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Abstract

Let us say a graph is Os-free, where s ≥ 1 is an integer, if there do not exist s cycles of the graph
that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even
when s = 2, is not well understood. For instance, until now we did not know how to test whether a
graph is O2-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that
O2-free graphs have only a polynomial number of induced paths.

In this paper we prove Le’s conjecture; indeed, we will show that for all s ≥ 1, there exists c > 0
such that every Os-free graph G has at most |G|c induced paths, where |G| is the number of vertices.
This provides a poly-time algorithm to test if a graph is Os-free, for all fixed s.

The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces
the question to proving the same thing for graphs with no cycles of length four. Second, there is a
recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in
every Os-free graph G with no cycle of length four, there is a set of vertices that intersects every
cycle, with size logarithmic in |G|. And third, there is an argument that uses the result of Bonamy
et al. to deduce the theorem. The last is the main content of this paper.



1 Introduction

Graphs in this paper are finite and simple (we will occasionally need parallel edges, but then we
speak of “multigraphs”). Two subsets X,Y of the vertex set of a graph G are anticomplete if they
are disjoint and there is no edge of G between X and Y ; and we say two subgraphs of G are
anticomplete if their vertex sets are anticomplete. We denote the number of vertices of a graph G by
|G|. If s ≥ 1 is an integer, a graph G is Os-free if no s cycles of G are pairwise vertex-disjoint and
anticomplete. We do not understand such graphs very well: for instance, until now we did not know
a polynomial-time algorithm to recognize O2-free graphs. In an attempt to find such an algorithm,
several years ago Ngoc Khang Le proposed the (unpublished) conjecture [4] that there exists c > 0
such that every O2-free graph G has at most |G|c induced cycles; and the stronger conjecture that
the same is true for paths, that is:

1.1 Conjecture. There exists c > 0 such that every O2-free graph G has at most |G|c induced paths.

If 1.1 is true, it is easy to derive a poly-time algorithm to test for being O2-free. Here is a sketch
of such an algorithm:

• For each vertex v, find all the induced paths with first vertex v.

• For each induced path P , find all induced cycles that consist of P and one extra vertex.

• Check whether any two of these cycles are disjoint and have no edges betweeen them.

The total running time is at most some polynomial in |G| times the square of the number of induced
paths, and so is polynomial, by 1.1.

In this paper we will prove the stronger conjecture (and hence both conjectures) for O2-free
graphs, and indeed for Os-free graphs. More precisely:

1.2 Theorem. For all integers s ≥ 1 there exists c > 0 such that, if G is Os-free, then G has at
most |G|c induced paths.

(We remark that by definition, every path has at least one vertex; so the one-vertex graph has
only one induced path.) We will use a short and elegant argument, due to Ngoc Khang Le, that
deduces 1.2 from the following weaker result:

1.3 Theorem. For all integers s ≥ 1 there exists c > 0 such that, if G is Os-free, and has no cycle
of length four, then G has at most |G|c induced paths.

A subset Z ⊆ V (G) is cycle-hitting if every cycle of G has a vertex in Z. We will show that:

1.4 Theorem. Let s ≥ 1 be an integer; then there exist c1, c2, c3 such that if G is Os-free, and
Z ⊆ V (G) is a cycle-hitting set, then G has at most |G|c12c2|Z|+c3 induced paths.

If G has no cycle of length four then it does not contain K2,2 as a subgraph; so to complete
the proof of 1.3 and hence of 1.2, we will use the case when t = 2 of the following recent result of
Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek [1]:

1.5 Theorem. For all integers s, t ≥ 0, there exists c > 0 such that if G is Os-free and does not
contain Kt,t as a subgraph, there is a cycle-hitting set of cardinality at most c log |G|.
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Clearly 1.3 follows from 1.4 and 1.5, so the main goal of this paper is to prove 1.4. Let us sketch
the idea of its proof. Let G be an Os-free graph, and let Z ⊆ V (G) be a cycle-hitting set. Thus G\Z
is a forest, say F . It suffices to count the number of induced paths P of G with both ends in Z and
with Z ⊆ V (P ); because then we can bound the total number of induced paths P by enumerating
all possibilities for V (P ) ∩ Z, and for each one, deleting the vertices in Z \ V (P ), and enumerating
all possibilities for the two minimal subpaths of P between an end of P and Z. So we will focus on
such paths P , which we call “Z-covering”. If we want to bound the number of Z-covering paths,
we can delete any vertices with at least three neighbours in Z; and we can arrange that Z is stable,
by contracting any edges with both ends in Z. (The number of Z-covering paths does not decrease
under such contraction, although it might increase.) We need to be careful with vertices in V (G)\Z
that have exactly two neighbours in Z, and we will treat such vertices separately. For this sketch, let
us assume that every vertex in V (G) \Z has at most one neighbour in Z, that is, (G,Z) is “monic”.
Let N be the set of vertices in F with a neighbour in Z. We are interested in paths of F that join
distinct vertices in N and have no internal vertices in N (we call them “transitions”). For each
transition there are two vertices in Z adjacent to the ends of the path (its “feet”), or maybe only
one such vertex, if it is adjacent to both ends of the path. We will show that, by deleting a bounded
number of vertices in Z and their neighbours, and also deleting a bounded number of vertices in F ,
we can arrange that every surviving transition has two feet, and at most constantly many of them
have the same two feet. (And it suffices to prove a polynomial bound for the number of covering
paths in the part of the graph that survives.) Next we show (not quite; we will explain later) that
we can choose a “normal” set of transitions with cardinality proportional to |N | (“normal” means
basically that any two of the transitions that are not anticomplete have a common end). But now
look at the multigraph with vertex set N defined by the pairs of feet of the members of the normal
set. We can show that this multigraph does not have s vertex-disjoint cycles; because if it does, then
G would have s anticomplete cycles (this is why we wanted the set to be normal; this statement is
not true for general sets of transitions, but it works for normal sets). There is a theorem of Erdős
and Pósa that says that in such a graph, there is a set of vertices of bounded size that meets all
cycles; so there exists X ⊆ Z of bounded size such that only at most |Z| transitions in the normal
set have no foot in X. The number that do have a foot in X is also only some constant times Z,
since only a bounded number have the same pair of feet; so the normal set has cardinality O(|Z|).
But its cardinality was proportional to |N |, and this tells us that |N | ≤ O(|Z|), and so there are
only O(|Z|) edges between Z,N . Each Z-covering path is determined by the set of edges between
Z,N that it uses, and there are only 2O(|Z|) such subsets, so there are only 2O(|Z|) Z-covering paths,
which is what we wanted to show.

Except we cheated in the above; our claim that we can find a large normal set of transitions is
not actually true. What is true is that we can find such a set with size proportional to the number of
vertices in N that belong to components of F that have at least two vertices in N . We need a special
argument to dispose of components of F that only contain one vertex in N , that we do not describe
here. We also cheated in assuming that (G,Z) is monic, but the argument we sketched above is the
basic idea, and it just needs a few technical patches to make it work.

We recently learned that 1.3 was proved independently in the unpublished paper [4]; however,
we are told that there are currently no plans to publish it.
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2 Reducing 1.2 to 1.3

In this section we give the beautiful argument of Ngoc Khang Le, that reduces 1.2 to 1.3. Our thanks
to Le for allowing us to include this proof.

Let us say an ordered induced path is an induced path with one end distinguished as its first
vertex. We will show the following:

2.1 Theorem. Let s, c ≥ 1, where s is an integer, and suppose that every Os-free graph G with no
cycle of length four has at most |G|c ordered induced paths. Then every Os-free graph G has at most
|G|d ordered induced paths, where d = 2 + (s− 1)(c+ 6).

Proof. For 1 ≤ r ≤ s, let dr = 2 + (r−1)(c+ 6). We prove a stronger statement, that for 1 ≤ r ≤ s,
every Or-free graph G has at most |G|dr ordered induced paths. We proceed by induction on r. If
r = 1 then G is a forest, and so has only at most |G|2 ordered induced paths and the claim is true.
So we assume that r ≥ 2 and the claim holds for r − 1. A 4-cycle means a cycle of length four.

Let G be some Or-free graph. For each 4-cycle C of G, let XC be the set of all vertices of G
that are not in V (C) and have no neighbour in V (C). Let P be an ordered induced path of G, with
vertices p1- · · · -pk in order, where p1 is its first vertex. If there is a 4-cycle C with p1 ∈ XC , then we
may choose j ∈ {1, . . . , k} maximum such that there is a 4-cycle C ′ with p1, . . . , pj ∈ XC′ , and we
call the path p1- · · · -pj the head of P .

Let us first count the number of choices of P that have no head. There are at most |G|2 choices
of P with k ≤ 2, so let us assume k ≥ 3. There are only |G|2 choices for p1 and p2; let us fix some
choice of p1, p2, and let Y be the set of vertices different from and nonadjacent to p1. Thus p3- · · · -pk
is an ordered induced path of G[Y ]; but since P has no head, it follows that G[Y ] has no cycle of
length four, and so there are only at most |Y |c ≤ (|G| − 2)c choices for p3- · · · -pk. Hence altogether
there are at most |G|2(|G| − 2)c + |G|2 ≤ |G|c+2 choices of ordered induced paths P with no head.

Now let us count the number of choices of P that have a head. If some ordered induced path
p1- · · · -pj is the head of some ordered induced path P , then there is a 4-cycle C such that p1- · · · -pj
is a path of G[XC ]. But G[XC ] is Or−1-free, and so, from the inductive hypothesis, it contains at
most |XC |dr−1 ≤ (|G|−1)dr−1 ordered induced paths; and there are at most

(|G|
4

)
≤ (|G|−1)4 choices

for C. Consequently there are at most (|G| − 1)dr−1+4 choices for the head p1- · · · -pj .
For each choice of head p1- · · · -pj , let us count the number of ordered induced paths p1- · · · -pk with

head p1- · · · -pj . There are at most |G|2 with k ≤ j+2, so let us assume that k ≥ j+3. Again, there are
only |G|2 choices for pj+1 and pj+2; having selected them, let us count the possibilities for pj+3- · · · -pk.
Let Z be the set of vertices of G different from and nonadjacent to all of p1, . . . , pj+1. From the
maximality of j in the definition of a head, G[Z] has no 4-cycle, and pj+3- · · · -pk is an ordered
induced path of G[Z]. Consequently, having selected p1- · · · -pj+2, there are only (|G|−2)c choices for
pj+3- · · · -pk with k ≥ j+3. Hence, having selected p1- · · · -pj , there are at most |G|2(1+(|G|−2)c) ≤
|G|c+2 choices for pj+1- · · · -pk. Thus, altogether there are at most (|G| − 1)dr−1+4|G|c+2 choices for
p1- · · · -pk that have a head. Including the paths with no head, we have a total of at most

|G|c+2 + (|G| − 1)dr−1+4|G|c+2 ≤ |G|c+dr−1+6 = |G|dr

ordered induced paths in G. This proves 2.1.
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3 Some lemmas about forests

The remainder of the paper is devoted to proving 1.4. A subtree of a forest is a subgraph that is a
tree (and hence is necessarily an induced subgraph). We will need several lemmas about collections
of subtrees in a forest. We begin with

3.1 Lemma. Let F be a forest, let T1, . . . , T` be subtrees of F , and let H be the graph with vertex set
{1, . . . , `} in which i, j are adjacent in H if and only if Ti, Tj are not anticomplete. If H is bipartite
then H is a forest.

Proof. Since H is bipartite, we may assume that for some k ∈ {0, . . . , `}, T1, . . . , Tk are pairwise
anticomplete, and Tk+1, . . . , T` are pairwise anticomplete. Suppose that H has a cycle C. We
may assume that 1, 2 ∈ V (C). Let P1, P2 be the two paths of C between 1, 2. For h = 1, 2 let
Ih = {k+1, . . . , `}∩V (Ph). Let vi ∈ V (Ti) for i = 1, 2. For h = 1, 2, there is a path Qh of F between
v1, v2 with interior included in the union of the sets V (Ti) (i ∈ V (Ph)), and hence included in

V (T1 ∪ · · · ∪ Tk) ∪
⋃
i∈Ih

V (Ti).

Since F is a forest, it follows that Q1 = Q2, and so every vertex of Q1 not in V (T1 ∪ · · · ∪ Tk)
belongs to both

⋃
i∈I1 V (Ti) and to

⋃
i∈I2 V (Ti), which is impossible since these two sets are disjoint.

Consequently V (Q1) ⊆ V (T1 ∪ · · · ∪ Tk), which is also impossible since T1, . . . , Tk are anticomplete,
and Q1 has an end in T1 and an end in T2. This proves 3.1.

The next result is related to a result (Theorem 7) of [3]:

3.2 Lemma. Let H be a forest, let (A,B) be a bipartition of H with |A| = |B|, and let n be an
integer with 0 ≤ n ≤ |A|. Then there is a stable set X of H with |X| = |A| and with |X ∩A| = n.

Proof. We may assume that 1 ≤ n ≤ |A| − 1, because otherwise we may take X ∈ {A,B}. We use
induction on |A|. Let v ∈ V (H) have degree at most one. From the symmetry we may assume that
v ∈ B; let u ∈ A be the neighbour of v, if there is one, and otherwise choose u ∈ A arbitrarily. Let
A′ = A \ {u}, and B′ = B \ {v}. From the inductive hypothesis, there is a stable set X ′ ⊆ A′ ∪ B′
with |X| = |A′| and with |X ∩A′| = n. But then X ′∪{v} satisfies the theorem. This proves 3.2.

These are used to prove the following:

3.3 Lemma. Let F be a forest, let k, s ≥ 0 be integers, and for 1 ≤ i ≤ s let Fi be a set of s!k paths
of F , pairwise anticomplete. Then there exist P i

1, . . . , P
i
k ∈ Fi for 1 ≤ i ≤ s, such that these sk paths

are pairwise anticomplete.

Proof. We use induction on s. For 1 ≤ i ≤ s let Ai be the set of all pairs (i, j) with 1 ≤ j ≤ s!k;
and let H be the graph with vertex set A1 ∪ · · · ∪ As, where (i, j) and (i′, j′) are adjacent if the
jth member of Fi is not anticomplete to the j′th member of Fi′ . By 3.1 applied to F1 and Fi, for
2 ≤ i ≤ s the subgraph of H induced on A1 ∪Ai is a forest, with a bipartition (A1, Ai); and by 3.2,
there is a stable set Xi of H with cardinality s!k, consisting of (s! − (s − 1)!)k vertices of A1 and
(s − 1)!k vertices of Ai. Since |A1 \ Xi| = (s − 1)!k for 2 ≤ i ≤ k, the sets A1, X2, . . . , Xs have at
least (s − 1)!k vertices in common; and so for 1 ≤ i ≤ s there is a subset F ′i of Fi with cardinality
(s−1)!k, such that all the paths in F ′1 are anticomplete to all the paths in F ′i for 2 ≤ i ≤ s. But then
the result follows from the inductive hypothesis applied to the sets F ′i for 2 ≤ i ≤ s. This proves
3.3.
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We will also need:

3.4 Lemma. Let F be a forest, let n ≥ 0 be an integer, and let T1, . . . , Tk be subtrees of F .

• If no n of T1, . . . , Tk are pairwise vertex-disjoint, there exists X ⊆ V (F ) with |X| ≤ n− 1 such
that X ∩ V (Ti) 6= ∅ for 1 ≤ i ≤ k;

• If no n of T1, . . . , Tk are pairwise anticomplete, there exists X ⊆ V (F ) with |X| ≤ 2(n − 1)
such that X ∩ V (Ti) 6= ∅ for 1 ≤ i ≤ k.

Proof. The first claim is well-known and easy, and we assume it without proof. For the second, let
F ′ be the forest obtained from F by subdividing once each edge e of F (let ve be the new vertex
that subdivides e). For 1 ≤ i ≤ k, let T ′i be the subtree of F ′ induced on the union of V (Ti) and the
set of all ve such that e ∈ E(F ) has an end in V (Ti). The hypothesis implies that no n of T ′1, . . . , T

′
k

are pairwise vertex-disjoint, and so the result follows by applying the first bullet of the theorem to
F ′ and T ′1, . . . , T

′
k. This proves 3.4.

4 Plantations and transitions

Let G be an Os-free graph, and let Z ⊆ V (G) be a cycle-hitting set. We call (G,Z) a plantation.
(So the definition of a plantation depends on s, but we leave this implicit: s will be fixed throughout
anyway.) Let F be the forest G \ Z, and let N be the set of vertices in V (G) \ Z with a neighbour
in Z. We say (G,Z) is monic if Z is stable and each vertex in N has a unique neighbour in Z. Let
us say a transition of (G,Z) is a path of F of length at least one, with both ends in N and with
no internal vertex in N . Let P be a transition. If z ∈ Z is adjacent to an end of P , we say z is a
foot of P . If (G,Z) is monic, every transition P has one or two feet, and these are the only vertices
in Z that have a neighbour in V (P ). We remark that distinct transitions cannot have the same
pair of ends, since F is a forest, but they may have the same pair of feet. If P only has one foot,
P is a self-transition. We say (G,Z) is selfless if there is no self-transition. Starting with a monic
plantation, our first objective is to eliminate self-transitions.

We will use two operations to eliminate self-transitions: deletion and explosion. If (G,Z) is a
plantation, and v ∈ V (G) \ Z, then (G \ {v}, Z) is a plantation, and is monic if (G,Z) is monic.
Moreover, each transition of (G \ {v}, Z) is a transition of (G,Z), so deleting vertices in V (G) \ Z
may be used to eliminate some self-transitions, without introducing new ones. Second, if v ∈ Z, let
G′ be obtained from G by deleting v and all its neighbours in V (G) \Z. Then again (G′, Z \ {v}) is
a plantation, monic if (G,Z) is monic, and each of its transitions is a transition of (G,Z). We call
this operation exploding v. We show first that:

4.1 Lemma. Let (G,Z) be a monic plantation. Then there exist X ⊆ Z and Y ⊆ V (G) \ Z, with
|X| < s and |Y | < 2s · s!, such that exploding the vertices in X and deleting the vertices in Y yields
a selfless plantation.

Proof. As before, let F = G \ Z, and let N be the set of vertices in V (G) \ Z with a neighbour
in Z. Let us say z ∈ Z is k-self-important if there are k self-transitions, pairwise anticomplete and
each with foot z. First, we claim:
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(1) There do not exist s distinct vertices in Z that are s!-self-important.

Suppose that z1, . . . , zs ∈ Z are each s!-self-important, and for 1 ≤ i ≤ s let Fi be a set of s!
self-transitions, each with foot z and pairwise anticomplete. By 3.3 with k = 1, there exist Pi ∈ Fi

for 1 ≤ i ≤ k, such that P1, . . . , Ps are pairwise anticomplete. Thus V (Pi) ∪ {zi} induces a cycle
Ci say, for each i, and since (G,Z) is monic, zi has no neighbour in Cj if i, j are distinct, and so
C1, . . . , Cs are pairwise anticomplete, a contradiction. This proves (1).

(2) If there is no s!-self-important vertex in Z, then there exists Y ⊆ V (F ) with |Y | ≤ 2s · s!
such that deleting the vertices in Y yields a selfless plantation.

We claim that there do not exist s · s! self-transitions that are pairwise anticomplete; for if there
are, then since no s! of them have the same foot, we could choose s of them all with distinct feet
(each with only one foot, but all distinct); and again that gives us s pairwise anticomplete cycles,
a contradiction. From 3.4, there exists Y ⊆ V (F ) with |Y | < 2s · s! such that every self-transition
contains a vertex in Y ; and so deleting the vertices in Y yields a selfless plantation. This proves (2).

But from (1), by exploding at most s − 1 vertices in Z, we can produce a plantation with no
s!-self-important vertex; and so the result follows from (2). This proves 4.1.

If P is a path, we denote the interior of P (that is, the set of vertices that have degree two in P )
by P ∗. Let (G,Z) be a monic selfless plantation. If z, z′ ∈ Z, the multiplicity of the pair (z, z′) is the
number of transitions with feet z, z′. Thus the multiplicity of (z, z) is zero, since (G,Z) is selfless.
We say that (G,Z) has thickness k if k is the maximum of the multiplicity of pairs of elements of Z.
Our next objective is to obtain a plantation with bounded thickness, again by deleting and exploding
a bounded number of vertices. We will show the following.

4.2 Theorem. Let (G,Z) be a monic selfless plantation. Then there exists X ⊆ Z with |X| ≤ 6s−4
such that exploding the vertices in X yields a plantation with thickness at most 2 · s!(2 · s! + s).

Proof. Let N be the set of vertices in V (G) \ Z with a neighbour in Z, and let F be the forest
G \ Z. We observe first:

(1) Let z, z′ ∈ Z. If P1, P2 are distinct transitions both with feet z, z′, then P ∗1 , P
∗
2 are anticom-

plete, and either

• P1, P2 are anticomplete; or

• P1, P2 have a common end and P1 ∪ P2 is an induced path; or

• V (P1), V (P2) are disjoint and there is a unique edge between them, joining an end of P1 and
an end of P2.

Let Pi have ends ai, bi for i = 1, 2, where a1, a2 are adjacent to z, and b1, b2 to z′. Since P1, P2 are
distinct, and they are both paths in the forest F , they do not have the same pairs of ends; and so we
may assume that a1 6= a2. Let T1 be the maximal subtree of F that contains P1 and has the property
that every vertex in N ∩V (T1) has degree one in T1. Since (G,Z) is selfless, a1 is the only neighbour

6



of z in V (T1), and so a2 /∈ V (T1); and consequently P ∗2 ∩ V (T1) = ∅. Similarly, either b2 /∈ V (T1) or
b2 = b1. The vertices of P ∗1 are not leaves of T1, and so every vertex of G with a neighbour in P ∗1
belongs to V (T1). Consequently P ∗1 , P

∗
2 are anticomplete, and a2 has no neighbour in P ∗1 , and b2 has

no neighbour in P ∗1 unless b1 = b2. Similarly a1 has no neighbour in P ∗2 , and b1 has no neighbour in
P ∗2 unless b1 = b2.

If V (P1) ∩ V (P2) 6= ∅, then P1, P2 have a common end, and so b1 = b2; but then the second
outcome holds. Thus we may assume that V (P1), V (P2) are disjoint. If they are anticomplete, then
the first outcome holds; and if not, the edge between V (P1), V (P2) is unique (since F is a forest)
and the third outcome holds. This proves (1).

Let z, z′ ∈ Z. If P1, . . . , Pk are transitions that are pairwise anticomplete, and all with the
same feet z, z′, we call {P1, . . . , Pk} a (z, z′)-linkage. If P1, . . . , Pk all have a common end, we call
{P1, . . . , Pk} a (z, z′)-star, and the common end of P1, . . . , Pk is called the centre.

(2) Let z, z′ ∈ Z, let p, q ≥ 0 be integers, and let (z, z′) have multiplicity at least 2pq. Then there is
either a (z, z′)-linkage of cardinality p, or a (z, z′)-star of cardinality q.

Let Pi (i ∈ I) all be distinct transitions, with the same feet z, z′, where |I| = 2pq. For each
i ∈ I let Pi have ends ai, bi, where ai is adjacent to z and bi to z′. Every bipartite graph with
2pq edges has a matching of size 2p or a vertex of degree at least q, from König’s theorem; and
because of this, applied to the bipartite graph with bipartition ({ai : i ∈ I}, {bi : i ∈ I}) and edge set
{{ai, bi} : i ∈ I}, we may assume that either a1, . . . , a2p, b1, . . . , b2p are all distinct, or a1 = · · · = aq.
In the second case, {P1, . . . , Pq} is a (z, z′)-star by (1), so we assume the first holds. Let H be the
graph with vertex set {1, . . . , 2p}, in which i, j are adjacent if Pi, Pj are not anticomplete (and hence
they are vertex-disjoint and there is a unique edge between them, by (1)). A graph isomorphic to
H can be obtained from F by deleting all vertices not in P1, . . . , P2p and contracting the edges of
P1, . . . , P2p; and so H is a forest. Hence it has a stable set of cardinality p, say {1, . . . , p}; and then
{P1, . . . , Pp} is a (z, z′)-linkage. This proves (2).

(3) There do not exist distinct z1, z
′
1, z2, z

′
2, . . . , zs, z

′
s ∈ Z such that for 1 ≤ i ≤ s there is a (zi, z

′
i)-

linkage of cardinality 2 · s!.

Suppose such vertices exist, and for 1 ≤ i ≤ s let Fi be a set of 2 · s! transitions each with feet zi, z
′
i,

and pairwise anticomplete. By 3.3 with k = 2, for 1 ≤ i ≤ s there exist distinct Pi, Qi ∈ Fi such that
P1, Q1, . . . , Ps, Qs are pairwise anticomplete. But then the cycles induced on V (Pi)∪V (Qi)∪{zi, z′i}
are pairwise anticomplete, a contradiction. This proves (3).

(4) There do not exist distinct z1, z
′
1, z2, z

′
2, . . . , z2s, z

′
2s ∈ Z such that for 1 ≤ i ≤ 2s there is a

(zi, z
′
i)-star of cardinality 2 · s! + s.

Suppose such vertices exist. The centres of the 2s stars are distinct vertices of F , and hence some
s of them are pairwise nonadjacent; thus we may assume that Si is a (zi, z

′
i)-star of cardinality

2 · s! + s with centre ai for 1 ≤ i ≤ s, and a1, . . . , as are pairwise nonadjacent. Let i, j ∈ {1, . . . , s}
be distinct. Since ai ∈ N , it does not belong to the interior of any member of Sj ; and since
z1, z

′
1, z2, z

′
2, . . . , zs, z

′
s ∈ Z are distinct and (G,Z) is monic, ai is not an end of any member of Sj .
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Since F is a forest, ai has a neighbour in at most one member of Sj . Thus for 1 ≤ i ≤ s, there are
at most s − 1 members of Si that contain a neighbour of aj for some j ∈ {1, . . . , s} \ {i}; and so
we may choose S ′i ⊆ Si of cardinality 2 · s! such that no member of S ′i contains any vertex adjacent
to some aj with j 6= i. For each P ∈ Si, let us say P \ {ai} is its truncation; and let Fi be the set
of truncations of the members of S ′i. Thus the members of Fi are pairwise anticomplete. By 3.3
with k = 2, there exist distinct Qi, Q

′
i ∈ Fi for 1 ≤ i ≤ s, such that Q1, Q

′
1, . . . , Qs, Q

′
s are pairwise

anticomplete. But for 1 ≤ i ≤ s, there is a cycle Ci with V (Ci) ⊆ V (Qi) ∪ V (Q′i) ∪ {ai, zi, z′i}, and
these s cycles are pairwise anticomplete, a contradiction. This proves (4).

Choose distinct z1, z
′
1, z2, z

′
2, . . . , zr, z

′
r ∈ Z with r maximum such that for 1 ≤ i ≤ r there is a

(zi, z
′
i)-linkage of cardinality 2 · s!. Let X1 = {z1, z′1, z2, z′2, . . . , zr, z′r}. From (3), r ≤ s − 1, and

so |X1| ≤ 2(s − 1); and from the maximality of r, for all z, z′ ∈ Z, if there is a (z, z′)-linkage of
cardinality 2 ·s! then one of z, z′ ∈ X1. Similarly from (4), there is a set X2 ⊆ Z with |X2| ≤ 2(2s−1)
such that for all z, z′ ∈ Z, if there is a (z, z′)-star of cardinality 2 · s! + s then one of z, z′ ∈ X2.
Hence from (1), for all z, z′ ∈ Z, if (z, z′) has multiplicity at least (2s·!)(2 · s! + s), then one of
z, z′ ∈ X1 ∪X2. Thus the plantation produced by exploding the vertices in X1 ∪X2 has thickness at
most (2 · s!)(2 · s! + s). This proves 4.2.

5 Applying the Erdős-Pósa theorem

Let (G,Z) be a plantation; we say a set S of transitions in (G,Z) is normal if

• for all P,Q ∈ S, either P,Q are anticomplete or P,Q have a common end; and

• for each P ∈ S, there is an edge e of P that does not belong to any other member of S.

We need first:

5.1 Lemma. Let (G,Z) be a plantation, and let N be the set of vertices in V (G)\Z with a neighbour
in Z. Suppose that every component of F contains at least two vertices of N . Then there is a normal
set S of transitions with |S| ≥ |N |/4.

Proof. Let F be the forest G \ Z. By choosing transitions from each component of F separately,
we may assume that F is a tree, and |N | ≥ 2. If |N | ≤ 3 the result is clear, so we may assume
that |N | ≥ 4. Choose some vertex r ∈ N , call it the root of F , and direct every edge of F towards
r. Let R be the set of all transitions of (G,Z) that are directed paths. Thus |R| = |N | − 1, since
every vertex in N different from r is the first vertex of a unique directed transition. Moreover, for
the same reason, every member of R has an edge that does not belong to any other member of R.
We will show that there is a normal subset of R with cardinality at least |R|/3.

Let P be a directed transition, and let Q be the directed path of F from the first vertex of P
to the root of F . It follows that P is an initial subpath of Q. We define the height of P to be the
number of vertices of Q that belong to N .

(1) Let P1, P2 be directed transitions, with heights h1, h2 where h1 − h2 is a multiple of three. Then
either P1.P2 are anticomplete, or they have the same last vertex and therefore the same height.
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Let Pi have first vertex ai and last vertex bi for i = 1, 2. We may assume that b1 6= b2, and so
V (P1) ∩ V (P2) = ∅. Hence we may assume that there is an edge of F with one end in V (P1) and
the other in V (P2), and we may assume this edge is directed from its end c1 ∈ V (P1) to its end
c2 ∈ V (P2), by exchanging P1, P2 if necessary. Since c1 has at most one out-neighbour in F , and
c2 /∈ V (P1), it follows that c1 = b1. For i = 1, 2, let Qi be the directed path of F from ai to the root
of F . It follows that the edge c1c2 belongs to Q1, and so Q1 contains all the vertices of N ∩ V (Q2)
except possibly a2, and in addition contains a1, b1. Thus h1−h2 ∈ {1, 2}, contradicting that h1−h2
is a multiple of three. This proves (1).

For i = 1, 2, 3, let Si be the set of all directed transitions with height congruent to i modulo
three. By (1), each of these sets is normal, and every directed transition belongs to one of them, so
one of them has cardinality at least |R|/3 = (|N | − 1)/3, and hence at least |N |/4, since |N | ≥ 4.
This proves 5.1.

We need the following result, a theorem of Erdős and Pósa [2]:

5.2 Theorem. If s ≥ 0 is an integer, there exists φ(s) ≥ 0 with the following property. If G is
a multigraph in which no s cycles are pairwise vertex-disjoint, there is a subset X ⊆ V (G) with
|X| ≤ φ(s) such that every cycle of G contains a vertex in X.

Erdős and Pósa showed there exist c1, c2 such that c1s log s ≤ φ(s) ≤ c2s log s for all s, but that
does not matter for us. Through the rest of the paper, we use the notation φ(s) with its meaning in
5.2.

We need anticomplete cycles, not just disjoint cycles: but by selecting some transitions carefully,
we can make a derived graph, disjoint cycles in which would yield anticomplete cycles in the original
graph. We use 5.2 to show the following:

5.3 Theorem. Let (G,Z) be a monic plantation, and let N be the set of vertices in V (G) \ Z with
a neighbour in Z. Let S be a normal set of transitions. Then there exists X ⊆ Z with |X| ≤ φ(s)
such that at most |Z| members of S have no foot in X.

Proof. Let H be the multigraph with vertex set Z, edge set S, and incidence relation defined as
follows: for each P ∈ S, and each z ∈ Z, P is incident with z in H if z is a foot of P . We observe:

(1) If C is a cycle of H, there is a cycle C ′ of G with V (C ′) ∩ Z ⊆ V (C), and V (C ′) \ Z is a
subset of the union of the vertex sets of the transitions in E(C).

Let the vertices and edges of C in order be u1, P1, u2, P2, . . . , um, Pm, um+1 = u1. Thus u1, . . . , um ∈
Z are distinct, and for 1 ≤ i ≤ m, Pi ∈ S is a transition with feet ui, ui+1, and P1, . . . , Pm are all
distinct. Suppose that m = 1; then H has a loop P1, incident with u1 in H. Let p, q be the ends
of the path P1 in G; then the union of P1 with the path p-u1-q is the desired cycle. Thus we may
assume that m ≥ 2.

For 1 ≤ i ≤ m, let P+
i be the path between ui, ui+1 with interior V (Pi). (Thus P+

i has both
ends in Z; it is not a path of F .) Since S is normal, there is an edge e of P1 that belongs to none
of P2, . . . , Pm. But the union of P+

1 \ {e} and P+
2 ∪ · · · ∪ P

+
k is a connected graph, containing both
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ends of e; and so contains a path joining the ends of e. Adding e to this path gives the desired cycle
C ′. This proves (1).

(2) No s cycles of H are vertex-disjoint.

Suppose that C1, . . . , Cs are s cycles of H that are vertex-disjoint. By (1), there is a cycle C ′i
of G with V (C ′i) ∩ Z ⊆ V (Ci), and V (C ′i) \ Z is a subset of the union of the vertex sets of the
transitions in E(Ci). Since G is Os-free, we may assume that C ′1 is not anticomplete to C ′2. Since
C1, C2 are vertex-disjoint, and Z is stable, it follows that V (C ′1) ∩ Z is anticomplete to V (C ′2) ∩ Z.
Let the vertices and edges of C1 in order be

u1, P1, u2, P2, . . . , um, Pm, um+1 = u1,

and define v1, Q1, v2, Q2, . . . , vn, Qn, un+1 = v1 similarly for C2. For 1 ≤ i ≤ m, two vertices in
V (C ′1)∩Z are adjacent to ends of Pi, and since (G,Z) is monic, no other vertices in Z have neighbours
in V (Pi). Consequently V (C ′2)∩Z is anticomplete to V (C ′1) and similarly V (C ′1)∩Z is anticomplete
to V (C ′2). Therefore we may assume that P1 is not anticomplete to Q1. Since S is normal, it follows
that P1, Q1 have a common end a say; but then the unique neighbour z ∈ Z of a belongs to both
V (C1), V (C2), a contradiction. This proves (2).

From 5.2, there exists X ⊆ Z with |X| ≤ φ(s) such that H \X is a forest, and therefore has at
most |Z \X|− 1 ≤ |Z| edges; and so at most |Z| members of S have no neighbour in X. This proves
5.3.

We use this to show:

5.4 Theorem. Let (G,Z) be a monic selfless plantation, with thickness k, and let N be the set of
vertices in V (G) \Z with a neighbour in Z. Suppose that every component of G \Z contains at least
two vertices in N . Then |N | ≤ 4(kφ(s) + 1)|Z|.

Proof. By 5.1, there is a normal set S of transitions with |S| ≥ |N |/4. From 5.3, there exists X ⊆ Z
with |X| ≤ φ(s) such that at most |Z| members of S have no neighbour in X. But since (G,Z) has
thickness k, for each x ∈ X and z ∈ Z, there are at most k transitions with feet x, z, and therefore
for each x ∈ X, at most k|Z| transitions in S contain a neighbour of x. Since |X| ≤ φ(s), it follows
that |S| ≤ kφ(s)|Z|+ |Z|. But |S| ≥ |N |/4, and so |N | ≤ 4(kφ(s) + 1)|Z|. This proves 5.4.

6 Non-monic plantations

The result 5.4 brings us close to what we want, but only for monic plantations. In this section we
extend it to more general plantations. Let us say a plantation (G,Z) is dyadic if Z is stable and
every vertex in V (G) \ Z has at most two neighbours in Z. We say v ∈ V (G) \ Z is binary if it has
two neighbours in Z.

6.1 Lemma. Let (G,Z) be a dyadic plantation. Then there exists X ⊆ Z with |X| ≤ 2φ(s) such
that exploding X yields a dyadic plantation with at most 2|Z| binary vertices.
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Proof. We claim first:

(1) Let Y be a stable set of binary vertices. Then there exists X ⊆ Z with |X| ≤ 2φ(s) such
that at most |Z| vertices in Y have no neighbour in X.

Let H be the multigraph with vertex set Z and edge set Y , where y ∈ Y is incident in H with
z ∈ Z if y is adjacent to z in G. For every cycle C of H, there is a cycle C ′ of G induced on
the vertices of C that are vertices or edges of C; and if C,D are vertex-disjoint cycles of H, the
corresponding cycles C ′, D′ of G are anticomplete (since Y is stable, Z is stable, and each vertex in
Y has exactly two neighbours in Z). Consequently no s cycles of H are pairwise vertex-disjoint, and
so by 5.2, there exists X ⊆ Z with |X| ≤ φ(s) such that H \X is a forest, and so has at most |Z|
edges. Hence at most |Z| vertices in Y have no neighbour in X. This proves (1).

Let N2 be the set of all binary vertices. Since G \ Z is a forest and hence bipartite, it follows
that N2 is the union of two stable sets; and so by (1) applied to each of these sets, we deduce that
there exists X ⊆ Z with |X| ≤ 2φ(s) such that at most 2|Z| vertices in N2 have no neighbour in X.
But then X satisfies the theorem. This proves 6.1.

For z ∈ Z, N(z) denotes the set of neighbours of z, and for Z ′ ⊆ Z, N(Z ′) denotes the union of
the sets N(z)(z ∈ Z ′). We deduce:

6.2 Theorem. Let (G,Z) be a dyadic plantation. Then there exist X ⊆ Z with |X| ≤ 2φ(s)+7s−4
and Y ⊆ V (G) \ Z with |Y | ≤ 2s · s! and with the following property. Let F = G \ Z. For i = 1, 2,
let Ni be the set of all v ∈ V (F ) \ (Y ∪N(X)) that have exactly i neighbours in Z; and let N0 be the
set of all v ∈ N1 such that the component of F \ (Y ∪ N(X) ∪ N2) containing v contains no other
vertex in N1. (See figure 1.) Then there are at most

8(s!(2 · s! + s)φ(s) + 1)|Z|+ 4s · s!

edges between Z \X and V (F ) \ (N(X) ∪N0).

Proof.

XZ

N(X)

Y

N2N1N0

F

Figure 1: The ellipses represent components of F \ (Y ∪N(X) ∪N2) that meet N1.
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By 6.1, there exists X1 ⊆ Z with |X1| ≤ 2φ(s) such that exploding X1 yields a dyadic plantation
(G1, Z \X1) with at most 2|Z| binary vertices. Let Y1 be the set of binary vertices of (G1, Z \X1).
It follows that (G1 \ Y1, Z \X1) is monic and |Y1| ≤ 2|Z|. By 4.1 applied to (G1 \ Y1, Z \X1), there
exists X2 ⊆ Z \X1 and Y ⊆ V (G1)\ (Y1∪Z), with |X2| ≤ s and |Y | ≤ 2s ·s!, such that starting with
(G1 \ Y1, Z \ X1), and exploding the vertices in X2 and deleting the vertices in Y , yields a selfless
plantation (G2, Z \ (X1 ∪ X2)) say. By 4.2, there exists X3 ⊆ Z \ (X1 ∪ X2) with |X3| ≤ 6s − 4
such that starting with (G2, Z \ (X1 ∪X2)) and exploding the vertices in X3 yields a monic selfless
plantation (G3, Z \ (X1 ∪X2 ∪X3)) with thickness at most (2 · s!)(2 · s! + s). Let Y3 be the union
of the vertex sets of all components of G3 \ Z that have at most one vertex with a neighbour in
Z \ (X1 ∪X2 ∪X3). The plantation (G3 \ Y3, Z \ (X1 ∪X2 ∪X3)) satisfies the hypothesis of 5.4, and
its thickness is at most (2 · s!)(2 · s! + s), and so by 5.4, there are at most 4(2 · s!(2 · s! + s)φ(s) + 1)|Z|
edges between Z \ (X1 ∪X2 ∪X3) and V (G) \ (Y3 ∪ Z).

Let X = X1 ∪X2 ∪X3; we will show that X,Y satisfy the theorem. Certainly

|X| = |X1|+ |X2|+ |X3| ≤ 2φ(s) + s+ 6s− 4 = 2φ(s) + 7s− 4,

and |Y | ≤ 2s · s!. We recall that (G3, Z \ X) is obtained from (G,Z) by exploding the vertices in
X and deleting the vertices in Y1 ∪ Y . Let (G′, Z \ X) be obtained from (G,Z) by exploding the
vertices in X and deleting the vertices in Y . There are only 2|Y1| ≤ 4|Z| edges of G′ between Y1
and |Z| since |Y1| ≤ 2|Z| and each of its members has only two neighbours in Z. Thus there are at
most 4(2 · s!(2 · s! + s)φ(s) + 2)|Z| edges of G′ between V (G′) \ (Y3 ∪Z) and Z \X, that is, between
V (F ) \ (N(X) ∪ Y ∪N0) and Z \X. Since |Y | ≤ 2s · s!, there are only 4s · s! edges between Y and
Z. This proves 6.2.

7 Counting paths

Let (G,Z) be a plantation. We denote by n(G,Z) the number of induced paths P ofG with Z ⊆ V (P )
such that both ends of P belong to Z. Let us call such a path P a Z-covering path. Our objective
is to show that n(G,Z) is at most the product of a polynomial in |G| and an exponential in |Z|.

It is enough to work with dyadic plantations, because of the following.

7.1 Theorem. Let (G,Z) be a plantation. Then there is a dyadic plantation (G′, Z ′) with |G′| ≤ |G|
and |Z ′| ≤ |Z| such that n(G,Z) ≤ n(G′, Z ′).

Proof. We prove this by induction on |G|. We observe first:

• If some vertex v ∈ V (G) \ Z has more than two neighbours in Z, this vertex does not belong
to any Z-covering path, and so we may delete it without changing the number of Z-covering
paths. Hence in this case we can win by induction on |G|; so we may assume there is no such
vertex.

• If some vertex v ∈ V (G) \ Z has two neighbours z, z′ ∈ Z, and z, z′ are adjacent, then again v
does not belong to any Z-covering path, and we can delete it and win as before. So we may
assume that there is no such vertex.

• If some three vertices in Z are pairwise adjacent, then n(G,Z) = 0, so we may assume there is
no such triangle.
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Finally, we assume that some two vertices z, z′ ∈ Z are adjacent. They have no common neigh-
bour, by the assumptions of the second and third bullets above; so contracting zz′ = e (say) will not
make any parallel edges. Let G′ be the graph obtained from G by contracting e into a new vertex
z′′ say, and let Z ′ = (Z \ {z, z′}) ∪ {z′′}. Then it is easy to see that

• (G′, Z ′) is a plantation;

• every Z-covering path of (G,Z) contains e; so for every Z-covering path P of (G,Z), there is
a Z ′-covering path P ′ of (G′, Z ′) with E(P ′) = E(P ) \ {e}; and

• for every Z ′-covering path P ′ of (G′, Z ′), there is at most one Z-covering path P of (G,Z) with
E(P ′) = E(P ) \ {e}.

Consequently, in this case n(G,Z) ≤ n(G′, Z ′) and we can again win by induction on |G|. This
proves 7.1.

A multiset is a set together with a positive integer assigned to each member of the set, called its
multiplicity. The next result implies that if (G,Z) is dyadic, every Z-covering path P is determined
by the set of edges of P with an end in Z. A linear forest is a forest in which every component is a
path; and the end-multiset of a linear forest H is the multiset of ends of the components of H, where
an end of a component P of H has multiplicity one if E(P ) 6= ∅, and multiplicity two if E(P ) = ∅.

7.2 Theorem. Let F be a forest, and let X be a multiset of vertices of V (F ). Then there is at most
one linear forest that is a subgraph of F with end-multiset equal to X.

Proof. We proceed by induction on |V (F )|. If some vertex in X has multiplicity at least three in
X, then there is no linear forest with end-multiset X. If some vertex v in X has multiplicity two
in X, then v is a component of every linear forest in F with end-multiset X, so the result follows
by deleting v. Hence we may assume that every vertex in X has multiplicity one. Also, from the
inductive hypothesis applied to each component, we may assume that F is connected. A leaf of F
means a vertex with degree one in F . If some leaf of F is not in X, we may delete it and apply the
inductive hypothesis, so we assume all leaves of F belong to X. If F is a path, the result is clear, so
we assume F is not a path. Let us say a shoot of F is a path of F with one end a leaf of F , such that
all its internal vertices have degree two in F , and maximal with both these properties. Every shoot
has length at least one, one of its ends is a leaf of F , and the other has degree at least three in F ,
from the maximality of the shoot and since F is not a path. (Let us call the end of degree at least
three the inner end.) Let F ′ be obtained from F by deleting all vertices of F that belong to shoots
and have degree at most two in F . Then F ′ is non-null, and therefore a tree; let u be a vertex of
F ′ with degree at most one in F ′. Since u is not a leaf of F , it is the inner end of some shoot of F ;
and therefore it has degree at least three in F ; and so is the inner end of at least two shoots of F ,
say P, P ′. But then P ∪ P ′ is a component of every linear forest in F with end-multiset X, and the
result follows from the inductive hypothesis by deleting V (P ∪ P ′). This proves 7.2.

We will show:
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7.3 Theorem. Let

d1 = 6(2φ(s) + 7s− 4) + 4s · s!
d2 = 8 · s!(2 · s! + s)φ(s) + 8

d3 = 4s · s!.

If (G,Z) is a plantation, then n(G,Z) ≤ |G|d12d2|Z|+d3.

Proof. By 7.1 we may assume that (G,Z) is dyadic. Let δG(Z) be the set of edges of G between Z
and V (G) \ Z.

(1) For each subset D of δG(Z), there is at most one Z-covering path P with E(P ) ∩ δG(Z) = D.

To see this, let X be the set of vertices in V (G) \ Z incident with a vertex in D, made into a
multiset by declaring that the multiplicity of a vertex v in X is the number of edges in D incident
with v. If P is a Z-covering path with E(P ) ∩ δG(Z) = D, then P \ Z is a linear forest with
end-multiset X, and so P is unique by 7.2. This proves (1).

Thus, in order to bound n(G,Z), it is enough to bound the number of different intersections of
such paths with δG(Z), and we will use 6.2 to do this. Let F = G \ Z. By 6.2, there exist X ⊆ Z
with |X| ≤ 2φ(s) + 7s − 4 and Y ⊆ V (G) \ Z with |Y | ≤ 2s · s! and with the following property.
Let N(X) be the set of vertices of F with a neighbour in X. For i = 1, 2, let Ni be the set of all
v ∈ V (F ) \ (Y ∪N(X)) that have exactly i neighbours in Z; and let N0 be the set of all v ∈ N1 such
that the component of F \ (Y ∪N(X)∪N2) containing v contains no other vertex in N1. There are
at most d2|Z|+ d3 edges between Z \X and V (F ) \ (N(X) ∪N0).

The edges of δG(Z) fall into three groups that we will handle differently, as follows:

• Edges between Z and N(X). If P is a Z-covering path, then every edge of P between Z
and N(X) belongs to a two-edge subpath of P with an end in X. There are at most 2|X| such
subpaths in P , and for each x ∈ X the number of two-edge paths in G with one end x is at
most |G|2. Thus the number of possibilities for the set of edges of P between Z and N(X) is
at most |G|4|X|.

• Edges between Z \ X and N0. Let T1, . . . , Tk be the components of F \ (Y ∪N(X) ∪N2)
that contain a unique vertex in N1. We claim that if P is a Z-covering path, there are at most
d1 values of i ∈ {1, . . . , k} such that P contains the edge between Z and V (Ti). To see this,
suppose that P contains the unique edge between Z and V (Ti). Since both ends of P are in Z,
P contains at least one edge between V (Ti) and V (F )\V (Ti), say uv, where v ∈ V (F )\V (Ti).
Since Ti is a component of F \ (Y ∪N(X) ∪N2), it follows that v ∈ Y ∪N(X) ∪N2. Suppose
that v ∈ N2; then v ∈ V (P ), but the two neighbours of v in Z also belong to V (P ), and so v
has degree more than two in P , a contradiction. Thus v ∈ Y ∪ N(X). We have shown then
that the number of i such that P contains the unique edge between Z and V (Ti) is at most the
number of edges of P between V (T1∪· · ·∪Tk) and Y ∪N(X). For each v ∈ Y there are at most
two edges of P between V (T1∪· · ·∪Tk) and v; and for each v ∈ N(X) there is at most one such
edge, since there is an edge of P between v and X. Since at most 2|X| vertices of P belong to
N(X), it follows that there are at most 2|X| + 2|Y | edges of P between V (T1 ∪ · · · ∪ Tk) and
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Y ∪N(X). Consequently P contains at most 2|X|+ 2|Y | edges between Z \X and N0. There
are at most |G| edges between Z \X and N0, and so there are at most |G|2|X|+2|Y | possibilities
for the subset that belongs to P .

• Edges between Z \ X and V (F ) \ (N(X) ∪ N0). From the choice of X,Y , there are only
d2|Z|+d3 such edges, so the number of possibilities for the subset that belongs to a Z-covering
path is at most 2d2|Z|+d3 .

It follows that the number of possibilities for E(P ) ∩ δG(Z) is at most the product of these three;
and so

n(G,Z) ≤ |G|4|X||G|2|X|+2|Y |2d2|Z|+d3 ≤ |G|d12d2|Z|+d3 .

This proves 7.3.

We deduce 1.4, which we restate:

7.4 Theorem. For all integers s ≥ 1, there exist c1, c2, c3 ≥ 0 such that if G is Os-free, and
Z ⊆ V (G) is a cycle-hitting set, then G has at most |G|c12c2|Z|+c3 induced paths.

Proof. There are at most |G|2 induced paths that are vertex-disjoint from Z, since such paths are
determined by their ends. Let us count the induced paths that have a vertex in Z. For each such
path Q, with ends s, t say, let a be the vertex of Q in Z that is closest to s in Q, and define b similarly
for t. (Possibly s = a, or a = b, or b = t.) Thus Q is divided into three subpaths: the subpath
between s and a, the subpath between a and b, and the subpath between b and t. There are only
|G|2/2 possibilities for the first part, since it is determined by its first vertex and penultimate vertex;
and similarly there are only |G|2/2 possibilities for the last part. We need to count the possibilities
for the middle part P say, between a and b. Let Z ′ = Z ∩ V (P ); then P is a Z ′-covering path in
the plantation (G \ (Z \ Z ′), Z ′), and so, with d1, d2, d3 as in 7.3, for each choice of Z ′, the number
of choices of P is at most |G|d12d2|Z|+d3 . Since there are only 2|Z| − 1 choices for Z ′ (since Z ′ 6= ∅),
there are only |G|d12d2|Z|+d3(2|Z| − 1) choices for P in total, and hence only

|G|d1+42d2|Z|+d3(2|Z| − 1) + |G|2 ≤ |G|d1+42(d2+1)|Z|+d3

choices for Q. This proves 7.4.
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