipartite there is a set W of at least (N + 1)/2
vertices of T which forms a stable set in Q; and the probability that each
vertex in such a set W is bad is

P(Bin(d, p) < pd/2)|W | ≤ e−
pd
8
N+1

2 ≤ e−(1+γ)d

by a Chernoff bound and the inequality (N + 1)pd/16 ≥ (1 + γ)d. Hence by
Lemma 9 and a union bound, the probability that there is a subtree of Qp

with N + 1 vertices each of which is bad is at most

2d(ed)Ne−(1+γ)d = (ed)N(2/e)(1+γ)d 2−γd = o(2−γd).
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Finally, using also (21), we have

P(L2 > N) ≤ P((L2 > N) ∧ A) + P(Ā) = o(2−γd),

which completes the proof.

5 Proofs of Theorems 1, 2 and 3

In this section, we complete the proofs of Theorems 1, 2 and 3.

5.1 Proof of Theorem 1

We have already noted that part (a) of Theorem 1 will follow directly from
Theorem 3 and inequality (2).

Proof of Theorem 1 part (b). Let N be as in Lemma 18 for γ = 3, so that
P(L2 > N) = o(2−3d). Consider an integer t with mp < t ≤ N . By Markov’s
inequality and Lemma 13,

P(Xt ≥ 1) ≤ E[Xt] = O(dt−1(2qt)d) = e−Ω(d),

where the last step follows since 2qt < 1. Hence wvhp the fragment Z has
no component containing exactly t vertices. Putting these results together,
we see that L2 ≤ mp wvhp; and that

E[L2] ≤ mp +N P(mp < L2 ≤ N) + 2d P(L2 > N) = mp + e−Ω(d).

But L2 ≥ mp wvhp by Theorem 4 part (b) with t = mp (since Xt ≥ µt/2
wvhp). Hence L2 = mp wvhp. It follows that E[L2] ≥ mp − e−Ω(d), and thus
|E[L2]−mp| = e−Ω(d).

Now consider Var(L2), starting with an upper bound. We have

E[(L2 −mp)
2IL2≤N ] ≤ N2 P(L2 6= mp) = e−Ω(d),

and
E[(L2 −mp)

2IL2>N ] ≤ 22d P(L2 > N) = e−Ω(d),

where I denotes an indicator variable (as earlier). Hence

Var(L2) ≤ E[(L2 −mp)
2] = e−Ω(d),

which is an upper bound as required. Finally we show that

Var(L2)� qd. (22)
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We start by noting a simple general lower bound on variance. Let the random
variable L be integer-valued; let k be an integer and let x > 0; and suppose
that both P(L ≤ k) and P(L ≥ k+1) are at least x. Then Var(L) ≥ x(1−x).

We know that L2 = mp wvhp. Recall from Remark 14 that in Theorem 4
both part (a) and the first half of part (c) hold for any given positive integer t
(not just for t ≤ mp). Let t = mp + 1 (≥ 2). By the first half of part (c) of
Theorem 4

P(L2 ≥ t) ≥ P(Xt ≥ 1) = P(Po(µt) ≥ 1) +O(dtqtd).

But since µt = o(1) and 2qmp ≥ 1, by part (a) of Theorem 4

P(Po(µt) ≥ 1) = (1 + o(1))µt = Θ(dt−1(2qt)d)� dtqtd.

Thus
P(L2 ≥ mp + 1) ≥ (1 + o(1))µmp+1 � qd.

Now (22) follows from the general lower bound on variance given above, and
this completes the proof of the theorem.

5.2 Proof of Theorem 2

We prove the two parts of the theorem separately. We denote the r-ball
Br(0) centred on the vertex 0 by Br for short.

Proof of Theorem 2 part (a). Let s = mp+1 and let V = V (Q). Recall from
Theorem 1(b) that L2 ≤ mp wvhp. We use deg(v) for the degree of a vertex
v in Qp. Also, for v ∈ V and W ⊆ V , let e(v,W ) be the number of edges in
Qp between v and W . For each subset S ⊆ V with |S| = s we have

P((S ⊆ V (Z)) ∧ (L2 ≤ mp)) ≤ P(deg(v) ≤ mp − 1 ∀v ∈ S)

≤ P(e(v, V \ S) ≤ mp − 1 ∀v ∈ S)

= (P(Bin(d− s, p) ≤ mp − 1))s

≤
((

d− s
mp − 1

)
qd−s−(mp−1)

)s
≤

(
dmp−1qd−2mp

)s ≤ (d/q2)mpsqsd.
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Hence, for any r > 0,

P(|V (Z) ∩ Br(u)| ≥ s for some u ∈ V )

= P
( ⋃
u∈V

⋃
S⊆Br(u),|S|=s

(S ⊆ V (Z))
)

≤ P
( ⋃
u∈V

⋃
S⊆Br(u),|S|=s

(S ⊆ V (Z)) ∧ (L2 ≤ mp)
)

+ P(L2 > mp)

≤ 2d
(
|Br|
s

)
(d/q2)mpsqsd + P(L2 > mp)

≤ (d/q2)mps |Br|s (2qs)d + P(L2 > mp). (23)

Since s > mp and q < 1/2, we have 2qs < 1 and 1 > log2(1/q)−1/s > 0. Let
η1 be the unique x ∈ (0, 1

2
) such that h(x) = log2(1/q)−1/s. Let 0 < η < η1.

Then h(η) < log2(1/q)− 1/s, and so

2 (2h(η)q)s < 1.

Set r = ηd. Then |Br| = 2h(η)d+o(d) by standard estimates. Thus, by the last
inequality,

|Br|s (2qs)d = (2 (2h(η)q)s)d2o(d) = 2−Ω(d).

Hence, by (23) and using P(L2 > mp) = 2−Ω(d), we have

P(|V (Z) ∩Br(u)| ≥ s for some u ∈ V ) = 2−Ω(d)

as required.

Consider η1 in the above proof: it can be shown that if η > η1 then the
expected number of ηd-balls containing more than mp vertices in Z tends to
∞ as d→∞.

Proof of Theorem 2 part (b). Recall that η∗ is defined immediately before
Theorem 2. We may assume that ε > 0 is sufficiently small that η∗ − ε > 0
and η∗ + ε < 1

2
. Given 0 < η ≤ 1

2
, we have |Bηd| = 2h(η)d+o(d), as we noted

above. Also, 2−h(η∗) = q. Hence, by Theorem 1 (a), wvhp

|B(η∗−ε)d| · Z ≤ 2h(η∗−ε)d+o(d) · 2µ1

= 2(h(η∗−ε)−h(η∗)+o(1))d · 2d

= 2−Ω(d) · 2d,

As the number of vertices within distance at most (η∗ − ε)d of Z is at most
|B(η∗−ε)d| · Z, this proves the first half of part (b).
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For the second half, let B′ denote B(η∗+ε)d. By the definition of η∗, and
recalling that h(η) is strictly increasing on (0, 1

2
), we have qd|B′| = eΩ(d).

Since Qd is bipartite, there is a stable subset B′′ of B′ with |B′′| ≥ 1
2
|B′|; and

the probability that no vertex of Z is in B′ is at most the probability that
no vertex in B′′ is isolated, which equals

(1− qd)|B′′| ≤ exp(−1
2
qd|B′|) = exp(−eΩ(d)).

This bound refers to the ball B′ centred at 0, and indeed to any fixed centre
vertex. Taking a union bound over all 2d possible centre vertices shows that
the probability that some vertex is not within distance (η∗ + ε)d of Z is
exp(−eΩ(d)), and thus completes the proof.

In the last part of the proof above, the number of isolated vertices in B′′

has distribution Bin(|B′′|, qd), with mean at least 1
2
|B′|qd = eΩ(d). Hence,

by a Chernoff bound, the probability that there are at most 1
4
|B′|qd isolated

vertices in the ball B′ is at most e−e
Ω(d)

; and so, by a union bound, wvhp
each (η∗ + ε)d-ball contains exponentially many isolated vertices.

5.3 Proof of Theorem 3

By Lemma 18 we may choose a fixed integer N ≥ 2 such that P(L2 > N) ≤
2−3d.

Proof of Theorem 3 part (a). Note that Z ≤ 2d and so

Z ≤
N∑
t=1

Xt + 2dIL2>N .

By Lemma 13, for each 2 ≤ t ≤ N , µt = E[Xt] = Θ(dt−1(2qt)d), so µt is
O(d(2q2)d). Hence,

E[Z] ≤
N∑
t=1

µt + 2d P(L2 > N)

≤ µ1 +O(d(2q2)d) + 2−2d = (1 +O(dqd))µ1.

Also, of course, µ1 + µ2 ≤ E[X] ≤ E[Z], which completes the proof for the
expected values.

Now consider variances. Let X≤N =
∑N

t=1 Xt be the total number of

components in Qp of size at most N ; and similarly let Z≤N =
∑N

t=1 tXt be
the total size of the components of size at most N . Then

Var(Y )− Var(Y≤N) ≤ E[Y 2−Y 2
≤N ] ≤ 22dP(L2 > N) ≤ 2−d,
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and

Var(Y≤N)−Var(Y ) ≤ E[Y+Y≤N ]E[Y−Y≤N ] ≤ 2E[Y ]2dP(L2>N) = o(2−d),

and so
|Var(Y )− Var(Y≤N)| = O(2−d).

Hence by Lemma 12(b) and (c), with H1, . . . , Hr listing a representative of
each ambient-isomorphism class of connected cube subgraphs with at most
N vertices, we see that Var(Y ) = (1 +O(dqd))µ1, as required.

Proof of Theorem 3 part (b). Let us show first that

dTV (Y,Po(λ)) = O(dqd). (24)

Write λ≤N for E[Y≤N ]. Now dTV (Y,Po(λ)) is at most

dTV (Y, Y≤N) + dTV (Y≤N ,Po(λ≤N)) + dTV (Po(λ≤N),Po(λ)).

We consider the three terms in the sum in order. Firstly, we have

dTV (Y, Y≤N) ≤ P(Y 6= Y≤N) = P(L2 > N) ≤ 2−3d = o(qd).

Secondly, by Lemma 12(b) and (c) (with Hi as above)

dTV (Y≤N ,Po(λ≤N)) = O(dqd).

Thirdly, for µ, δ > 0 the sum of independent Po(µ) and Po(δ) random vari-
ables has distribution Po(µ+ δ); and so

dTV (Po(µ),Po(µ+ δ)) ≤ P(Po(δ) 6= 0) = 1− e−δ ≤ δ.

Thus

dTV (Po(λ≤N),Po(λ)) ≤ λ− λ≤N ≤ 2d P(L2 > N) ≤ 2−2d = o(qd).

Putting these inequalities together we obtain (24).
Finally, since also Var(Z) ∼ λ→∞ as d→∞, it follows from (24) that

Z∗ is asymptotically standard normal (see the discussion immediately before
Theorem 3). This completes the proof of part (b), and thus of Theorem 3
(and thus also of Theorem 1).
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6 Joint distributions: proof of Theorem 6

In this section we prove Theorem 6 on the joint distribution of the numbers
of components of different types in the fragment. We start by presenting a
general lemma on approximating a joint distribution by a product of Poisson
distributions. As in Subsection 2.2, let (Ai : i ∈ I) be a family of events
with a dependency graph L, and write i ∼ j if i and j are adjacent in L.
For each i, let πi = P(Ai) and let Ii be the indicator function of Ai. Now
we let I be partitioned into I1 ∪ · · · ∪ Ir for some r ≥ 1. For each j ∈ [r],
let Xj =

∑
i∈Ij IAi

and let λj = E[Xj]. The following lemma is essentially

a special case of Theorem 10.K of Barbour, Holst and Janson [2] when all
means λj →∞. Sums and products over j or j′ always mean over j or j′ in
[r].

Lemma 19. With notation as above, assume that each λj →∞ as d→∞.
Then for d sufficiently large

dTV (L(X1, . . . , Xr),
∏
j

Po(λj))

≤
∑
j

ln(λj)

λj

∑
i∈Ij

π2
i +

∑
j

∑
j′

ln(λjλj′)√
λjλj′

∑
i∈Ij

∑
i′∈Ij′

Ii∼i′(P(Ai∧Ai′) + πiπi′).

Proof of Theorem 6. As earlier, given d let S = S(d) be the set of subgraphs
of Qd ambient isomorphic to one of the graphs H1, . . . , Hr. List the members
of S as G1, . . . , GN ; and let Ai be the event that Gi is a component of Qp.
We let i, i′ run over [N ] and j, j′ run over [r]. For distinct i, i′ let i ∼ i′ if
either the vertex sets V (Gi) and V (Gi′) intersect or there is an edge of Qd

between them; and note that this gives a dependency graph L. For each j,
let Ij = {i : Gi is ambient isomorphic to Hj}.

Now we can apply Lemma 19. We must bound the two terms in the
lemma. First, by (16), there is a constant α such that, for each j,∑

i∈Ij

π2
i ≤

∑
i∈Ij

πi · αqv(Gi)d = λj · αqv(Hj)d.

Hence ∑
j

ln(λj)

λj

∑
i∈Ij

π2
i ≤ α

∑
j

ln(λj) q
v(Hj)d = O(dqt

∗d) (25)

since ln(λj) = O(d) uniformly over j.
For the second term, let j, j′ ∈ [r] (not necessarily distinct). For i ∈ Ij

and i′ ∈ Ij′ , as in (17) we have

P(Ai ∧ Ai′) ≤ πiπi′ q
−v(Hj)v(Hj′ ) ≤ πi αq

v(Hj′ )dq−v(Hj)v(Hj′ ).
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Hence, arguing as in the proof of (18),

β(j, j′) :=
∑
i∈Ij

∑
i′∈Ij′

Ii∼i′
(
P(Ai ∧ Ai′) + πiπi′

)
≤

∑
i∈Ij

πi · αqv(Hj′ )d
(
q−v(Hj)v(Hj′ ) + 1

)
v(Hj)d (ed)v(Hj′ )−1

= λj ·O
(
dv(Hj′ )qv(Hj′ )d

)
= λj ·O

(
(dqd)v(Hj′ )

)
.

Similarly, swapping j and j′, we have

β(j, j′) ≤ λj′ ·O
(
(dqd)v(Hj)

)
;

and so
β(j, j′) ≤

√
λjλj′ ·O

(
(dqd)

t∗
jj′
)
,

where t∗jj′ = min{v(Hj), v(Hj′)}. Hence,

ln(λjλj′)√
λjλj′

β(j, j′) = O(d)O((dqd)
t∗
jj′ ) = O

(
dt
∗+1qt

∗d
)
.

So, summing over the bounded number of choices of j and j′, we obtain∑
j

∑
j′

ln(λjλj′)√
λjλj′

∑
i∈Ij

∑
i′∈Ij′

Ii∼i′(P(Ai∧Ai′) + πiπi′)

=
∑
j

∑
j′

ln(λjλj′)√
λjλj′

β(j, j′) = O
(
dt
∗+1qt

∗d
)
.

This result, together with (25) lets us use Lemma 19 to complete the proof
of Theorem 6.

7 Concluding remarks

In Theorems 1 to 6 we have seen quite a full picture of the rich component
structure of the random graph Qp = Qd

p, for fixed p with 0 < p < 1
2
. In

particular, given an integer t with 1 ≤ t ≤ mp, by Theorem 4 the number
Xt of components in Qp of size t, with mean µt, has close to the Poisson
distribution Po(µt), and thus the standardised version X∗t has close to the
standard normal distribution. In Proposition 15 we gave a partial corre-
sponding local limit result for convergence to the Poisson distribution: it
would be interesting to learn more on such local behaviour.
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It would also be interesting to consider the component structure in the
case when p is not fixed in (0, 1

2
), but p = p(d) decreases suitably slowly to 0

as d→∞. (Thanks to Remco van der Hofstadt for asking about this case.)

Acknowledgement: We would like to thank the referees for their careful
reading and very helpful comments.
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