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Abstract. We prove that for every c > 0 there exists a constant
K = K(c) such that every graph G with n vertices and minimum
degree at least cn contains a cycle of length t for every even t in the
interval [4, ec(G)−K] and every odd t in the interval [K, oc(G)−K],
where ec(G) and oc(G) denote the length of the longest even cycle
in G and the longest odd cycle in G respectively. We also give a
rough estimate of the magnitude of K.

1. Introduction

In this note we will study the set of distinct cycle lengths in graphs.
For a graph G, we define the cycle spectrum CS(G) of G as the se-
quence ℓ1 < . . . < ℓr of lengths of cycles in G. The study of cycles in
graphs has long been fundamental, and many questions about prop-
erties of graphs that guarantee some particular range of cycle lengths
have been considered. For example, a graph G with n vertices is said
to be pancyclic if CS(G) = [3, n]. It was proved by Bondy [5] that if

G is a hamiltonian graph of order n with |E(G)| ≥ n2

4
, then either G

is pancyclic or n is even and G = Kn/2,n/2.
Brandt [7], [8] introduced the idea of weakly pancyclic graphs, that

is, graphs with cycles of all lengths from the girth to the circumference.
Here the girth g(G) is the length of the shortest cycle in G, and the
circumference c(G) is the length of the longest cycle. Brandt showed
that if |E(G)| > ⌊(n− 1)2/4 + 1⌋ then G is weakly pancyclic. Bollobás
and Thomason [4] proved that if G is a nonbipartite graph of order n
and size at least ⌊n2/4⌋ − n + 59, then G contains a cycle of length
ℓ for 4 ≤ ℓ ≤ c(G). Degree conditions for weakly pancyclic graphs
were considered by Brandt, Faudree and Goddard [9], who showed in
particular that if G is a non-bipartite 2-connected graph with minimum
degree δ(G) ≥ n/4+250 then G is weakly pancyclic unless the shortest
odd cycle in G has length 7.
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In graphs with fewer edges, it is still the case that a reasonably large
density can force a large range of cycle lengths. Bondy and Simonovits
[6] showed the very general result that if |E(G)| > 100kn1+1/k then G
contains the cycle C2m for every m ∈ [k, kn1/k], answering a conjec-
ture of Erdős ([11], [13]). (For a recent improvement of this result see
Verstraëte [19].) Others considered the question of how many different
cycle lengths were present in G. Proving a conjecture of Erdős and
Hajnal [12], Gyárfás, Komlós and Szemerédi showed that for suitable
positive constants a, b, if the minimum degree δ(G) ≥ b then

∑

i∈CS(G)

1

i
≥ a log δ(G).

This implies that a large number of distinct cycle lengths exist in G.
As part of the difficult and intricate proof of this result, they showed
that most even cycles were present over a certain interval dependent on
the minimum degree (most meaning with the exception of multiples of
2t for some integer t ≥ 2). See Bollobás ([2] and [3]) for other results
in this general area.

Faudree suggested the question of measuring the maximum gap in
the cycle spectrum for graphs under various edge density conditions.
For a graph G and a positive integer s, we say that the cycle spec-
trum CS(G) is s-dense in the interval [k,m] if for every ℓ ∈ [k,m], at
least one of ℓ, ℓ − 1, . . . , ℓ − s + 1 is in CS(G). For example, the theo-
rem of Bondy and Simonovits [6] implies that if |E(G)| > 100kn1+1/k

then CS(G) is 2-dense in the interval [2k, 2kn1/k]. This approach was
considered in [15] for graphs with minimum degree n−k

2
where k is a

constant and also for graphs that are hamiltonian and have at least
one pair of adjacent vertices with high degree sum.

In this note we also consider a minimum degree condition. Note that
Bondy’s theorem [5] (together with Ore’s classical theorem [18] that a
graph with minimum degree at least n/2 is hamiltonian) implies that
the cycle spectrum of any graph G with δ(G) ≥ n/2 is 2-dense in the
interval [4, n]. Note that in this case n is the circumference c(G) of G.
Results of Fan [14] and Verstraëte [19] (improving on [17]) show that
if G is a graph with minimum degree δ then the cycle spectrum of G
contains cδ consecutive even integers, for a positive constant c. Our
goal is to prove the following theorem, which implies that for each c > 0
there exists K such that all sufficiently large graphs G with δ(G) ≥ cn,
the cycle spectrum CS(G) is 2-dense in the interval [4, c(G) − K].
Below oc(G) and ec(G) denote, respectively, the length of the longest
odd cycle and the length of the longest even cycle in G.
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Theorem 1. For every real number c > 0 there exists a constant K =
K(c) depending only on c such that the following holds. Let G be a
graph with n ≥ 45K/c4 vertices and minimum degree at least cn. Then
G contains a cycle of length t for every even integer t ∈ [4, ec(G)−K]
and every odd integer t ∈ [K, oc(G) − K].

The simpler statement that G contains cycles of all even lengths up to
c(G)−K is not true, as the following example shows. Let m ≥ 3 be an
odd integer and suppose n = 2ms where s ≥ 2 is an integer. We form a
graph H from a disjoint union of m copies K1[X1, Y1], . . . , Km[Xm, Ym]
of the complete bipartite graph Ks,s by adding m vertex-disjoint edges
e1, . . . , em as follows. For 1 ≤ i ≤ m − 1 we let ei join a vertex yi of
Yi to a vertex of Xi+1, and we let em join a vertex of Ym to a vertex
of Y1 different from y1. Then δ(H) = s = n/2m and c(G) = n − 1 but
the longest even cycle has length only 2s = n/m. This example also
shows that, for c = 1/2m, Theorem 1 is best possible up to the error
term K, since H contains cycles of all even lengths in [4, n/m] and all
odd lengths in [2m+2, n− 1] and there are no other cycle lengths. For
general c there is also the simpler example of the complete bipartite
graph with ⌈cn⌉ vertices in one class and n−⌈cn⌉ vertices in the other.

In our approach to proving Theorem 1, we show that K(c) = O(c−5).
However, we emphasize that this is only a very rough estimate and we
do not undertake to find the smallest possible value of K here. We
remark that the proof can be made somewhat simpler if we do not
attempt to bound K by a reasonable function of c.

All graphs considered here are finite simple graphs. For terms not
defined here see [10].

2. Proof of Theorem 1

We begin by collecting a number of useful facts into a lemma. Parts
(1) and (3) are immediate. Results essentially the same as (2) appear
in the work of many authors, see eg. Beck [1]. For completeness we
give its short proof in Section 3.

Lemma 2. Let B[U,W ] be a bipartite graph with vertex classes U and
W . Let d̄(U) and d̄(W ) denote the average degree of vertices in U and
W respectively. Then

(1) W has a subset W ′ with |W ′| ≥ |W |(d̄(W )/(2|U |− d̄(W ))) such
that every vertex w in W ′ has dU(w) ≥ d̄(W )/2.

(2) There exist nonempty subsets U ′′ ⊂ U and W ′′ ⊂ W such that
the subgraph B[U ′′,W ′′] of B induced by U ′′∪W ′′ has dW ′′(u) ≥
d̄(U)/2 for all u ∈ U ′′ and dU ′′(w) ≥ d̄(W )/2 for all w ∈ W ′′.
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(3) B[U,W ] has a path of length at least 2δ(B)-1 starting from any
vertex x of B, where δ(B) denotes the minimum degree of B.

We shall also need the following elementary technical lemma. We
include its very standard proof in Section 3 for completeness. Here
Γ(v) denotes the neighborhood of the vertex v.

Lemma 3. Let c > 0 be given, and let G be a bipartite graph with vertex
classes V = {v1, . . . , vr} and W , where |W | = n. Suppose r = ⌈2/c⌉
and d(vi) ≥ cn for each i. Then for some i 6= j we have |Γ(vi)∩Γ(vj)| ≥
c2n/2.

Our first step in the proof of Theorem 1 will be to show that in
a given graph G, there exists a subgraph H consisting of a bipartite
subgraph H0 of large minimum degree, whose number of vertices is a
large constant, together with a long path that joins one vertex of H0 to
another, and is otherwise disjoint from H0. To prove the theorem, we
will show that a cycle of a given length t can be found by “shortening”
the path until it is only slightly shorter than t, and then adding a path
in H0 of precisely the right length to form the cycle.

Lemma 4. Let c > 0 be given, and let G be a graph with n vertices
and minimum degree δ(G) ≥ cn. Let K0 ≥ ⌈50000c−4⌉, and suppose
n ≥ 5K0c

−1. Let C0 be a cycle in G of length at least 5K0. Then G
contains a subgraph H consisting of

(1) a bipartite graph H0 with vertex classes X ∪ {x0} and Y where
|X| ≤ K0, |Y | ≤ K0, δ(H0) = k ≥ c3K0/4096, and x0 is
adjacent to every vertex of Y ,

(2) a path P of length at least |C0|− 4K0 and of the same parity as
|C0| that joins x0 to a vertex x1 of X, and is otherwise disjoint
from H0.

Proof of Lemma 4. Let G be a graph as described and let C0 be a cycle
in G with length at least 5K0. For convenience we fix an orientation of
C0. Let S be an interval of C0 of order 2K0, in other words S is a set
of 2K0 consecutive vertices on C0. Let S0 ⊆ S be a subset of set K0

obtained by taking alternate vertices in S (so that all pairs of vertices
in S0 are an even distance apart in S). Consider the bipartite subgraph
G0 = G[S0, V (G)\S]. We note that e(S0, V (G)\S) ≥ |S0|(cn−|S|) ≥
cnK0/2, and so d̄G0

(V (G) \ S) ≥ cK0/2. Thus applying Lemma 2(1)
we obtain a subset W1 of V (G) \S such that |W1| ≥

c
(4−c)

(n− 2K0), in

which every vertex of W1 has degree at least cK0/4 into S.
Our aim now is to identify a certain special subset W2 of W1. If W1

contains at least cK0/2(4 − c) vertices that are not on C0, we let W2



A NOTE ON CYCLE LENGTHS IN GRAPHS 5

be a subset of W1 \ V (C0) of size ⌈cK0/2(4− c)⌉. We refer to this case
as Case A. Otherwise, |W1 ∩ V (C0)| ≥ c(n − 5K0/2)/(4 − c), so since
|V (C0)\S| ≤ n−2K0 we can cover C0\S by ⌈(n−2K0)/2K0⌉ ≤ n/2K0

intervals of order 2K0. Thus some interval I in C0 \ S of order 2K0

contains at least 2cK0(n − 5K0/2)/(4 − c)n > cK0/(4 − c) vertices of
W1. In this case, which we call Case B, we let W2 be a subset of I ∩W1

of size ⌈cK0/2(4− c)⌉ such that all vertices of W2 are an even distance
apart in I. In either case each vertex of W2 still has degree at least
cK0/4 into S0.

Now we apply Lemma 2(2) to the bipartite subgraph G2 = G[S0,W2].
The result is an induced bipartite subgraph B[S3,W3], where each w ∈
W3 has dS3

(w) ≥ d̄G2
(W2)/2 ≥ cK0/8, and each s ∈ S3 has dW3

(s) ≥
d̄G2

(S0)/2 ≥ (|W2|/|S0|)d̄G2
(W2)/2 ≥ c2K0, where c2 = c2/16(4 − c).

Then cK0/8 ≤ |S3| ≤ K0 and c2K0 ≤ |W3| ≤ ⌈cK0/2(4 − c)⌉.
First we consider Case A. We choose x0 to be the first vertex of S3

on the interval S (in our fixed orientation). Let M be a set of size
⌈c2K0⌉ contained in the neighbourhood of x0 in W3, and let G∗ be
the subgraph of B[S3,W3] induced by M ∪ (S3 \ {x0}). Then each
vertex of M has degree at least cK0/8 − 1 into S3 \ {x0}, so G∗ has
at least c2K0(cK0/8 − 1) edges. Hence the average degree on both
sides of G∗ is at least c2(cK0/8 − 1). Therefore, by Lemma 2(2) there
exists a subgraph H0[X,Y ] of G∗ with X ⊆ S3 \ {x0} and Y ⊆ M
with minimum degree at least c2(cK0/8 − 1)/2 > c3K0/4096. Then
H0[X,Y ] satisfies (1) of Lemma 4. For (2), we take x1 to be the vertex
of X that is farthest from x0 on the interval S, and let the path P be
the segment of C0 that joins x0 to x1 and is disjoint from the rest of
X (note that x0 and x1 are an even distance apart in S and so P has
the same parity as C0). Then P has length at least |C0| − 2K0. This
proves Lemma 4 in Case A.

Now we turn to Case B. Let W3 = {w1, . . . , wp} in the order in
which they appear on the oriented cycle C0 (recall they all fall into the
interval I and are all even distances apart in I). Let l be the smallest
index such that there exists j < l where wj and wl have a common
neighbourhood N of size ⌈c2K0/128⌉ in S3. By Lemma 3 applied to
B[S3,W3], we know that l ≤ ⌈16/c⌉. Let s1 and s2 be elements of N
that are farthest apart in the interval S, and such that the oriented
path C0(wl, s2) in C0 from wl to s2 is disjoint from the oriented path
C0(s1, wj).

Consider the graph G∗ = G[N \{s1, s2},W3 \{w1, . . . , wj, wl}]. Note
that each vertex in N \ {s1, s2} has degree at least c2K0 − 16c−1 − 2
in G∗. Further, we know |N \ {s1, s2}| ≥ c2K0/128 − 2. Therefore the
number of edges in G∗ is at least
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(
c2K0

128
− 2)(c2K0 −

16

c
− 2) ≥

c2c2K
2
0

128
−

cK0

8
−

c2K0

64
− 2c2K0.

Thus, the average degree on both sides of G∗ is at least this number
divided by max{|N \ {s1, s2}|, |W3|} < cK0/6, which is greater than

3cc2K0

64
−

3

4
−

c

16
−

12c2

c
>

cc2K0

32
>

c3K0

2048
.

Here the first inequality follows since K0 ≥ 50000c−4, and the second
from the definition of c2.

Applying Lemma 2(2) to G∗ we obtain a graph H0[X,Y ] with X ⊂
W3 \ {w1, . . . , wj, wl} and Y ⊂ N \ {s1, s2} with minimum degree at
least

k ≥
c3K0

4096
.

Then, setting x0 = wj, we see that H0 satisfies (1) as claimed.
To verify (2), we choose x1 to be the element of X that is farthest

from x0 on the interval I, that is, we let x1 = wb where b ≤ p is
the highest index such that wb ∈ X. Finally we let the path P be
C0(x1, s2)wlC0(s1, x0). Note that s1 and s2 are an even distance apart
in S and so P has the same parity as C0(x1, x0). Then P has length
at least |C0| − 4K0, satisfying (2). �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let K = 5K0, where K0 = 150000c−5. Let C0

be a longest even or a longest odd cycle and let H0 be the bipartite
subgraph of G and P the path guaranteed by Lemma 4(1). Recall that
the minimum degree k of H0 satisfies c3K0/4096 ≤ k ≤ K0. We first
note that the bipartite subgraph H0 contains cycles of all even lengths
between 4 and 2k, by Lemma 2(3) and the fact that x0 is adjacent to
every vertex of Y . We therefore need only check that G contains a
cycle of length t for every t in the interval [2k, ℓ(P )] with t the same
parity as ℓ(P ), where ℓ(P ) denotes the length of the path P .

Let t ∈ [2k, ℓ(P )] be fixed. We now describe a sequence of paths
P0, P1, . . . , Pf with the following properties.

(1) Each Pi joins x0 to x1 and is otherwise disjoint from H0, and
its length has the same parity as ℓ(P ),

(2) P0 = P ,
(3) ℓ(Pi) − Q ≤ ℓ(Pi+1) ≤ ℓ(Pi) − 1 for each i, where Q = 15c−2 +

12c−1,
(4) ℓ(Pf ) ≤ t − 4 < ℓ(Pf−1).
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We begin by setting P0 = P . Assume that paths P0, . . . , Pi have been
constructed. If ℓ(Pi) ≤ t − 4 then we set f = i and stop. Otherwise
we select r = ⌈3/c⌉ vertices Z = {z1, . . . , zr} on Pi spaced at distance
4 apart and let S be the smallest interval containing them. Note that
this is possible since ℓ(Pi) ≥ 2k ≥ c3K0/2048 > 4r by definition of K0.
Then by Lemma 3 applied to the graph G[Z, V (G)\S] (with c′ = 2c/3),
some pair z 6= z′ in Z have at least 2c2n/9 common neighbours in
V (G) \S. If one such neighbour y is disjoint from Pi ∪H0, then we let
Pi+1 be the path obtained by replacing the (z, z′) segment of Pi by zyz′.
Note that this shortens the path by an even length of at least 2 and at
most 4r. Otherwise at least 2c2n/9−2K0 common neighbours of z and
z′ fall onto Pi. Since Pi has length less than n, and n ≥ 90K0c

−4, there
is an interval I in Pi of length at most 15c−2 that is disjoint from S
and contains three common neighbours and therefore two that are an
even distance apart in I, say y1 and y2. We obtain Pi+1 by removing
the (z, z′) and (y1, y2) segments of Pi and adding the edges zy1 and z′y2

(or z′y1 and zy2, whichever results in a connected path). This shortens
Pi by at least 2 and at most 4r + 15c−2. This completes the definition
of the paths Pi.

Having found the path Pf , which by (3) satisfies t−Q ≤ ℓ(Pf ) ≤ t−4,
we then use Lemma 2(3) as above to complete it to a cycle of length t
by adding an (x0, x1) path of the required even length in H0. Note that
this is possible since K0 ≥ 150000c−5 implies k ≥ c3K0/4096 ≥ Q/2.
This completes the proof. �

3. Proofs of Lemmas

Proof of Lemma 2(2). In fact we shall prove a stronger statement: that
there exist U ′′ ⊆ U and W ′′ ⊆ W such that |B[U ′,W ′′]| ≥ d̄(U)|U ′|/2
for every U ′ ⊆ U ′′, and |B[U ′′,W ′]| ≥ d̄(W )|W ′|/2 for every W ′ ⊆ W ′′.
Here |G| denotes the number of edges in the graph G. Then Lemma
2(2) follows immediately by taking U ′ = {u} and W ′ = {w}.

We let ∅ 6= U ′′ ⊆ U and ∅ 6= W ′′ ⊆ W be minimal such that

|B[U ′′,W ′′]| ≥ d̄(U)|U ′′|/2 + d̄(W )|W ′′|/2.

Note that such a choice exists since the pair (U,W ) itself satisfies this
condition. We claim that (U ′′,W ′′) has the desired property. To see
this, suppose on the contrary that there exists some U0 ⊆ U ′′ such that
|B[U0,W

′′]| < d̄(U)|U0|/2. Note that U0 6= U ′′, so U ′′ \U0 is not empty.
But then |B[U ′′\U0,W

′′]| = |B[U ′′,W ′′]|−|B[U0,W
′′]| > d̄(U)|U ′′|/2+

d̄(W )|W ′′|/2 − d̄(U)|U0|/2 = d̄(U)|U ′′ \ U0|/2 + d̄(W )|W ′′|/2, which
shows that the pair (U ′′ \ U0,W

′′) contradicts the choice of (U ′′,W ′′).
Similarly we reach a contradiction if there exists some W0 ⊆ W ′′ such
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that |B[U ′′,W0]| < d̄(W )|W0|/2. Therefore the statement is true, which
proves Lemma 2(2). �

Proof of Lemma 3. Note we may assume that |W | = n, and that each
vi has degree exactly cn in G, since adding edges cannot decrease the
size of the largest common neighbourhood. We let W = {w1, . . . , wn},
and for each vi we let xi denote the vector of length n that has 1
in the jth position if wjvi is an edge of G, and 0 otherwise. Then
note that 〈xi, xj〉 = |Γ(vi) ∩ Γ(vj)| for each i and j, where 〈, 〉 denotes
the standard innner product in R

n. Suppose on the contrary that
|Γ(vi) ∩ Γ(vj)| < c2n/2 for all i 6= j.

We consider the quantity S = 〈
∑r

i=1 xi,
∑r

i=1 xi〉. Then by definition
S =

∑n
i=1 d(wi)

2, and hence by the Schwarz inequality we find

S ≥ (
n∑

i=1

d(wi))
2/n.

On the other hand, S =
∑r

i=1 |Γ(vi)| +
∑

i6=j〈xi, xj〉 <
∑r

i=1 |Γ(vi)| +

(r2−r)c2n/2 by our assumption. But each vi has exactly cn neighbours,
so

∑r
i=1 |Γ(vi)| =

∑n
i=1 d(wi) = cnr. Hence we obtain

(cnr)2/n ≤ S < cnr + (r2 − r)c2n/2.

Therefore cr < 1 + (r − 1)c/2, so since 2/c ≤ r < 2/c + 1 we conclude
2 < 2. This contradiction shows that the result holds. �
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[16] Gyárfás, A., Komlós, J., Szemerédi, E., On the distribution of cycle lengths in
graphs, J. Graph Theory 8 (1984), 441-462.
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[19] Verstraëte, J., On arithmetic progressions of cycle lengths in graphs, Combi-

natorics, Probability and Computing 9 (2000), 369–373.

Department of Mathematics and Computer Science Emory Univer-

sity, Atlanta, GA, USA 30322

E-mail address: <rg@mathcs.emory.edu>

Department of Combinatorics and Optimization, University of Wa-

terloo, Waterloo, Ont., Canada N2L 3G1

E-mail address: <pehaxell@math.uwaterloo.ca>

Department of Mathematics, University College, London, WC1E

6BT, England

E-mail address: <scott@math.ucl.ac.uk>


