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Abstract

Given an integer n, let G(n) be the number of integer sequences n − 1 ≥ d1 ≥
d2 ≥ · · · ≥ dn ≥ 0 that are the degree sequence of some graph. We show that
G(n) = (c + o(1))4n/n3/4 for some constant c > 0, improving both the previously
best upper and lower bounds by a factor of n1/4 (up to polylog-factors).

Additionally, we answer a question of Royle, extend the values of n for which
G(n) is known exactly from n ≤ 290 to n ≤ 1651 and determine the asymptotic
probability that the integral of a (lazy) simple symmetric random walk bridge
remains non-negative.

1 Introduction

Given a graph G and a vertex v ∈ V (G), the degree of v is the number of edges incident
to v, and the degree sequence of G is the non-increasing sequence of its vertex degrees.
We consider the following very natural question: over all graphs on n vertices, how many
different degree sequences are there?

Since the degree of a vertex is at most n − 1 and at least 0, a simple upper bound
follows by bounding the number of integer sequences n− 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. A
‘stars-and-bars’ argument shows that there are

(
2n−1
n−1

)
= Θ(4n/

√
n) such sequences, but

not all of them are degree sequences of graphs. Sequences which are the degree sequence
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of some graph are called graphic sequences. A famous result of Erdős and Gallai [12]
provides necessary and sufficient conditions for a sequence to be graphical and various
other characterisations are known [17, 19].

Let G(n) be the number of graphic sequences of length n (or equivalently the number
of degree sequences across graphs on n vertices). The best known bounds on G(n) were
given by Burns [8] who showed that

c14
n

n
≤ G(n) ≤ 4n√

n logc2 n

for some constants c1, c2 > 0 and for all n ∈ N. To the best of our knowledge, these were
the best known asymptotics before our work, and this has been explicitly mentioned as
an open problem in several computational papers (e.g. [26, 44]).

Our main result pinpoints the asymptotics for G(n).

Theorem 1.1. The number of graphic sequences of length n is G(n) = (cdeg+o(1))4n/n3/4,
where cdeg > 0 is a constant.

This also answers in the affirmative a question of Royle [37] who asked1 whether the
ratio G(n)/G(n− 1) tends to 4.

The value of cdeg and a connection to random walks. We can express the value of
the constant cdeg in terms of the hitting probabilities of a particular random walk, which
arises from our proof strategy. In particular, computational estimates give cdeg ≈ 0.099094
(see Section 5.3).

We will prove Theorem 1.1 by viewing a sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 as a
path on a grid from (0, n) to (n − 1, 0), as depicted in Figure 1(a). We then count the
number of graphic sequences of length n by sampling such a path uniformly at random,
and computing the probability that the path satisfies the conditions given by Erdős and
Gallai for a sequence to be graphical.

To be more precise, a sequence is graphical if and only if the sum of the degrees is
even and it satisfies the dominating condition given in (2.1). Our aim is to show that the
probability that a random sequence satisfies the dominating condition is asymptotically
4
√
πcdegn

−1/4. Then, we show that, asymptotically, half of the sequences that satisfy the
dominating condition have even sum, and the result then follows from the fact that we
considered

(
2n−1
n−1

)
≈ (2

√
π)−14nn−1/2 sequences in total.

Via a number of reformulations (see Section 2.1), the probability that a uniformly
random sequence satisfies the dominating condition turns out to be the probability that
a particular integrated random walk bridge stays non-negative. Let Y = (Yk)k≥0 be a
random walk that has increments that take the value 1 with probability 1

4
, the value −1

with probability 1
4
and the value 0 otherwise, so that Y is a lazy simple symmetric random

walk. Let Ak =
∑k

j=1 Yj be its area process. Our probability of interest is the probability
that A1, . . . , An−1 ≥ 0, conditional on the event that Yn−1 ∈ {0,−1}. To introduce its
asymptotic value, we need some additional notation. Let ζ1 = inf{k ≥ 1 : Yk = 0, Ak ≤

1Royle actually asked whether G′(n)/G′(n − 1) → 4 where G′(n) is the number of degree sequences
of graphs without isolated vertices. However G′(n) = G(n) −G(n− 1), so this question is equivalent to
the question of whether G(n)/G(n− 1) tends to 4.
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0} be the first visit of Y to 0 at which (Ak)
∞
k=1 hits (−∞, 0] and let ρ = P(Aζ1 = 0). We

prove the following result about lazy simple symmetric random walk bridges which may
be of independent interest.

Proposition 1.2. We have that

n1/4P(A1, . . . , An ≥ 0 | Yn = 0) → Γ(3/4)√
2π(1− ρ)

as n → ∞.

The probability that a random process does not take negative values is also called
the persistence probability. The persistence probability of integrated random processes
was first studied by Sinăı [40] in 1992, who showed that the persistence probability of
an n-step simple symmetric random walk (SSRW) is Θ(n−1/4). The sharp asymptotics
(including the constant) follow from a result by Vysotsky [43, Theorem 1]. His work on
random walk bridges implies that the persistence probability of an n-step SSRW bridge is
Θ(n−1/4) [43, Proposition 1]. The sharp asymptotics for SSRW bridges are a natural next
question, which we answer in Proposition 6.3 for the SSRW bridge and in Proposition
1.2 for the lazy variant.

We use Proposition 1.2 to show that G(n) = (cdeg + o(1))4n/n3/4 for

cdeg =
Γ(3/4)

4π
√

2(1− ρ)
.

The probability generating function of the area of the first excursion of Y away from 0 sat-
isfies a recursive equation which allows us to estimate that ρ is approximately 0.5158026,
and plugging this into the equation gives cdeg ≈ 0.099094.

A more direct expression for ρ is given in a follow-up work by Bassan, the second
author and Kolesnik [6]. There it is shown that ρ = 1− e−ξ where

ξ =
∞∑
n=1

2

n222n

∑
d|n

(
2d− 1

d

)
ϕ(n/d)

with ϕ Euler’s totient function. This alternative form can be used to confirm the approx-
imations of ρ and cdeg that we give above and in Section 5.3.

Related counting problems. Much more is known about related counting problems,
such as the number of graphs with a given degree sequence [5, 28, 29, 30, 47] and a variant
of our problem where the sequence does not need to be non-increasing (e.g. [41]).

The number T (n) of out-degree sequences for n-vertex tournaments, also called score
sequences, has received particular interest, and the problem of determining T (n) can be
traced back to MacMahon in 1920 [27]. Following work of Moser [33], Erdős and Moser
(see [32]), and Kleitman [24], it was shown that T (n) = Θ(4n/n5/2) by Winston and
Kleitman [46] (lower bound) and Kim and Pittel [23] (upper bound). Recently, Kolesnik
[25] determined the exact asymptotics, showing that there is a constant c ≈ 0.392 such
that T (n) = (c+ o(1))4n/n5/2.
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Another well-studied variant is the fraction p(N) of partitions of an integer N that
are graphical. This corresponds to the variant of our problem where we fix the number
of edges of the graph, rather than the number of vertices. In 1982, Wilf conjectured
that p(N) → 0 as N → ∞. Pittel [35] resolved this problem in the affirmative using a
Kolmogorov zero-one law, and Erdős and Richmond [13] showed a lower bound of p(N) ≥
π/

√
6N for sufficiently large even N . The best-known upper bound is p(N) = O(N−α)

for α ≈ 0.003 from Melczer, Michelen and Mukherjee [31].

Exact enumeration. We also give an improved algorithm for the exact enumeration
of graphic sequences and calculate the number of graphic sequences of length n for all n
up to 1651.

There is previous work on enumerating graphic sequences [20, 21, 22, 38, 45], and
the numbers were known up to n = 118 [44] as OEIS sequence A004251, although the
numbers G′(n) of zero-free graphic sequences were known up to n = 290 [45], and these
imply the values of G(n) up to the same number by the observation in footnote 1.

Paper overview. In Section 2, we provide the reformulation of our problem in terms
of integrated random walks. In Section 3, we first show that G(n) = Θ(4n/n3/4), and
then prove Theorem 1.1 and Proposition 1.2, up to technical lemmas that we postpone
to Section 4. In Section 5 we introduce an improved algorithm for computing G(n)
exactly for small n and discuss computational results such as the approximation of ρ.
We conclude with some open problems in Section 6. An overview of the notation used
throughout the paper is given in Appendix A.

2 Reformulation and notation

In order to prove our results, we need a suitable criterion for when a sequence of non-
negative integers is the degree sequence of a simple graph. For a given sequence of
non-negative integers d1 ≥ d2 ≥ · · · ≥ dn ≥ 0, let d′i be the number of j with dj ≥ i and
set

si = (n− 1)− di,

s′i = n− d′i.

Let ℓ be the largest j such that dj ≥ j. Using these definitions we can now give the
version of the Erdős–Gallai Theorem that we will use.

Theorem 2.1 (Variant of Erdős–Gallai). A sequence of integers d1 ≥ d2 ≥ · · · ≥ dn ≥ 0
is the degree sequence of a simple graph if and only if the sum

∑n
i=1 di is even and for all

k ≤ ℓ
k∑

i=1

si ≥
k∑

i=1

s′i. (2.1)

We remark that this is just one of many similar characterizations of graphic sequences
and that this form follows from the classical statement of the Erdős–Gallai Theorem by
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rearranging terms and observing that only the first ℓ conditions need be checked (see e.g.
[18, 34, 36, 39]).

We will call (2.1) the dominating condition, so that a sequence of non-negative integers
is a graphic sequence if it satisfies the dominating condition and its sum is even. As might
be expected, it turns out that about half of the sequences that satisfy the dominating
condition have an even sum although, surprisingly, the exact proportion seems to converge
to 1/2 quite slowly as n → ∞ (see Section 5.2). We will first focus on counting the
number of sequences that satisfy the dominating condition, and we will handle the parity
condition in Section 4.3 (and briefly in the proof of Proposition 3.5).

2.1 It’s a walk!

We now describe a way of associating a random walk to a uniformly random graphic
sequence in such a way that we can easily check whether the sequence is graphic using
only the walk.

Lemma 2.2. Let (Yi)i≥1 be a lazy simple symmetric random walk and let Ak =
∑k

i=1 Yi.
Then the probability that a uniformly random sequence n−1 ≥ d1 ≥ · · · ≥ dn ≥ 0 satisfies
the dominating condition (2.1) is equal to

P
(
A1, . . . , An−1 ≥ 0 | Yn−1 ∈ {0,−1}

)
. (2.2)

The probability that it is graphic is

P
(
A1, . . . , An−1 ≥ 0, An−1 ∈ 2N | Yn−1 ∈ {0,−1}

)
. (2.3)

This lemma already provides a heuristic for G(n) = Θ(4n/n3/4). Note that there are(
2n−1
n

)
= Θ(4n/

√
n) sequences n−1 ≥ d1 ≥ · · · ≥ dn ≥ 0, so we want (2.2) to be Θ(n−1/4).

Firstly, note that we only need to check that Ak ≥ 0 for k such that Yk = 0 (and for
k = n− 1), because Ak is monotone on excursions of Y away from 0. Up to time n, the
walk Y visits zero Θ(n1/2) times (in probability) so the area process restricted to times k
when Yk = 0 is a random process with Θ(n1/2) steps. If this process were a random walk,
then a result from Feller [14, Theorem XII.7.1a] would tell us that the probability that it
stays non-negative is Θ((n1/2)−1/2) = Θ(n−1/4). We also require that the total area An−1

is even, but intuitively this should happen with probability roughly 1/2. Of course, the
lengths (and hence the areas) of the excursions are not independent and we cannot apply
Feller’s result, but this heuristic does at least suggest the right order for (2.2).

We will now prove Lemma 2.2. In order to get from a uniformly random non-increasing
sequence to a lazy random walk conditioned to end in {0,−1}, we need to make a few
reformulations.

Step 1: View a sequence as a lattice path. We start by viewing the non-increasing
sequence as a lattice path P from (0, n− 1) to (n, 0) which only takes steps to the right
and downwards (see Figure 1a). Informally, we put n stacks of heights d1, d2, . . . , dn
respectively next to each other and let the P be the path from (0, n − 1) to (n, 0) that
traces the outline of the stacks. To be precise, the path begins with n − 1 − d1 steps
downwards before taking a step right. For each 2 ≤ i ≤ n, the walk takes di−1 − di steps

5



n−1

nd1 d2 · · ·

s4

s′4

(ℓ,ℓ)

(a) Step 1: View a sequence as a lat-
tice path.

d1 d2 · · ·

n−1

n

W

1

4

6

7

9

12

2

3

5

8

10

11

13

14

W ′
1 2 3

5

11

14

4

6

7

8

9

10

12

13

(b) Step 2: Cut the path in half and
reflect the latter half.

d1 d2 · · ·

n−1

n

s4-s′4

(c) Step 3: The dominating condi-
tion corresponds to the signed area be-
tween the pair of paths never taking
negative values.

Y5=2

d1 d2 · · ·

n−1

n

5

5

(d) Step 4: The cumulative distance
process between the two paths gives
the area.

Figure 1: By using a number of reformulations, we show that the probability that a
uniformly random sequence n − 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 satisfies the dominating
condition is equal to the probability that the integral of a lazy simple symmetric random
walk with n− 1 steps, conditioned to end in 0 or −1, does not take negative values.
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downwards on the line x = i − 1 before taking a step right, and it ends with dn steps
downwards to end at the point (n, 0). There must be a unique ℓ such that the walk goes
through the point (ℓ, ℓ), and it is not hard to see that ℓ is the largest j such that dj ≥ j.

Step 2: Cut the path in half and reflect the latter half. Starting from (0, n− 1),
the path takes n − 1 steps to reach the point (ℓ, ℓ) as each step decreases y − x by 1,
and we define a path W which starts with these n− 1 steps before ending with one final
step down. We now define another path W ′ starting at (0, n− 1) using the other end of
the path P . Starting at (n, 0), walk backwards along the path P to (ℓ, ℓ) and, at each
step, add the “reflected” step to W ′: if the step on P is vertical, add a right step to W ′;
otherwise add a down step to W ′. This gives two paths W and W ′ which take n steps
and both end at (ℓ, ℓ− 1) (see Figure 1b, in which the steps on the two paths have been
numbered).

Step 3: The dominating condition corresponds to the signed area between
the pair of paths never taking negative values. If the walk W (resp. W ′) has a
horizontal line from (i − 1, a) to (i, a), then si = n − 1 − a (resp. s′i = n − 1 − a). In
particular, if W is at (i, a) after k steps, the sum

∑i
j=1 sj is exactly the area enclosed by

the walk W , the line y = n − 1 and the line x = i. Similarly, if W ′ is at (i, a) after k
steps, the sum

∑i
j=1 s

′
j is exactly the area enclosed by the walk W ′, the line y = n − 1

and the line x = i. Therefore, if W and W ′ are both at (i, a) after k steps, then the
signed area between W ′ and W is exactly the sum

∑i
j=1(sj − s′j) (see Figure 1c). The

dominating condition checks if this sum is non-negative for all i.

Step 4: The cumulative distance process between the two paths gives the
area. Define Z1, . . . , Zn by setting Zi equal to +1 if the walk W goes down at the ith
step, and −1 if it goes right. Similarly, define Z ′

1, . . . , Z
′
n by setting Z ′

i equal to −1 if the
walk W ′ goes down at the ith step, and +1 otherwise. Then, Yi =

1
2

∑i
j=1(Zj +Z ′

j) keeps
track of the (signed) number of diagonal right/up steps from the walk W to the walk
W ′. When the two walks coincide at time k, there will be a diagonal line through every
box between the two walks, and hence the number of diagonal lines is equal to the signed
area between W ′ and W up to time k (see Figure 1d). We claim that we only need to
check the dominating condition when the two walks coincide. Indeed, between times at
which the walks coincide, the area process is monotone so if the area process first takes
a negative value at some time i where the walks do not coincide, the process will still
be negative when the walks next coincide. However, the number of diagonal lines used
up to time k is the integral of Y up to time k, and it suffices to check that condition∑k

i=1 Yi ≥ 0 at all times k where the walks coincide. Since the integral of Y is also
monotone on excursions away from zero (i.e. between times when W and W ′ coincide),
the condition (2.1) is equivalent to

∑k
i=1 Yi ≥ 0 for all k ≤ n. But Yn = 0, so it is in fact

sufficient that
k∑

i=1

Yi ≥ 0 for all k ≤ n− 1. (2.4)
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Step 5: The parity condition corresponds to the integral of Y being even We
now claim that

n∑
i=1

di ≡
n−1∑
i=1

Yi mod 2. (2.5)

Split the sum
∑n

i=1 di into Ared =
∑ℓ

i=1 di and Agreen =
∑n

i=ℓ+1 di. In Figure 1a, Ared is
the area below the red curve (left of (ℓ, ℓ)) and Agreen is the area below the green curve
(right of (ℓ, ℓ)). Clearly, Ared is also the area under the walk W . The area under the walk
W ′ is given by Agreen + ℓ(ℓ− 1). Hence, the signed area enclosed by W ′ and W is given
by

(Agreen + ℓ(ℓ− 1))− Ared ≡ Agreen + Ared mod 2.

It was shown in the previous step that the signed area enclosed by W ′ and W is given
by
∑n

i=1 Yi =
∑n−1

i=1 Yi, and the claim follows.

Step 6: The distance process between a random pair of paths is a conditioned
lazy random walk. Finally, we need to understand the distribution of Y when we
sample a sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 uniformly at random. First, observe
that Step 2 gives a bijection between such non-increasing sequences and pairs of lattice
paths (W,W ′) of n steps that start at (0, n − 1) and end at the same point, and such
that W ends by taking a downwards step. These are in turn in bijection with pairs
of lattice paths (W,W ′) with n − 1 steps that start at (0, n − 1) and for which the
corresponding walk (Yk)

n−1
k=0 has Yn−1 ∈ {0,−1}. Therefore, sampling a uniformly random

sequence corresponds to sampling a uniformly random pair of such paths. If we ignore
the requirement that Yn−1 ∈ {0,−1}, then for any j, Zj and Z ′

j have opposite signs with
probability 1/2, and both have value +1 (or −1) with probability 1/4, making Y a lazy
simple symmetric random walk. To recover the actual distribution of (the first n−1 steps
of) Y , we need to restrict to the paths for which Yn−1 ∈ {0, 1}, and we simply condition
on this being the case.

We remark that steps 1 through 5 give a deterministic mapping which maps a sequence
n − 1 ≥ d1 ≥ · · · dn ≥ 0 to a walk (Yi)

n
i=1 and we have shown that we can check if the

sequence is graphic by checking certain properties of the walk. In Section 5, we use this
reformulation (without introducing randomness) to enumerate the number of graphic
sequences for small n.

3 Proof of main result

In this section, we prove Theorem 1.1, which is a direct consequence of the following two
results.

Proposition 3.1. A uniformly random sequence n−1 ≥ d1 ≥ · · · ≥ dn ≥ 0 has probability

(1 + o(1))
Γ(3/4)√
2π(1− ρ)

n−1/4

of satisfying the dominating condition (2.1).
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Lemma 3.2. A uniformly random sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 which satisfies
the dominating condition (2.1), has probability 1/2 + o(1) of being a graphic sequence
(equivalently, of having

∑n
i=1 di even).

The remainder of this section is structured as follows. In Section 3.1 we introduce a
lemma (due to Burns [8]) on exchangeable random sequences that turns out to be very
useful in our proofs. We use the lemma in Section 3.2 to show that G(n) = Θ(4nn−3/4).
Finally, in Section 3.3, we use the lemma again to prove Proposition 1.2, which states
that, for A the area process of a lazy simple symmetric random walk Y , as n → ∞,

n1/4P(A1, . . . , An ≥ 0 | Yn = 0) → Γ(3/4)√
2π(1− ρ)

. (3.1)

This equation will be used to prove Proposition 3.1 in Section 4.2. We also postpone the
proofs of Lemma 3.2 and the lemmas used in the proof of Proposition 1.2 to Section 4.
An overview of the notation is given in Appendix A.

3.1 A useful lemma

We will make use of the following useful lemma that appears in Sections 2.3–2.4 of [8].
We include a proof in the appendix for completeness.

Lemma 3.3. Let x = (x1, . . . , xn) ∈ Rn, let σ be a uniformly random permutation of [n]
and let s = (s1, . . . , sn) be an independent uniformly random element of {−1, 1}n. Then

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [n]

)
≥ (2n− 1)!!

2nn!

and

P

(
k∑

i=1

sixσ(i) > 0 for all k ∈ [n]

)
≤ (2n− 1)!!

2nn!
.

If, additionally, for all distinct A,A′ ⊆ [n], the corresponding sums are also distinct, i.e.∑
i∈A xi ̸=

∑
i∈A′ xi, then

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!

and

P

(
k∑

i=1

sixσ(i) > 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!
.

We will apply this lemma to sequences of exchangeable random variables of which the
law is invariant under sign changes of the elements, so we use the following equivalent
form of the lemma.
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Lemma 3.4. Let (X1, . . . , Xn) be a random variable in Rn such that for any σ ∈ Sn and
any s ∈ {−1, 1}n,

(X1, . . . , Xn)
d
= (s1Xσ(1), . . . , snXσ(n)).

Then,

P

(
k∑

i=1

Xi ≥ 0 for all k ∈ [n]

)
≥ (2n− 1)!!

2nn!
(3.2)

and

P

(
k∑

i=1

Xi > 0 for all k ∈ [n]

)
≤ (2n− 1)!!

2nn!
. (3.3)

If, additionally, almost surely, for all distinct A,A′ ⊆ [n], the corresponding sums are
also distinct, i.e.

∑
i∈AXi ̸=

∑
i∈A′ Xi, then

P

(
k∑

i=1

Xi ≥ 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!
(3.4)

and

P

(
k∑

i=1

Xi > 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!
. (3.5)

In the following sections, we will apply this lemma to the sequence of excursion areas
of a lazy simple symmetric random walk bridge. To be precise, let Y br = (Y br

k )nk=1 be
the first n steps of the lazy SSRW Y = (Yk)k≥1 conditioned on the event Yn = 0, so that
Y br is a lazy simple symmetric random walk bridge of length n. Let Nn be the number
of times that the bridge Y br hits 0 (after time 0). Condition on the event that Nn = N .
Then the walk Y br has N excursions with areas Xbr

1 , Xbr
2 , . . . , Xbr

N say. Since the walk
Abr

k =
∑k

i=1 Y
br
i is monotone during the individual excursions, the walk Sbr = (Sbr

k )Nk=1,
defined by

Sbr
k =

k∑
i=1

Xbr
i ,

is never negative if and only if the walk Abr is never negative. The increments of Sbr

(Xbr
1 , Xbr

2 , . . . , Xbr
N ) are exchangeable and their law is invariant under sign changes, so we

can use Lemma 3.4 to estimate P
(
Sbr
1 , . . . , Sbr

N ≥ 0
)
, which is equal to the probability we

want to calculate: P(Abr
1 , . . . , A

br
n ≥ 0).

To see that Lemma 3.4 indeed implies Lemma 3.3, observe that for x, s and σ as in
the statement of Lemma 3.3, the random variable (X1, . . . , Xn) := (s1xσ(1), . . . , snxσ(n))
satisfies the conditions of Lemma 3.4. We now show that Lemma 3.3 implies Lemma 3.4.

Proof of Lemma 3.4. We observe that, for σ a uniformly random permutation of [n] and
s = (s1, . . . , sn) an independent uniformly random element of {−1, 1}n,

P

(
k∑

i=1

Xi ≥ 0 for all k ∈ [n]

)
= P

(
k∑

i=1

siXσ(i) ≥ 0 for all k ∈ [n]

)

= E

[
P

(
k∑

i=1

siXσ(i) ≥ 0 for all k ∈ [n] | X1, . . . , Xn

)]
,
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so that (3.2) and (3.4) follow by applying Lemma 3.3 to

P

(
k∑

i=1

siXσ(i) ≥ 0 for all k ∈ [n] | X1, . . . , Xn

)
.

The derivation of (3.3) and (3.5) is similar.

We make the following observation about the value of the bounds in Lemmas 3.3
and 3.4. Note that by taking either an even or odd number of terms in Wallis’s product
formula

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· · ·

one obtains alternately lower and upper bounds for π
2
. Rearranging these inequalities

gives that for all n ≥ 1

1√
π(n+ 1/2)

≤ (2n− 1)!!

2nn!
=

(
2n

n

)
1

4n
≤ 1√

πn
. (3.6)

3.2 First asymptotics

In this section, we determine the asymptotics of the number of sequences that satisfy the
dominating condition, as well as G(n), up to a constant factor.

Proposition 3.5. The number of graphic sequences of length n is G(n) = Θ(4n/n3/4).

The main ingredient in the proof of the above proposition is the following, simpler
statement.

Proposition 3.6. For (Yi)
n
i=1 the lazy SSRW and Ak =

∑k
i=1 Yi its area process,

P
(
A1, . . . , An ≥ 0 | Yn = 0

)
= Θ(n−1/4).

We will prove this proposition using (3.2) and (3.3) from Lemma 3.4. (It can also be
deduced from the more general result [43, Proposition 1].) Before we get to that, we first
use it to prove Proposition 3.5. We cannot immediately apply it to calculate the order of
growth of the number of graphic sequences as we need to condition on the walk ending at
either 0 or −1, not only 0. The following lemma shows that this change in conditioning
only changes the probability by a constant factor.

Lemma 3.7. For all n ≥ 1,

1
2
≤ P(A1, . . . , An ≥ 0 | Yn ∈ {0,−1})

P(A1, . . . , An ≥ 0 | Yn = 0)
≤ 1.

The proof of Lemma 3.7 is elementary, but for the sake of brevity we postpone it to
Section 4 and skip straight to the proof of Proposition 3.5.
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Proof of Proposition 3.5. By Lemma 2.2, the probability that a uniformly random se-
quence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 satisfies the dominating condition (2.1) is equal
to P(A1, . . . , An−1 ≥ 0 | Yn−1 ∈ {0,−1}), which is Θ(n−1/4) by Proposition 3.6 and
Lemma 3.7. Hence, the number of sequences which satisfy the dominating condition is
Θ(4n/n3/4).

Clearly, G(n) = O(4n/n3/4) is immediate, and we only need to show a corresponding
lower bound. LetH(n) denote the number of sequences (di)

n
i=1 that satisfy the dominating

condition for which
∑n

i=1 di is odd. The number of sequences of length n that satisfy the
dominating condition is therefore G(n) + H(n) = Θ(4n/n3/4). Each sequence (di)

n
i=1 in

G(n) gives rise to a unique sequence in G(n + 1) by appending dn+1 = 0. Separately,
each sequence (di)

n
i=1 in H(n) gives rise to a unique sequence in G(n + 1) by adding an

extra 1 to the graphic sequence (in the appropriate place). Hence,

G(n+ 1) ≥ max{G(n), H(n)} ≥ 1
2
(G(n) +H(n)).

Hence, G(n) ≥ 1
2
(G(n− 1) +H(n− 1)) = Θ(4n/n3/4) as required.

Proof of Proposition 3.6. Recall from Section 3.1 that Sbr
1 , . . . , Sbr

Nn
is the process with

the excursion areas of a lazy simple symmetric random walk bridge of length n as its
increments and that

P(A1, . . . , An ≥ 0 | Yn = 0) = P
(
Sbr
1 , . . . , Sbr

Nn
≥ 0
)
.

Recall that the increments of Sbr are exchangeable and their law is invariant under
sign changes so, conditional on the event that Nn = N , the probability that Sbr never
takes a negative value is at least

(2N − 1)!!

2NN !
by (3.2) of Lemma 3.4. This implies that

P(A1, . . . , An ≥ 0 | Yn = 0) ≥ E
[
(2Nn − 1)!!

2NnNn!

]
.

A little care is needed in computing the expectation and we postpone the proof that

E
[
(2Nn−1)!!
2NnNn!

]
= (1 + o(1))n−1/4 Γ(3/4)√

2π
to Lemma 4.3.

For the upper bound we use (3.3) from Lemma 3.4, but we need to use a trick to
circumvent the strict inequality in the event. Consider the walks of length n + 2 that
begin with an upwards step and then a downwards step. After these first two steps the
walk behaves like a lazy SSRW of length n conditioned to end at 0, but the area process
is one higher. This means the event {

∑k
i=1 Yi > 0, k = 1, . . . , n+ 2} is exactly the event

{
∑k

i=3 Yi ≥ 0, k = 3, . . . , n + 2}. A simple calculation shows that the probability the
walk goes up and then down given that Yn+2 = 0 is at least 1/16 for all n. It follows that

P(A1, . . . , An ≥ 0 | Yn = 0) ≤ 16P(A1, . . . , An+2 > 0 | Yn+2 = 0).

Therefore, if Nn+2 is the number of times a lazy SSRW of length n + 2 hits zero when
conditioned to end at zero, similar reasoning to before shows that (3.3) from Lemma 3.4
and Lemma 4.3 imply that

P(A1, . . . , An ≥ 0 | Yn = 0) ≤ 16E
[
(2Nn+2 − 1)!!

2Nn+2Nn+2!

]
= (1 + o(1))n−1/416Γ(3/4)√

2π
.

The claimed statement follows.
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3.3 Proof of Proposition 1.2

We will use Lemma 3.4 to get tighter estimates for the probability that Sbr never takes
a negative value. The weak inequality (3.2) from Lemma 3.4 is only strengthened to the
equality (3.4) when all subset sums of elements in (Xbr

i : 1 ≤ i ≤ Nn) are distinct almost
surely. However, this is not the case: for n ≥ 2, with positive probability, Y br

0 = Y br
1 =

Y br
2 = 0, in which case both Xbr

1 and Xbr
2 equal 0. We overcome this issue by perturbing

each Xbr
i by a small random amount.

To be precise, let ε1, ε2, . . . be i.i.d. Uniform[− 1
2n
, 1
2n
] random variables and define

X̃br
i = Xbr

i + εi and S̃br
k =

∑k
i=1 X̃

br
i . Then, as the perturbations are independent and

εi
d
= −εi, the increments of S̃br are exchangeable and their law is invariant under sign

changes. Moreover, since Uniform[− 1
2n
, 1
2n
] is non-atomic, for any sequences of real num-

bers x1, . . . , xN , the probability that there are distinct subsets S, T ⊆ {1, . . . , N} with∑
i∈S(xi + εi) =

∑
j∈T (xj + εj) is 0. This means that conditional on the event Nn = N ,

the equality (3.4) from Lemma 3.4 shows that the probability that S̃br
1 , . . . , S̃br

N ≥ 0 is

exactly (2N−1)!!
2NN !

. This implies that

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0
)
= E

[
(2Nn − 1)!!

2NnNn!

]
.

We compute the expectation in Lemma 4.3, where we show that as n → ∞,

E
[
(2Nn − 1)!!

2NnNn!

]
= (1 + o(1))n−1/4Γ(3/4)√

2π
.

Combining the two equations above gives

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0
)
= (1 + o(1))n−1/4Γ(3/4)√

2π
. (3.7)

Note that by our choice for the law of the perturbations {εi} we have |
∑k

i=1 εi| < 1 for all

k. Since S̃br
k = Sbr

k +
∑k

i=1 εi and Sbr only takes integer values, this implies that Sbr
k ≥ 0

whenever Sbr
k ≥ 0. Therefore, to compute the probability that Sbr never takes a negative

value we can use the following equality

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0
)
= P

(
S̃br
1 , . . . , S̃br

Nn
, Sbr

1 , . . . , Sbr
Nn

≥ 0
)

= P
(
Sbr
1 , . . . , Sbr

Nn
≥ 0
)
P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0
)
.

Equation (3.7) gives the asymptotic value for P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0

)
, so our result will

follow by evaluating the limit of P(S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0) as n → ∞. For

this, we need a further observation. Again using that |
∑k

i=1 εi| < 1 for all k and that Sbr

only takes integer values, Sbr
k > 0 implies that S̃br

k > 0. Therefore, for any k,

{S̃br
k ≥ 0} = {Sbr

k > 0} ∪

{
Sbr
k = 0,

k∑
i=1

εi ≥ 0

}
.

This implies that on the event that Sbr
1 , . . . , Sbr

Nn
≥ 0, the event Sbr

1 , . . . , Sbr
Nn

≥ 0 holds if

and only if
∑k

i=1 εi ≥ 0 for all k for which Sbr
k = 0. Suppose that Sbr is equal to zero Mn

13



times, namely at at ξ1, . . . , ξMn , and let us also set ξ0 = 0. By definition, S̃br
ξk

=
∑ξk

i=1 εi,

and the increment between times ξk−1 and ξk is exactly ηk =
∑ξk

i=ξk−1+1 εi.

We show that we can apply the equality (3.4) from Lemma 3.4 to the process (S̃br
ξk
, 1 ≤

k ≤ Mn). Firstly, the sequence (ηk)1≤k≤Mn is exchangeable as (ξi − ξi−1, 1 ≤ i ≤ Mn)

is exchangeable and the perturbations εi are i.i.d. Secondly, since εi
d
= −εi, the law of

(ηk)1≤k≤Mn is invariant under sign changes of the elements. Finally, we already observed
that all subset sums of {ε1, . . . , εNn} are distinct almost surely. This means that we can
indeed apply the equality (3.4) to (S̃br

ξk
, 1 ≤ k ≤ Mn) conditional on Mn = M , that is,

P(S̃br
ξ1
, . . . , S̃br

ξMn
≥ 0 | Mn = M) =

(2M − 1)!!

2MM !
.

From the definition of (ξi) as the times i where Sbr
i and S̃br

i may differ in signs, it follows
that

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0, Mn = M
)
=

(2M − 1)!!

2MM !
.

This implies

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0
)
= E

[
(2Mn − 1)!!

2MnMn!

∣∣∣∣Sbr
1 , . . . , Sbr

Nn
≥ 0

]
.

What remains is to understand the distribution of Mn conditional on the event that
{Sbr

1 , . . . , Sbr
Nn

≥ 0}. In fact, we will show that it converges in distribution to G ∼
Geom(ρ). For this it is enough to show that for ℓ ≥ 1,

P(Mn ≥ ℓ+ 1 | Sbr
1 , . . . , Sbr

Nn
≥ 0, Mn ≥ ℓ) → ρ. (3.8)

Lemma 4.8 states that

ρn := P(Mn ≥ 1 | Sbr
1 , . . . , Sbr

Nn
≥ 0)

converges to ρ as n → ∞. Suppose Mn ≥ ℓ and let ζℓ be the time at which Y br and
Abr hit 0 simultaneously for the ℓth time. Then, Y br and Abr restricted to [ζℓ, n] are
distributed as a lazy simple symmetric random walk bridge with n− ζℓ steps and its area
process respectively, so

P
(
Mn ≥ ℓ+ 1 | Sbr

1 , . . . , Sbr
Nn

≥ 0, Mn ≥ ℓ, ζℓ) = ρn−ζℓ .

Lemma 4.6 implies that (conditional on the event {Sbr
1 , . . . , Sbr

Nn
≥ 0}) it holds that

ζMn = O(n−1/2) in probability, so n − ζℓ = (1 + o(1))n and (3.8) follows from ρn → ρ.
This implies that

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0
)
→ E

[
(2G− 1)!!

2GG!

]
,

and a simple calculation shows that this equals
√
1− ρ. Putting this all together gives

P
(
Sbr
1 , . . . , Sbr

Nn
≥ 0
)
=

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0
)

P
(
S̃br
1 , . . . , S̃br

Nn
≥ 0 | Sbr

1 , . . . , Sbr
Nn

≥ 0
)

= (1 + o(1))
Γ(3/4)√
2π(1− ρ)

n−1/4,

as claimed.
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4 The postponed proofs

We will first introduce a coupling between simple symmetric random walks (resp. bridges)
and lazy simple symmetric random walks (resp. bridges) that turns out to be useful in
our proofs. Let (Ŷi)i≥0 be a simple symmetric random walk. Then, if we set Yi =

1
2
Ŷ2i

for each i we see that (Yi)i≥0 has the law of a lazy simple symmetric random walk. This
implies that for k ∈ Z

P(Yn = k) = P(Ŷ2n = 2k) = 4−n

(
2n

n+ k

)
. (4.1)

Moreover, since Ŷ is zero only at even times, the zeroes of Ŷ are in one-to-one corre-
spondence with the zeroes of Y , and in particular, if (Ŷ br

i )0≤i≤2n is a simple symmetric

random walk bridge and Y br
i = 1

2
Ŷ br
2i , we have that (Y

br
i )0≤i≤n is a lazy simple symmetric

random walk bridge.
To prove Lemma 3.7 we first show that the probability of event {A1, . . . , An ≥ 0} is

monotone with respect to the value of Yn.

Lemma 4.1. For all −n ≤ k ≤ k′ ≤ n,

P(A1, . . . , An ≥ 0 | Yn = k) ≤ P(A1, . . . , An ≥ 0 | Yn = k′).

Proof. It suffices to prove the claim when k′ = k + 1. We will use the coupling between
the SSRW and the lazy SSRW introduced at the beginning of this section. Consider the
SSRW Ŷ = (Ŷk)

2n
i=1 conditioned on the event Ŷ2n = 2k, and define Y by Yi :=

1
2
Ŷ2i. Then

Y is distributed as a lazy SSRW with n steps conditioned on the event Yn = k.
Now, observe that the increments of Ŷ conditioned on Ŷ2n = 2k are distributed as

a uniform ordering of n + k instances of 1 and n − k instances of −1. We consider a
modified sequence obtained from the original sequence by picking a uniformly random
−1 and changing it to a +1, so that the modified sequence has the law of the increments
of a SSRW of 2n steps conditioned to end in 2k + 2, which, again via the coupling,
corresponds to a lazy SSRW of n steps conditioned to end in k + 1. We see that our
modification increased one increment of Y by 1, and since the event {A1, . . . , An ≥ 0} is
increasing in the increments of Y , the result follows.

Proof of Lemma 3.7. We abbreviate E = {A1, . . . , An ≥ 0}, and start with the lower
bound. We use (4.1).

P(E | Yn ∈ {0,−1}) = P(E | Yn = 0)P(Yn = 0) + P(E | Yn = −1)P(Yn = −1)

P(Yn ∈ {0,−1})

≥
P(E | Yn = 0)

(
2n
n

)(
2n+1
n

)
= n+1

2n+1
P(E | Yn = 0)

≥ 1
2
P(E | Yn = 0).
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We now turn to the upper bound, for which we use Lemma 4.1.

P(E | Yn ∈ {0,−1}) = P(E | Yn = 0)P(Yn = 0) + P(E | Yn = −1)P(Yn = −1)

P(Yn ∈ {0,−1})

≤ P(E | Yn = 0)(P(Yn = 0) + P(Yn = −1))

P(Yn ∈ {0,−1})
= P(E | Yn = 0).

4.1 Lemmas for Proposition 1.2

As before, let Nn = |{1 ≤ i ≤ n : Y br
i = 0}| be the number of returns to 0 of Y br up to

time n. We have the following lemma.

Lemma 4.2. As n → ∞, n−1/2Nn
d→ 2

√
E where E ∼ Exp(1) has a standard exponential

distribution. Moreover, for any γ ≥ 0,

P
(
Nn < γn1/2

)
≤ γ2

2
.

Proof. We fix an n and a k ≤ n. We will count the number of Bernoulli bridges with 2n
steps and at least k returns to 0 (i.e. at least k excursions away from 0). For a Bernoulli
bridge with 2n steps and at least k excursions, flip the last k excursions so that they are
positive. Then remove the last step of each of the last k excursions. Each of the removed
steps was downward, so we now obtain a path of length 2n− k that ends at level k. We
can recover the original position of the removed steps: the ith removed step should be
included after the last time the path is at level i. Therefore, each path of length 2n− k
that ends at level k corresponds to 2k bridges with more than k zeroes, so the number
of bridges with 2n steps and more than k zeroes equals 2k

(
2n−k
n

)
. Thus the probability

that a simple symmetric random walk bridge with 2n steps returns to 0 at least k times
equals

2k
(
2n−k
n

)(
2n
n

) =
2kn(n− 1) · · · (n− k + 1)

(2n)(2n− 1) · · · (2n− k + 1)
=

k−1∏
i=1

(
1− i

2n− i

)
.

By the coupling between a lazy random walk bridge on [n] and a simple symmetric
random walk bridge on [2n] that preserves the number of zeroes, we then see that for
k = O(

√
n),

logP(Nn ≥ k) = log
k−1∏
i=1

(
1− i

2n− i

)
= −

k−1∑
i=1

( i

2n
+O(i2/n2)

)
= − k2

4n
+O(n−1/2),

so P(Nn ≥ tn1/2) → e−t2/4 = P(E > t2/4) = P(2
√
E > t) where E ∼ Exp(1) has an

exponential distribution. We also see that, for 0 ≤ k ≤ n,

P(Nn ≥ k) =
k−1∏
i=1

(
1− i

2n− i

)
≥ 1−

k−1∑
i=1

i

2n− i
≥ 1− k(k − 1)/2

2n− k
≥ 1− k2

2n
.

Hence, as the above inequality is trivially true for k > n,

P
(
Nn < γn1/2

)
= 1− P

(
Nn ≥ ⌊γn1/2⌋

)
≤ ⌊γn1/2⌋2

2n
≤ γ2

2
.
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We use Lemma 4.2 to prove the following lemma which considers the asymptotic value
of P(S̃br

1 , . . . , S̃br
Nn

≥ 0) = E
[
(2Nn−1)!!
2NnNn!

]
.

Lemma 4.3. As n → ∞,

E
[
(2Nn − 1)!!

2NnNn!

]
= (1 + o(1))n−1/4Γ(3/4)√

2π
.

Proof. Fix some δ ∈ (0, 1). We split the expectation according to the contribution with
Nn < δn1/2 and Nn ≥ δn1/2. By Lemma 4.2, P(Nn < δn1/2) ≤ δ2/2 for all n and we also
recall from (3.6) that

1√
π(m+ 1/2)

≤ (2m− 1)!!

2mm!
≤ 1√

πm
.

Hence,

n1/4E
[
(2Nn − 1)!!

2NnNn!
1{Nn<δn1/2}

]
≤ n1/4

∞∑
i=0

P
(
2−i−1δn1/2 ≤ Nn < 2−iδn1/2

) 1√
π2−i−1δn1/2

≤
∞∑
i=0

1
2
(2−iδ)2 · (π2−i−1δ)−1/2 = O(δ3/2).

Since n1/4/
√
πNn is bounded for Nn ≥ δn1/2 and n−1/2Nn converges in distribution

to 2
√
E where E ∼ Exp(1),

n1/4E
[
(2Nn − 1)!!

2NnNn!
1{Nn≥δn1/2}

]
= E

[
n1/4√

πNn +O(1)
1{n−1/2Nn≥δ}

]
→ E

[
1{2

√
E≥δ}√

2π
√
E

]

as n → ∞. Now

E

[
1{2

√
E≥δ}√

2π
√
E

]
= E

[
1{E≥δ2/4}√
2πE1/4

]
=

1√
2π

∫ ∞

δ2/4

x−1/4e−xdx =
Γ(3/4)√

2π
+O(δ3/2).

Hence,

n1/4E
[
(2Nn − 1)!!

2NnNn!

]
→ Γ(3/4)√

2π
+O(δ3/2)

as n → ∞. As δ was arbitrary, the result now follows.

We now want to show that

P
(
∃k ∈ (n1/2, n] : Abr

k = Y br
k = 0 | Abr

1 , . . . , A
br
n ≥ 0

)
= o(1),

which is the content of Lemma 4.6. For the proof of this, we will need Lemma 4.4, which
is a local limit theorem for the position and area of a lazy SSRW, and Lemma 4.5, which
we will use to control the probability that the integral and position of an unconditioned
lazy SSRW hit 0 simultaneously at a late time.
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Lemma 4.4. We have

lim
n→∞

sup
a,b

∣∣n2P(Yn = a,An = b)− ϕ(n−1/2a, n−3/2b)
∣∣ = 0

where the supremum runs over all (a, b) ∈ Z2 and

ϕ(x, y) =
2
√
3

π
exp

(
− 4x2 + 12xy − 12y2

)
.

The proof of this lemma is postponed to Appendix C.

Lemma 4.5. There exists a constant C such that for all n ≥ 1,

P(An = Yn = 0, A1, . . . , An ≥ 0) ≤ Cn−5/2.

With Lemma 4.4 in hand, the proof of Lemma 4.5 is a direct adaptation of the proof
of the upper bound of Theorem 1 of [4] on simple symmetric random walks. For the sake
of completeness, we have included a proof in Appendix D.

Lemma 4.6. We have that

P
(
∃k ∈ (n1/2, n] : Abr

k = Y br
k = 0 | Abr

1 , . . . , A
br
n ≥ 0

)
= O(n−3/4).

Proof. Define pn = P(A1, . . . , An ≥ 0, Yn = 0). Note that for any k,

P
(
Abr

k = Y br
k = 0 | Abr

1 , . . . , A
br
n ≥ 0

)
=

1

pn
P(Ak = Yk = 0, A1, . . . , An ≥ 0, Yn = 0)

=
1

pn
P(Ak = Yk = 0, A1, . . . , Ak ≥ 0)

× P(Ak+1, . . . , An ≥ 0, Yn = 0 | Ak = Yk = 0)

=
pn−k

pn
P(Ak = Yk = 0, A1, . . . , Ak ≥ 0).

By our earlier results (Proposition 3.6), pn = Θ(n−3/4) and by Lemma 4.5, the final factor
is O(k−5/2). Therefore, there exists a C such that for each k ≤ n,

P
(
Abr

k = Y br
k = 0 | Abr

1 , . . . , A
br
n ≥ 0

)
≤ Ck−5/2(n− k + 1)−3/4n3/4.

Then, the result follows from the union bound by observing that∑
n1/2<k≤n/2

Ck−5/2(n− k + 1)−3/4n3/4 ≤ 23/4C
∑

k>n1/2

k−5/2 = O((n1/2)−3/2) = O(n−3/4)

and

n∑
k=⌊n/2⌋

Ck−5/2(n−k+1)−3/4n3/4 = O(n−7/4

⌈n/2⌉+1∑
j=1

j−3/4) = O(n−7/4n1/4) = O(n−3/2).

We now turn to Lemma 4.8 which shows that ρn → ρ. For the proof of this we need
the following result.
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Lemma 4.7. Let qn = P(A1, . . . , An ≥ 0 | Yn = 0). Then, uniformly over all m ≤ n1/2,
we have qn−m/qn → 1 as n → ∞.

Proof. We define φℓ(k) = P(Yℓ = −k), which is also the probability that a lazy SSRW
starting at k is at 0 at time ℓ. Let 0 < m < b < n and let Z be a random variable that
depends only on Fn−b = σ(Y1, . . . , Yn−b). We first show that

E[Z | Yn = 0] = E
[
Z · φb(Yn−b)

φb−m(Yn−b)

φn−m(0)

φn(0)

∣∣∣ Yn−m = 0

]
. (4.2)

For b′ < n′ and any Z ′ that depends only on Fb′ ,

E[Z ′ | Yn′ = 0] =
E[Z ′

1{Yn′ = 0}]
P(Yn′ = 0)

=
E[E[Z ′

1{Yn′ = 0} | Fb′ ]]

P(Yn′ = 0)

=
E[Z ′P(Yn′ = 0 | Fb′)]

P(Yn′ = 0)
= E

[
Z ′ · φn′−b′(Yb′)

φn′(0)

]
.

Applying this to Z ′ = Z φb(Yn−b)

φb−m(Yn−b)
φn−m(0)
φn(0)

, n′ = n−m and b′ = n− b, we find that

E[Z ′ | Yn−m = 0] = E
[
Z ′ · φb−m(Yn−b)

φn−m(0)

]
= E

[
Z · φb(Yn−b)

φb−m(Yn−b)

φn−m(0)

φn(0)
· φb−m(Yn−b)

φn−m(0)

]
= E

[
Z · φb(Yn−b)

φn(0)

]
= E[Z | Yn = 0]

as desired.
We assume m ≤ n1/2 and let b = b(n) ∈ N be such that b(n) = (1 + o(1))n7/9. Next,

we provide bounds on φb(Yn−b)

φb−m(Yn−b)
φn−m(0)
φn(0)

. We first note that by (4.1) for |k| ≤ ℓ we have

φℓ(k) =

(
2ℓ

ℓ− k

)
4−ℓ =

(
2ℓ

ℓ

)
4−ℓ ·

k∏
j=1

(
1− 2j − 1

ℓ+ j

)
=

1√
πℓ+O(1)

· exp

(
k∑

j=1

log
(
1− 2j − 1

ℓ+ j

))

=
1√
πℓ

eO(1/ℓ) · exp

(
−

k∑
j=1

(2j − 1

ℓ
+O(j2/ℓ2)

))

=
1√
πℓ

e−k2/ℓ+O(k3/ℓ2)+O(1/ℓ).
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Hence, φℓ(k)/φℓ′(k) → 1 provided ℓ → ∞, ℓ/ℓ′ → 1, k2(ℓ − ℓ′)/ℓℓ′ → 0 and k3/ℓ2 → 0.
Now define

δn = min
|k|≤n1/2

φb(k)

φb−m(k)

φn−m(0)

φn(0)

δn = max
|k|≤n1/2

,
φb(k)

φb−m(k)

φn−m(0)

φn(0)
.

and note that δn → 1 and δn → 1 as n → ∞ for our choice of m and b. Indeed,
log δn, log δn = O(m/b+mn/b2 + n3/2/b2) → 0.

Applying (4.2) with Z = 1{A1,...,An−b≥0, |Yn−b|≤n1/2} gives

P
(
A1, . . . , An−b ≥ 0 | Yn = 0

)
≤ P

(
A1, . . . , An−b ≥ 0, |Yn−b| ≤ n1/2 | Yn = 0

)
+ P(|Yn−b| > n1/2 | Yn = 0)

≤ δnP
(
A1, . . . , An−b ≥ 0, |Yn−b| ≤ n1/2 | Yn−m = 0

)
+ P(|Yn−b| > n1/2 | Yn = 0)

≤ δnP
(
A1, . . . , An−b ≥ 0 | Yn−m = 0

)
+ P(|Yn−b| > n1/2 | Yn = 0).

Similarly,

P
(
A1, . . . , An−b ≥ 0 | Yn = 0

)
≥ P

(
A1, . . . , An−b ≥ 0, |Yn−b| ≤ n1/2 | Yn = 0

)
≥ δnP

(
A1, . . . , An−b ≥ 0, |Yn−b| ≤ n1/2 | Yn−m = 0

)
≥ δnP

(
A1, . . . , An−b ≥ 0 | Yn−m = 0

)
− δnP(|Yn−b| > n1/2 | Yn−m = 0).

We note that

P(|Yn−b| > n1/2 | Yn = 0) = P(|Yb| > n1/2 | Yn = 0) = O(n−ω(1)),

P(|Yn−b| > n1/2 | Yn−m = 0) = P(|Yb−m| > n1/2 | Yn−m = 0) = O(n−ω(1))

uniformly in all m ≤ n1/2, where we use that on the event {Yn = 0}, it holds that (Yi)
n
i=1

and (Yn−i)
n
i=1 have the same law and the fact that n1/2 = (1+ o(1))nεb1/2 for some ε > 0

(and large enough n). Therefore, using that qn = Θ(n−1/4) by Proposition 3.6,

P
(
A1, . . . , An−b ≥ 0 | Yn = 0

)
= (1 + o(1))P

(
A1, . . . , An−b ≥ 0 | Yn−m = 0

)
. (4.3)

To finish the proof, it suffices to show that

P(A1, . . . , An−b ≥ 0 | Yn = 0)

P(A1, . . . , An ≥ 0 | Yn = 0)
→ 1 (4.4)

as n → ∞. Indeed, if we set b = ⌊n7/9⌋, we see that

qn−m

qn
=

P(A1, . . . , An−m ≥ 0 | Yn−m = 0)

P(A1, . . . , An ≥ 0 | Yn = 0)

=
P(A1, . . . , An−m ≥ 0 | Yn−m = 0)

P(A1, . . . , An−b ≥ 0 | Yn−m = 0)

P(A1, . . . , An−b ≥ 0 | Yn−m = 0)

P(A1, . . . , An−b ≥ 0 | Yn = 0)

× P(A1, . . . , An−b ≥ 0 | Yn = 0)

P(A1, . . . , An ≥ 0 | Yn = 0)
,
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so (4.4) would imply that the first and the third factor in the product tend to 1. The
second factor tends to 1 by (4.3).

To obtain (4.4) we need to show that

P
(
∃k ∈ (n− b, n] : Abr

k < 0 | Abr
1 , . . . , A

br
n−b ≥ 0

)
→ 0

as n → ∞. We know by our earlier bounds (Proposition 3.6) that there is a c > 0 such
that for all n large enough

P
(
Abr

1 , . . . , A
br
n ≥ 0

)
≥ cn−1/4,

so it is sufficient to show that

P
(
∃k ∈ (n− b, n] : sgn(Abr

k−1) ̸= sgn(Abr
k )
)
= o(n−1/4).

Note that

P
(
∃k ∈ (n− b, n] : sgn(Abr

k−1) ̸= sgn(Abr
k )
)

≤ P
(
|Abr

n | ≤ n6/5
)
+ P

(
max

n−b+1≤i≤n
|Y br

i | > n6/5/b
)

≤ P
(
|Abr

n | ≤ n6/5
)
+ P

(
max
1≤i≤b

|Y br
i | > n6/5/b

)
by the union bound and the fact that (Y br

i )1≤i≤n and (Y br
n+1−i)1≤i≤n have the same law.

By Lemma 4.4,

P
(
|Abr

n | ≤ n6/5
)
=

P(|An| ≤ n6/5, Yn = 0)

P(Yn = 0)
=

O(n6/5/n2)

Θ(n−1/2)
= o(n−1/4).

Furthermore, by the reflection principle for the simple symmetric random walk Ŷ , we
have that, for any k

P
(

max
1≤i≤2b

Ŷi ≥ k
)
≤ 2P

(
Ŷ2b ≥ k

)
.

Under the usual coupling between (Yk)1≤k≤b and (Ŷk)1≤k≤2b we have that

P
(
max
1≤i≤b

|Yi| > k
)
= 2P

(
max
1≤i≤b

Yi > k
)
≤ 2P

(
max
1≤i≤2b

Ŷi ≥ 2k
)
≤ 4P

(
Ŷ2b ≥ 2k

)
,

so observing that n6/5/b = nεb1/2 for some ε > 0 implies that

P
(
max
1≤i≤b

|Yi| > n6/5/b
)
= n−ω(1).

Then, P(Yn = 0) = Θ(n−1/2) implies that also

P
(
max
1≤i≤b

|Y br
i | > n6/5/b

)
= n−ω(1).

So it follows that

P
(
∃k ∈ (n− b, n] : sgn(Abr

k−1) ̸= sgn(Abr
k )
)
= o(n−1/4)

as claimed.
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Recall that ρn = P(Mn ≥ 1 | Sbr
1 , . . . , Sbr

Nn
≥ 0) where Mn = #{i > 0 : Sbr

i = 0}. We
will use the preceding lemma to prove Lemma 4.8.

Lemma 4.8. We have ρn → ρ as n → ∞.

Proof. By definition,

ρn = P(∃k ∈ [n] : Abr
k = Y br

k = 0 | Abr
1 , . . . , A

br
n ≥ 0).

Let ζ1 = ζ1(Y
br) = min{k > 0 : Y br

k = 0, Abr
k ≤ 0}, with the convention that min ∅ = ∞.

On {Abr
1 , . . . , A

br
n ≥ 0} it holds that {∃k ∈ [n] : Abr

k = Y br
k = 0} = {ζ1 ≤ n} and we

first show that, under this conditioning, with high probability ζ1 is either at most n1/2 or
larger than n. We will then show that we may stop conditioning on {Abr

1 , . . . , A
br
n ≥ 0}

if we instead consider the event {ζ1 ≤ n1/2, Abr
ζ1
= 0} (and accept a o(1) term). We then

further show that the fact that we are considering Y br instead of Y makes a negligible
difference. After making these changes, the random variable ζ1 does not depend on n
and the result follows.

Observe that

ρn = P(ζ1 ≤ n | Abr
1 , . . . , A

br
n ≥ 0)

= P(ζ1 ≤ n1/2 | Abr
1 , . . . , A

br
n ≥ 0) + P(ζ1 ∈ (n1/2, n] | Abr

1 , . . . , A
br
n ≥ 0)

and by Lemma 4.6,

P(ζ1 ∈ (n1/2, n] | Abr
1 , . . . , A

br
n ≥ 0)

≤ P
(
∃k ∈ (n1/2, n] : Abr

k = Y br
k = 0 | Abr

1 , . . . , A
br
n ≥ 0

)
= O(n−3/4).

It remains to show that P(ζ1 ≤ n1/2 | Abr
1 , . . . , A

br
n ≥ 0) → ρ. Recall that qn =

P(Abr
1 , . . . , A

br
n ≥ 0). Then, for any k ∈ [n],

P(Abr
1 , . . . , A

br
n ≥ 0 | ζ1 = k) = P(Abr

1 , . . . , A
br
k ≥ 0 | ζ1 = k)

× P(Abr
k+1, . . . , A

br
n ≥ 0 | ζ1 = k, Abr

k = 0)

= qn−kP(Abr
1 , . . . , A

br
k ≥ 0 | ζ1 = k)

= qn−kP(Abr
ζ1
= 0 | ζ1 = k).

where we used that, on the event {ζ1 = k,Abr
k = 0}, the restrictions of Y br and Abr to

[k, n] have the joint law of a lazy simple symmetric random walk bridge on [n − k] and
its area process respectively. Therefore,

P(ζ1 ≤ n1/2 | Abr
1 , . . . , A

br
n ≥ 0) =

⌊n1/2⌋∑
k=1

P(ζ1 = k)
qn−k

qn
P(Abr

ζ1
= 0 | ζ1 = k).

Lemma 4.7 shows that qn−k

qn
→ 1 as n → ∞ uniformly over all k ≤ n1/2, so

ρn =

⌊n1/2⌋∑
k=1

P(ζ1 = k)P
(
Abr

ζ1
= 0 | ζ1 = k

)
+ o(1)

= P
(
ζ1 ≤ n1/2, Abr

ζ1
= 0
)
+ o(1).
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We now show that removing the condition that {Yn = 0} has only a negligible effect on
the probability. Fix 0 < ε < 1/4 and note that

P
(
ζ1 ≤ n1/2, Abr

ζ1
= 0
)

= P
(
ζ1 ≤ n1/2, Abr

ζ1
= 0, |Y br

⌊n1/2⌋| < n1/4+ε
)
+ o(1)

= E
[
1{

ζ1≤n1/2,Aζ1
=0,|Y⌊n1/2⌋|<n1/4+ε

}φn−⌊n1/2⌋(Y⌊n1/2⌋)

φn(0)

]
+ o(1),

where we have used the function φ from the proof of Lemma 4.7 and that the event{
ζ1 ≤ n1/2, Abr

ζ1
= 0, |Y br

⌊n1/2⌋| < n1/4+ε
}

is measurable with respect to σ(Y br
1 , . . . , Y br

⌊n1/2⌋). From the proof of Lemma 4.7 we have

that
φn−⌊n1/2⌋(a)

φn(0)
→ 1

uniformly over all |a| < n1/4+ε, so

P
(
ζ1 ≤ n1/2, Abr

ζ1
= 0
)
= P

(
ζ1 ≤ n1/2, Aζ1 = 0, |Y⌊n1/2⌋| < n1/4+ε

)
+ o(1)

= P
(
ζ1 ≤ n1/2, Aζ1 = 0

)
+ o(1).

Now observe that, under the law of Y , we have that ζ1 is a random variable on N that does
not depend on n, so P

(
ζ1 ≤ n1/2, Aζ1 = 0

)
→ ρ as n → ∞ and the statement follows.

4.2 Conditioning on ending in 0 or −1

In this section, we show how Proposition 3.1 follows from Proposition 1.2. By Lemma 2.2,
we need to show that for (Yk)k≥1 a lazy SSRW, and Ak =

∑k
i=1 Yi, we have that

P(A1, . . . , An−1 ≥ 0 | Yn−1 ∈ {0,−1}) = (1 + o(1))n−1/4 Γ(3/4)√
2π(1− ρ)

.

Proof of Proposition 3.1. First, observe that by Proposition 1.2 and the fact that P(Yn =
0) = (1 + o(1)) 1√

πn
,

P(A1, . . . , An−1 ≥ 0, Yn−1 = 0) = (1 + o(1))n−3/4 Γ(3/4)

π
√

2(1− ρ)
.

We also need to calculate

P(A1, . . . , An−1 ≥ 0, Yn−1 = −1).

Note that

P(A1, . . . , An ≥ 0, Yn = 0) = 1
4
P(A1, . . . , An−1 ≥ 0, Yn−1 = −1)

+ 1
4
P(A1, . . . , An−1 ≥ 0, Yn−1 = 1)

+ 1
2
P(A1, . . . , An−1 ≥ 0, Yn−1 = 0). (4.5)
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Both P(A1, . . . , An ≥ 0, Yn = 0) and P(A1, . . . , An−1 ≥ 0, Yn−1 = 0) are asymptotically

equal to n−3/4 Γ(3/4)

π
√

2(1−ρ)
, so if we show that

P(A1, . . . , An−1 ≥ 0, Yn−1 = −1) = (1 + o(1))P(A1, . . . , An−1 ≥ 0, Yn−1 = 1), (4.6)

we can deduce that

P(A1, . . . , An−1 ≥ 0, Yn−1 = −1) = (1 + o(1))n−3/4 Γ(3/4)

π
√

2(1− ρ)
.

Then, the fact that P(Yn−1 ∈ {0,−1}) = (1 + o(1)) 2√
πn

implies that

P(A1, . . . , An−1 ≥ 0 | Yn−1 ∈ {0,−1}) = (1 + o(1))n−1/4 Γ(3/4)√
2π(1− ρ)

,

as required.
We now prove (4.6). Let Y− be the set of paths (y0, y1, . . . , yn−1) starting at 0 with

steps in {−1, 0, 1} which satisfy{
k∑

i=1

yi ≥ 0 for all k ∈ [n− 1], yn−1 = −1

}
,

and let Y+ be the set of paths (y0, y1, . . . , yn−1) starting at 0 with steps in {−1, 0, 1}
which satisfy {

k∑
i=1

yi ≥ 0 for all k ∈ [n− 1], yn−1 = 1

}
.

We have
P(A1, . . . , An−1 ≥ 0, Yn−1 = −1) = P(Y ∈ Y−)

and
P(A1, . . . , An−1 ≥ 0, Yn−1 = 1) = P(Y ∈ Y+).

We will define an injective map f from Y− to Y+ such that P(Y = y) = P(Y = f(y)) for
all y ∈ Y−. Then,

P(Y ∈ Y−) =
∑
y∈Y−

P(Y = y)

=
∑
y∈Y−

P(Y = f(y))

=
∑

y∈f(Y−)

P(Y = y)

= P(Y ∈ Y+)− P(Y ∈ Y+ \ f(Y−)).

so we will be done if we can show that P(Y ∈ Y+ \ f(Y−)) = o(n−3/4). We let f be the
map that changes the sign of the last excursion away from 0. To be precise, for y ∈ Y−,
let τmax = τmax(y) = max{k ≤ n− 1 : yk = 0} and let

f(y)i =

{
yi, if i ≤ τmax;

−yi, if i > τmax.
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It is immediate that f has the claimed properties. In particular, f(Y−) ⊆ Y+ because for
y ∈ Y−, it holds that f(y)k ≥ yk for all k. Moreover, Y+ \ f(Y−) consists of the paths y
that end at 1 for which the area at time n− 1 is smaller than twice the area of the last
excursion away from 0, that is,

P(Y ∈ Y+, Y /∈ f(Y−)) = P

(
k∑

i=1

Yi ≥ 0 for k ∈ [n− 1], Yn−1 = 1,
n−1∑
i=1

Yi < 2
n−1∑

i=τmax

Yi

)
.

We see that

P

(
k∑

i=1

Yi ≥ 0 for k ∈ [n− 1], Yn−1 = 1,
n−1∑
i=1

Yi < 2
n−1∑

i=τmax

Yi

)

≤ 4P

(
k∑

i=1

Yi ≥ 0 for k ∈ [n], Yn = 0,
n∑

i=1

Yi < 2
n∑

i=τmax

Yi

)
,

by conditioning on the value of the nth increment (similar to the calculation (4.5)) and

P

(
k∑

i=1

Yi ≥ 0 for k ∈ [n], Yn = 0,
n∑

i=1

Yi < 2
n∑

i=τmax

Yi

)

≤ P

(
0 ≤

n∑
i=1

Yi < 2
n∑

i=τmax

Yi

∣∣∣ Yn = 0

)
P(Yn = 0).

Since P(Yn = 0) = Θ(n−1/2), we are done if we can show that

P

(
0 ≤

n∑
i=1

Y br
i < 2

n∑
i=τmax

Y br
i

)
= o(n−1/4).

Pick any 0 < ε < 1/4. We compute

P

(
0 ≤

n∑
i=1

Y br
i < 2

n∑
i=τmax

Y br
i

)
≤ P

(
n∑

i=τmax

Y br
i ≥ n1+ε

)
+ P

(
0 ≤

n∑
i=1

Y br
i < 2n1+ε

)

= P

(
τ1∑
i=1

Y br
i ≥ n1+ε

)
+ P

(
0 ≤

n∑
i=1

Y br
i < 2n1+ε

)
,

where τ1 = τ1(Y
br) is the first return time of Y br to 0. We trivially have that

∑τ1
i=1 Y

br
i ≤

(τ1)
2, and it is easy to see that

P(τ1 = k) =
1

2k−1

(
2k−1
k

)(
2n−2k
n−k

)(
2n
n

) = (1 + o(1)) 1
4
√
π
k−3/2n1/2(n− k)−1/2,

as k, n → ∞. Hence,

P
(
τ1 ≥ n1/2+ε/2

)
= O(n−1/4−ε/4) = o(n−1/4).
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Moreover, by Lemma 4.4, we see that

P

(
0 ≤

n∑
i=1

Y br
i < 2n1+ε

)
= O(n1+εn−3/2) = o(n−1/4),

so we conclude that
P(Y ∈ Y+, Y ̸∈ f(Y−)) = o(n−3/4).

This proves (4.5) and

P

(
k∑

i=1

Yi ≥ 0 for all k ∈ [n], Yn = 0

)
= (1 + o(1))n−3/4 Γ(3/4)

π
√

2(1− ρ)
.

4.3 About half of the sums are even

So far we have looked at the probability that a sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0
satisfies the dominating condition (2.1). In this section, we consider the parity condition
that d1 + · · ·+ dn is even and prove Lemma 3.2.

Among the sequences n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 that satisfy the dominating
condition (2.1), let E denote the set of such sequences for which the sum d1 + · · ·+ dn is
even, and O the sequences for which the sum is odd. We will define a partial matching
between E and O such that the number of unmatched elements of E ∪ O is o(|E|+ |O|).
This will immediately imply Lemma 3.2.

Each sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 corresponds to a right/down path from
(0, n − 1) to (n, 0) taking 2n − 1 steps. This corresponds to a sequence (B1, . . . , B2n−1)
where Bi ∈ {→, ↓} takes the value → if the path goes right (which it does n times) and ↓
if the path goes down (which it does n−1 times). We say j ∈ [2n−2] with j ≡ 0 mod 2
is a switch position for the sequence (B1, . . . , B2n−1) if (Bj, Bj+1) ∈ {(→, ↓), (↓,→)}.
Switching the sequence (B1, . . . , B2n−1) at position j refers to replacing (Bj, Bj+1) with
the unique element in {(→, ↓), (↓,→)} \ {(Bj, Bj+1)}, resulting in some new sequence
(B′

1, . . . , B
′
2n−1). We make two observations:

• First, for any j ∈ [2n− 2] with j ≡ 0 mod 2, the position j is a switch position for
the sequence B if and only if j is a switch position for the sequence B′. Moreover,
switching at position j is self-inverse: switching B′ at position j gives B.

• If B corresponds to a sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0, then the sequence B′

also corresponds to a sequence n− 1 ≥ d′1 ≥ · · · ≥ d′n ≥ 0, where for some k ∈ [n]

d′i ∈

{
{di}, if i ̸= k;

{di − 1, di + 1}, if i = k.

In particular, the parities of
∑

i di and
∑

i d
′
i are different.

It is not necessarily the case that performing a switch on a sequence in E results in
a sequence in O (or vice versa) as the switched sequence may violate the dominating
condition (2.1). Therefore, we will only define the matching between subsets E ′ ⊆ E and
O′ ⊆ O, where we choose E ′ and O′ so that for all sequences in E ′ ∪O′, have some slack
in the dominating condition (2.1). We will show that |E ′ ∪ O′| = (1 + o(1))|E ∪ O|, for
which we need the following two lemmas.
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Lemma 4.9. As n → ∞,

P(A⌊n/2⌋, . . . , An−1 ≥ 1 | A1, . . . , An−1 ≥ 0, Yn−1 ∈ {−1, 0}) = 1− o(1).

Proof. By Proposition 3.1, P(A1, . . . , An−1 ≥ 0, Yn−1 ∈ {−1, 0}) = Θ(n−3/4), so we are
done if we show that

P(Ai = 0 for some i ≥ ⌊n/2⌋, A1, . . . , An−1 ≥ 0, Yn−1 ∈ {−1, 0}) = o(n−3/4).

But by conditioning on the value of the nth increment, we see that

P(Ai = 0 for some i ≥ ⌊n/2⌋, A1, . . . , An−1 ≥ 0, Yn−1 ∈ {−1, 0})
≤ 4P(Ai = 0 for some i ≥ ⌊n/2⌋, A1, . . . , An−1 ≥ 0, Yn = 0),

and Lemma 4.6 and Proposition 1.2 imply that the right-hand side is o(n−3/4) as claimed.

Informally, this lemma states that switching the sequence ‘near the last checks’ is
unlikely to affect whether the dominating condition (2.1) holds. We next show that all
but a negligible fraction of the sequences have switch positions ‘near the last checks’
(which is the near the middle of B).

We say a sequence (B1, . . . , B2n−1) is k-switchable if it has a switch position at some
even i ∈ [n− 2k, n− 2].

Lemma 4.10. For any k ∈ [n−1], the number of sequences (B1, . . . , B2n−1) ∈ {→, ↓}2n−1

that are not k-switchable is at most 2−k4n.

Proof. We choose a sequence (B1, . . . , B2n−1) ∈ {→, ↓}2n−1 by independently choosing
each Bi uniformly at random. The probability that B has a switch at an even position
j ∈ [2n − 1] is 1

2
, and the events are independent for different even values of j. The

probability that there are k independent failures is hence 2−k.

We now have all the necessary set-up to conclude the proof.

Proof of Lemma 3.2. Set k = ⌊n/4⌋. Let F denote the set of sequences d ∈ E ∪ O for
which the right/down-sequence (B1, . . . , B2n−1) that corresponds it (as defined earlier
this section) is not k-switchable, or for which the area process takes the value 0 at some
point in the last 2k steps. Then, applying Lemma 4.9 and Lemma 4.10, we find that
|F| = o(|E ∪ O|).

We set O′ = O \ F and E ′ = E \ F and define a matching between O′ and E ′ as
follows. Let d ∈ E ′ ∪ O′ and let B ∈ {→, ↓}2n−1 be the corresponding right/down-path.
With (ℓ, ℓ) as the unique grid point at which the path crosses the diagonal, as defined in
Section 2, we note that (B1, . . . , Bn−1) is a path from (0, n− 1) to (ℓ, ℓ). We will attempt
to change the parity by making a switch as close to the end (ℓ, ℓ) of this path as possible.
By choice of F , there is a switch position at some even j ∈ [n−2k, n−2]. We perform the
switch at the last such position. This only affects the last at most 2k positions of the area
process, which can only be increased by 1, reduced by 1 or stay the same. Therefore, the
dominating condition (2.1) is not affected (by our choice of F). This defines a matching
with the desired properties.
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Figure 2: The graph depicts our numerical estimation of cdeg (dotted line) via the approx-
imation of ρ, and a numerical estimation based on the exact values of G(n) for small n.

5 Computational results

In this section we give a new recursion which we have used to calculate G(n) for many
new values, and a description of how we numerically estimated the value of ρ (and cdeg).
We also make the surprising observation that, while roughly half the sequences which
satisfy the dominating condition have even sum, the convergence to a half is rather slow.

5.1 Determining the exact values of G(n) for small n

We give a simple recursion to count the number of graphic sequences. In Section 2.1, steps
1 through 5 define a deterministic mapping from a sequence n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0
to a (non-random) walk Y (with steps in {−1, 0, 1} and ending in 0 or −1), such that
the sequence d satisfies the dominating condition (2.1) if and only if

∑k
j=1 Yj ≥ 0 for all

1 ≤ k ≤ n− 1. Moreover, as explained in Step 5, we have
∑n

i=1 di ≡
∑n−1

i=1 Yi mod 2. We
will use this to count the number of graphic sequences.

Note that a single walk Y corresponds to 2z sequences, where z is the number of zero
steps that the walk takes (see Figure 1). We will weight each walk Y accordingly when
counting.

Let F (N, y, a) be the weighted number of walks (Yi)
N
i=1 which start at y, take N steps,

end in {−1, 0} and satisfy a+
∑k

i=1 Yi ≥ 0 for all 0 ≤ k ≤ N and a+
∑N

i=1 Yi ≡ 0 mod 2.
We think of a as the starting value of the area process, or the area from any earlier steps
of the walk. We see that by taking N = n − 1, y = 0 and a = 0, we count exactly the
walks which correspond to sequences that are graphic. Hence, the number of graphic
sequences of length n is F (n− 1, 0, 0), and we can calculate this using a recursion for F
as follows.

First, we have a boundary condition that F (N, y, a) = 0 whenever a < 0. If this is not
the case, we consider the three options for the first step in the walk and how to complete
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the walk after this step. A completion would need to take N − 1 steps in every case, but
the starting position and the area will change. The walk could step up, after which a
completion starts at y + 1 with area a + y + 1; the walk could step down, in which case
a completion starts at y − 1 with area a+ y − 1; or the walk could take a step of size 0,
in which case a completion starts at y with area a + y. Since in the last case the walk
takes a step of size 0 and we are counting the weighted number of completions, this last
case must be counted twice. This leads to the following recursion:

F (N, y, a) = F (N − 1, y+1, a+ y+1)+F (N − 1, y− 1, a+ y− 1)+ 2F (N − 1, y, a+ y),

with boundary condition F (N, y, a) = 0 whenever a < 0, and initial condition F (0, y, a) =
1 if y ∈ {0,−1}, a ≥ 0 and a even, and F (0, y, a) = 0 otherwise.

To calculate the number of graphic sequences, we calculated every value of F for a
given value of N using the pre-computed values for N − 1, then calculated the values for
N +1 using the values for N and continued this until the calculation ran out of memory.
At each step, we get one more value of G(n) by reading off the value of F (n − 1, 0, 0).
For this approach to work, we need F (N, y, a) to take only finitely many values for each
value of N . First, observe that F (N, y, a) = 0 whenever y > N or y < −N − 1 as the
walk needs to end in {0,−1}.

We now consider for which values of a we need to calculate F (N, y, a). Clearly, the
boundary condition means we do not need to consider a < 0. Moreover, if y < 0, we can
ignore all a < y(y + 1)/2 as the area process will take a negative value at some point.
This just leaves large a.

We claim that, given that the walk starts at y, in N steps the area can decrease by
at most

a′ =
N2 − 2Ny + 2N − y2 + 1odd(N − y)

4
.

In particular, this means that if a ≥ a′, the area will always stay non-negative (provided
it is already) and F only depends on the parity of a. Hence, if c = max{0, a′} and a ≥ c,
the value F (N, y, a) is either F (N, y, c) or F (N, y, c+ 1).

Let us briefly justify the claim. First, consider the amount the area process can
decrease when the walk starts at 0 and returns to 0. The best thing for the walk to do
is for it to take ⌊N/2⌋ steps downwards, then ⌊N/2⌋ steps upwards. If N is odd, one
extra step of size 0 should be inserted between the downwards and upwards steps. This
reduces the area process by

⌊N/2⌋∑
i=1

i+ 1odd(N)⌊N/2⌋+
⌊N/2⌋−1∑

i=1

i =
N2 − 1odd(N)

4
.

If 0 ≤ y ≤ N − 1, the biggest reduction comes from taking y+1 steps downwards to −1,
then doing the above steps with the remaining steps (but starting and ending at −1).
This reduces the area by

−
y−1∑
i=−1

i+
(N − y − 1)2 − 1odd(N − y − 1)

4
+ (N − y − 1) = a′.
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When y = N , the same equation holds. When y < 0, then the best thing to do is to
reserve −y−1 steps which will be used as upwards steps at the end. For the first N+y+1
steps, one should aim to minimise the area while returning to y. This gives a total of

(N + y + 1)2 − 1odd(N + y + 1)

4
− y(N + y + 1) +−

−1∑
i=y+1

i = a′.

The final optimisation we implement is to consider the function f defined by

f(N, y, a) =

{
F (N, y, a)− F (N, y, a− 1), a ̸= 0;

F (N, y, 0), a = 0.

This satisfies a similar recursion to the function F , but the numbers are generally smaller
and this helps with the memory usage.

We wrote a program in Go which uses this recursion to calculate the number of graphic
sequences and ran this on a node with 512 GiB of RAM until the program ran out of
memory. This produced the first 1392 numbers (starting from n = 0). Of course, we
are only interested in calculating F (N, 0, 0) and we do not need to calculate the value
of F (N − 1, y, a) for every choice of y and a. Indeed, calculating F (N, 0, 0) only needs
three values of F (N, y, a) (and one is trivially 0). We therefore ran the program a second
time and stopped the recursion just before the program ran out of memory. We then
attempted to calculate F (N + 1, 0, 0), F (N + 2, 0, 0), . . . by only calculating values of F
when they were required (and keeping the calculated values in a map). This second step
added another 260 values, so that we now know G(n) for all n ≤ 1651. The code (along
with the computed values) is attached to the arXiv submission, and the new values have
been added to the OEIS entry A004251. The sequence A095268 counts the number G′(n)
of zero-free graphic sequences, which is given by G(n) − G(n − 1), and we have also
updated this sequence.

5.2 A surprising observation on the parity condition

By changing the initial condition, the above recursion can be changed to count H(n),
the sequences which satisfy the dominating condition and have odd parity. Lemma 3.2
shows that H(n) = (1 + o(1))G(n), and one might naturally assume that |G(n)−H(n)|
is exponentially smaller than G(n) (and H(n)), but this does not appear to be the case.
Surprisingly, numerical estimates suggest that G(n) −H(n) = Θ(4n/n5/2) which is only
a factor of Θ(n7/4) smaller than G(n).

We remark that if we ignore the dominating condition and just count the number of
sequences n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 for which

∑
di is even and for which

∑
di is odd

we get

1

2

((
2n− 1

n− 1

)
+

(
n− 1

⌊n/2⌋

))
and

1

2

((
2n− 1

n− 1

)
−
(
n− 1

⌊n/2⌋

))
respectively. The difference between these two quantities is only O(2n), which is expo-
nentially smaller than either.
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The partial matching we used to prove Lemma 3.2 suggests a possible explanation for
this. In the proof, we switched at the last switchable position before n − 1. Adapting
the proof of the main result in [4] to lazy SSRW bridges yields that P(An−1 = 0 | Yn−1 =
0, A1, . . . , An−1 ≥ 0) = Θ(n−7/4), and a sequence with An−1 = 0 cannot be ‘switched
down’. Assuming that roughly half of them would be switched down (with the other half
switched up), this yields a proportion Ω(n−7/4) of the even sequences which do not have
an odd counterpart. Of course, there are also odd sequences without an even counterpart
(e.g. those with An−1 = 1 and An−2 = 0 cannot be switched down), but this observation
makes it at least reasonable that the order of the difference is Θ(4n/n5/2).

5.3 Estimating the constant ρ

We now give a method for estimating ρ. Recall that (Yk) is the lazy simple symmetric
walk and (Sk) is the random walk formed by summing the (signed) excursion areas Xk

of (Yk). We first need to find the distribution of the excursion areas Xk. We define the
following (partial) generating function

g(x, y) =
∑
i,j>0

P(excursion is of area i and length j)xiyj.

Note that this is really only part of the full generating function, which is y
2
+ g(x, y) +

g(x−1, y), to take into account excursions below the axis, and also the probability 1
2
event

that the lazy random walk does not move on the first step (and hence the excursion area
is zero).

Lemma 5.1. The generating function g(x, y) satisfies the recursive equation

g(x, y) =
xy2

16(1− xy
2
− g(x, xy))

.

We note that as all terms of g(x, y) have a positive power of y, terms in g(x, xy) have
higher x-degree than their counterparts in g(x, y), and hence this equation allows one to
recursively evaluate g(x, y) to any order. For example,

g(x, y) = xy2

16
+ x2y3

32
+ x3y4

64
+ x4(y4+2y5)

256
+ x5(y5+y6)

256
+ x6(2y5+3y6+2y7)

1024
+O(x7).

Proof. To have a positive excursion, the first step of the lazy random walk must be up
(probability 1

4
). Then it either goes down (probability 1

4
) giving a term 1

16
xy2 in g(x, y),

or it follows some non-negative excursion before returning to height 1. Let the excursion
have area X1 and length T1 (so that the walk is now at 1 with total area X1+T1+1 and
length T1 + 1). The rest of the excursion is then equivalent to one starting at 0 at time
T1 with an initial step up, and say this excursion has area X2 and length T2. The sum∑

P(X1, T1)x
X1zT1 is just z

2
+ g(x, z) (as we allow the trivial area zero excursion here),

and the sum
∑

P(X2, T2)x
X2yT2 is just 4g(x, y) (as we automatically can assume the first

step is up). Overall we get an excursion of length T1+T2 and area (X1+T1)+X2. Setting
z = xy and multiplying these (together with a factor of 1

4
for the initial step up) gives

the remaining terms of g(x, y). Hence,

g(x, y) = xy2

16
+ 1

4

(
xy
2
+ g(x, xy)

)
· 4g(x, y),

and the lemma follows from rearranging this equation.
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Now by setting y = 1 we get a generating function for the (positive) excursion areas,
namely

g(x, 1) = x
16

+ x2

32
+ x3

64
+ 3x4

256
+ x5

128
+ 7x6

1024
+ 21x7

4096
+ 37x8

8192
+ 31x9

8192
+O(x10).

Note that g(1, 1) = 1
4
is the probability of a positive excursion.

The next task is to estimate or bound ρ, which is the probability that the random walk
Sk with step sizes Xk hits 0 before first taking a negative value. To do this we construct
a finite state Markov chain with states {−, 0, 1, 2, . . . , n− 1, ⋆} where the states − and ⋆
represent the walk taking negative value and reaching a state at least n respectively. The
states − and ⋆ are absorbing, and otherwise we add a random variable distributed like
a signed excursion area. If adding this, takes the walk negative or at least n, the walk
moves to − or ⋆ as necessary. We start the Markov chain at 0 and run until we either
hit 0 again, or one of the states − or ⋆. By a simple coupling argument it is clear that

P(hit 0) ≤ ρ ≤ P(hit 0) + P(hit ⋆).
Taking n sufficiently large gives us reasonable bounds on ρ.

As an example, taking n = 2 we have states {−, 0, 1, ⋆} and transition matrix
1 0 0 0
1
4

1
2

1
16

3
16

3
16

1
16

1
2

1
4

0 0 0 1

.

Writing hij for the probability of hitting j starting at i, we have

h10 =
1
16

+ 1
2
h10, h1⋆ =

1
4
+ 1

2
h1⋆,

giving h10 =
1
8
, h1⋆ =

1
2
. Then

h00 =
1
2
+ 1

16
h10 =

65
128

, h0⋆ =
3
16

+ 1
16
h1⋆ =

7
32
.

Hence,
65
128

≤ ρ ≤ 65
128

+ 7
32

= 93
128

.

Using this method with n = 218 gives a lower bound of 0.51580258, which appears to be
very close to the true value of ρ. However the upper bound of 0.54543568 obtained by
this method seems to still be very far from the truth.

If we make the assumption that hitting 0 before first taking a negative value is a
decreasing function of the starting point, we can amalgamate the states n − 1 and ⋆
in the above model, giving transitions out of that state as if they were from n − 1.
Unfortunately we do not have a proof that hi0 is decreasing in i, so this does not give a
rigorous bound on ρ. Nevertheless, for n = 218 we obtain a (non-rigorous) upper bound
of 0.51580289 by this method, which does seem much closer to the true value. An even
less rigorous estimate can be obtained by applying Richardson extrapolation to h00 in
terms of 1/n, which gives the estimate

ρ ≈ 0.515802638089141858504490255841,

and corresponds to a value of

cdeg ≈ 0.099094083237488745361449340935.

These approximations do not appear to correspond to any number with a simple closed
form expression.
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6 Concluding remarks

We have given a precise asymptotic for the number of graphical sequences. Similar
asymptotics are known for tournaments, but not for other natural classes such as uni-
form hypergraphs and digraphs. Another interesting direction with open problems is the
asymptotics of the number of graphical partitions of an integer N (that is, the number
of graphic sequences which sum to N).

We outline some more directions for future research below.

An upper bound in Lemmas 3.3 and 3.4 For x ∈ Rn
>0, let

A(x) =
{
(σ, s) : σ ∈ Sn, s ∈ {−1, 1}n,

∑k
i=1 sixσ(i) ≥ 0 for all k ∈ [n]

}
.

Lemma 3.3 states that |A(x)| ≥ (2n − 1)!!, with equality for all x for which all sums∑
i∈S xi are distinct (for distinct S ⊆ [n]).

Conjecture 6.1. For x ∈ Rn
>0, |A(x)| is maximized when x1 = · · · = xn.

Rephrased in probabilistic terms, we conjecture that the simple symmetric random
walk has the highest probability of staying non-negative, amongst all random processes
with exchangeable increments (X1, . . . , Xn) ∈ (R\{0})n of which the law is invariant
under sign changes of the elements.

This conjecture would imply (see (3.6)) that for all exchangeable (X1, . . . , Xn) ∈
(R\{0})n of which the law is invariant under sign changes of the elements,

1√
π(n+ 1/2)

≤ P

(
k∑

i=1

Xi ≥ 0 for all k ∈ [n]

)
≤

√
2√
πn

.

In particular, for this very general class of random processes (that contains all symmetric
random walks), the order of the probability of staying non-negative does not depend on
the law, or even the tail behaviour of the increments.

Uniformly random graphic sequences A natural next question, that we intend to
answer in future work, is the (asymptotic) law of a uniformly random graphic sequence
of length n. We now make some observations using our reformulation and discuss a
potential strategy to answer this question. Firstly, note that a uniform lattice path has
the law of a simple symmetric random walk bridge with 2n steps that straddles the line
y = n−x, and in particular, for large n, its fluctuations away from the line y = n−x are
of order n1/2. In fact, for any δ > 0, it is exponentially unlikely that at some point the
lattice path is at distance more than δn from the line y = n− x. This means that even
after conditioning on the lattice path encoding a graphic sequence (i.e. conditioning on
an event with probability Θ(n−1/4)), it is exponentially unlikely that at some point the
lattice path is at distance more than δn from the line y = n−x, and in general, the large
deviations of a uniformly random graphic sequence are completely described by the large
deviations of a uniformly random lattice path. (Observe that this implies that a uniform
graphic sequence is very different from the degree sequence of a uniform graph, of which
the corresponding lattice path stays close to the horizontal line y = n/2.)

33



Therefore, to observe the difference between a uniform graphic sequence and a uniform
lattice path, we will need to consider their more fine-grained behaviour, for example by
studying the scaling limit of their fluctuations around the line y = n− x. We conjecture
the following.

Conjecture 6.2. Let D1 ≥ · · · ≥ Dn be a uniformly random graphic sequence of length
n. Then, there exists a random continuous function D from [0, 1] to R such that(

n−1/2(D⌊tn⌋ − (1− t)n), 0 ≤ t ≤ 1
) d→ (Dt, 0 ≤ t ≤ 1)

in the uniform topology.

We expect D to have two characterizations. Firstly, it can be defined as a Brownian
bridge conditioned to satisfy a continuous version of the dominating condition (2.1).
Secondly, via a continuous version of the reformulation described in Section 2.1, D can
be constructed via two paths, for which the distance between them is distributed as a
conditioned Brownian bridge and their midpoint is determined by a Brownian motion
(the Brownian motion plays the role of the ‘lazy steps’ that can go either right or down).
This result would add graphic sequences to the long and varied list of uniformly random
combinatorial structures with a ‘Brownian’ scaling limit; examples are numerous models
of trees of which the scaling limit can be described by a Brownian excursion (see the
survey paper [15]), mappings with a limit described by the Brownian bridge [2], various
classes of maps with limits encoded by the Brownian snake (see the survey paper [1])
and pattern-avoiding permutations with limits described by a Brownian excursion (see
[7] and references therein).

Such scaling limits are interesting in their own right, but can also be exploited to
answer questions about the corresponding combinatorial class, such as ‘what proportion
of Cayley trees of size n have height exceeding tn1/2?’ or ‘in what proportion of maps
from [n] to [n] is the average distance to a cycle larger than tn1/2?’.

Persistence probabilities of integrated random processes The study of the prob-
ability that integrated random walks and random walk bridges stay non-negative started
with the work of Sinăı on the SSRW [40] and has attracted a lot of attention in the
past decade ([4, 9, 10, 16, 42, 43]; see also the survey paper [3]). However, all work on
integrated random walk bridges only finds the right order of the persistence probability
[4, 43] and for random walks the sharp asymptotics (including the value of the constant)
are only known under a (2+ δ)-moment condition on the step distribution. Our methods
completely carry over to the setting of SSRW bridges, yielding the following result of
independent interest. Let Ŷ be a SSRW and let Â be its area process.

Proposition 6.3. We have that

n1/4P(Â1, . . . , Â2n ≥ 0 | Ŷ2n = 0) → Γ(3/4)√
2π(1− ρ̂)

as n → ∞, for ρ̂ the probability that the random walk with steps distributed as the signed
area of the excursions of a SSRW hits 0 before first taking a negative value.
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Adapting the method to numerically estimate the value of ρ described in Section 5.3
shows that ρ̂ ≈ 0.0773408571485249705089600725.

This approximation can be confirmed with a more direct expression for ρ̂ that appears
in a follow-up work by the second author and Kolesnik [11]. There it is shown that

ρ̂ = 1− e−ξ̂ where

ξ̂ =
∞∑
n=1

1

4n224n

∑
d|2n

(
2d− 1

d

)
ϕ(2n/d)

with ϕ Euler’s totient function.
It is possible that our techniques can be generalized to other models of random bridges.

However, there are some difficulties to overcome, both conceptual and technical. Our
proof relies heavily on Lemma 3.4, which requires the areas of different excursions of the
bridge to be exchangeable and for their law to be invariant under sign changes. When
only considering random walk bridges, these conditions combined restrict the method to
(scalings of) symmetric processes with steps in {−1, 0, 1}, so new ideas are needed to
adapt the method to other random walk bridges.
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[12] Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices [Hungarian].
Mat. Lapok., 11:264–274, 1960.
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Henri Poincaré Probabilités et Statistiques, 50(1):195–213, 2014.

[44] Kai Wang. Efficient counting of degree sequences. Discrete Mathematics, 342(3):
888–897, 2019.

[45] Kai Wang. An improved algorithm for counting graphical degree sequences of given
length. 2019 International Conference on Computational Science and Computational
Intelligence (CSCI), pages 451–456, 2019.

[46] Kenneth J. Winston and Daniel J. Kleitman. On the asymptotic number of tour-
nament score sequences. Journal of Combinatorial Theory. Series A, 35(2):208–230,
1983.

[47] Nicholas Wormald. Asymptotic enumeration of graphs with given degree sequence.
In Proceedings of the International Congress of Mathematicians—Rio de Janeiro
2018. Vol. IV. Invited lectures, pages 3245–3264. World Sci. Publ., Hackensack, NJ,
2018.

38



A Overview of notation

The following notation is used in the paper.

• G(n) = the number of graphic sequences of length n.

• Y = (Yk)k≥0 = lazy random walk, that is, a random process with independent and
identically distributed increments that take the value 0 with probability 1/2, −1
with probability 1/4 and +1 with probability 1/4.

• Ak =
∑k

i=0 Yi, so (Ak)k≥0 is an integrated random walk.

• Xi = area of the ith excursion of Y .

• Sk =
∑k

i=1 Xi. We can see S as a ‘subsequence’ of A, where A ≥ 0 if and only if
S ≥ 0.

• ζ1 = inf{k ≥ 1 : Yk = 0, Ak ≤ 0}.

• ρ = P(Aζ1 = 0) = probability that (Ak)k≥0 hits zero before the first time it goes
negative.

• Y br = (Y br
k )nk=0= lazy random walk bridge, that is, (Yk)

n
k=0 conditioned on Y br

n = 0.

• Abr, Xbr, Sbr the counterparts of A,X, S respectively, with Y replaced by Y br in the
definition.

• Nn = number of times Y br hits 0 after time 0 (so Nn ∈ {1, . . . , n}).

• Mn = the number of times Sbr hits zero.

• S̃br, X̃br = perturbed variants of Sbr and Xbr respectively.

• ξi = the ith time Sbr hits zero.

• ρn = P(Mn ≥ 1 | Sbr
1 , . . . , Sbr

Nn
≥ 0).

B Proof of Lemma 3.3

Lemma 3.3. Let x = (x1, . . . , xn) ∈ Rn, let σ be a uniformly random permutation of [n]
and let s = (s1, . . . , sn) be an independent uniformly random element of {−1, 1}n. Then

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [n]

)
≥ (2n− 1)!!

2nn!

and

P

(
k∑

i=1

sixσ(i) > 0 for all k ∈ [n]

)
≤ (2n− 1)!!

2nn!
.
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If, additionally, for all distinct A,A′ ⊆ [n], the corresponding sums are also distinct, i.e.∑
i∈A xi ̸=

∑
i∈A′ xi, then

P

(
k∑

i=1

sixσ(i) ≥ 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!

and

P

(
k∑

i=1

sixσ(i) > 0 for all k ∈ [n]

)
=

(2n− 1)!!

2nn!
.

We include the proof of Lemma 3.3 from Burns [8] below for the convenience of the
reader.

For x ∈ Rn, let

A(x) =
{
(σ, s) : σ ∈ Sn, s ∈ {−1, 1}n,

∑k
i=1 sixσ(i) ≥ 0 for all k ∈ [n]

}
.

We will show that
|A(x)| = (2n− 1)!!

for any x ∈ Rn for which the sums xS =
∑

i∈S xi and xS′ =
∑

i∈S′ xi are distinct whenever
S, S ′ ⊆ [n] are distinct. The two bounds in the lemma follow easily from this by perturbing
x1, . . . , xn.

We call a vector y ∈ Rn
>0 rapidly decreasing if

yi > yi+1 + · · ·+ yn

for all i ∈ [n]. We will first use induction on n to show that |A(y)| = (2n − 1)!! for all
rapidly decreasing y ∈ Rn

>0. It is clear that A(y) = {(Id, 1)} when n = 1, and the claim
holds.

Suppose that we have shown the claim for some n ≥ 1, and let y ∈ Rn+1
>0 . Since

the sequence is rapidly decreasing, the pair (σ, s) is in A(y) if and only if s(i) = 1 for
all i ∈ [n + 1] such that σ(i) is the lowest number seen so far, i.e. σ(i) < σ(j) for all
j < i. Let α = σ−1(n + 1). If α ̸= 1, then the term sαyn+1 has no impact on whether
the sequence is valid, while if α = 1, we require s1 = 1 and then we need the remainder
of the sequence to satisfy the condition. More formally, let y′, σ′ and s′ be what is left
after removing yn+1, n+ 1 and sα respectively. That is

y′ = (y1, . . . , yn), σ′(i) = σ
(
i+ 1≥α(i)

)
, s′ = (s1, . . . , sα−1, sα+1, . . . , sn+1).

If α = 1, then (σ, s) ∈ A(y) if and only if s1 = 1 and (σ′, s′) ∈ A(y′). If α ̸= 1, then
(σ, s) ∈ A(y) if and only if (σ′, s′) ∈ A(y′). Hence, there are 2n + 1 pairs (σ, s) in A(y)
for each pair (σ′, s′) in A(y′). Clearly, y′ is also rapidly decreasing and the result follows
by induction.

For x ∈ Rn and S ⊆ [n], we write xS =
∑

i∈S xi. We call x ∈ Rn sum-distinct if
xS ̸= xS′ for all distinct subsets S, S ′ ⊆ [n]. Let x ∈ Rn be sum-distinct, and note that
without loss of generality we may assume x ∈ Rn

>0. We will construct y ∈ Rn
>0 that is

rapidly decreasing and for which |A(x)| = |A(y)|.
Since x is sum-distinct, we can define a total order <x on the power set P([n]) by S <x

S ′ if and only if xS < xS′ . We note that for a given σ and s, the condition
∑k

i=1 sixσ(i) ≥ 0
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is equivalent to the condition xS− <x xS+ where S± = {σ(i) : i ≤ k, si = ±1}, and hence
A(x) only depends on x through <x.

To get to the vector y, we will increase x1 until it is larger than x2 + · · · + xn, and
then increase x1 and x2 until we also have x2 > x3 + · · · + xn etc. We will do this in a
series of steps so that each increase only changes the total ordering by a “small” amount,
and the following claim shows this preserves |A(x)|. We defer the proof of this claim to
the end of this section and first finish the current proof.

Claim B.1. Let x and x′ be sum-distinct and assume there is a unique pair {L,R} of
disjoint subsets for which L <x R yet R <x′ L. Then |A(x)| = |A(x′)|.

Suppose that we already have xj > xj+1 + · · · + xn for all j < i, and we wish to
extend this to include j = i as well. We will slowly increase x1, x2, . . . , xi so that we
only change one disjoint inequality on the power set at a time and we can use the claim
above to show that |A(x)| does not change. We first ensure that no signed sums are the
same by slightly perturbing x by a small amount, which we choose to be small enough
to not change the order <x. Indeed, if

ε = min
S ̸=S′

|xS − xS′ | = min
S ̸=S′

|xS\S′ − xS′\S|,

then perturbing each entry of x by less than ε/n cannot possibly change the order <x.
Let z be a random vector formed by adding a small independent Uniform[0, ε/n] random
variable to each entry of x, and note that <x = <z, so |A(x)| = |A(z)|. Almost surely
there are no two pairs of disjoint sets (A,B) and (C,D) such that zA − zB = zC − zD,
and we can order the pairs (At, Bt) of disjoint subsets of [n] \ [i] such that zAt − zBt is
increasing in t. Suppose (Aτ , Bτ ) is the first pair for which zAτ − zBτ > zi. If there is
no such pair, then we already have zi > zi+1 + · · · + zn (by choosing A = [n] \ [i] and
B = ∅). Let δ be any value in the interval (zAτ − zBτ − zi, zAτ+1 − zBτ+1 − zi) (or in
(zAτ − zBτ − zi,∞) if there is no pair (Aτ+1, Bτ+1)), and consider the vector

z(2) = (z1 + 2i−1δ, z2 + 2i−2δ, . . . , zi + δ, zi+1, zi+2, . . . zn).

This is again sum-distinct and there is a unique pair (L,R) = (Bτ ∪ {i}, Aτ ) such that
L <z R but R <z(2) L, so |A(z(2))| = |A(z)| = |A(x)|. It also still has the property

that z
(2)
j > z

(2)
j+1 + · · · + z

(2)
n for j < i. It may not yet have the property that z

(2)
i >

z
(2)
i+1 + · · ·+ z

(2)
n , but we do have z

(2)
i > zAτ − zBτ , and we can choose δ(2) in the interval

(zAτ+1 − zBτ+1 − z
(2)
i , zAτ+2 − zBτ+2 − z

(2)
i ) and repeat to get z(3), z(4), . . . . The process

terminates at some k when z
(k)
i > z

(k)
i+1 + · · · + z

(k)
n , and we take this to be our new x.

Repeating this process for i = 1, 2, . . . , n− 1 in turn, gives a rapidly decreasing vector y
with |A(y)| = |A(x)|, as required.

We now deduce the claimed bounds for x which are not sum-distinct. As before let

ε = min
xS ̸=xS′

|xS − xS′ | = min
xS ̸=xS′

|xS\S′ − xS′\S|.

If each entry is perturbed by less than ε/n to get a vector z, then

k∑
i=1

sixσ(i) ≥ 0 ⇐⇒
k∑

i=1

sizσ(i) > −ε ⇐=
k∑

i=1

sizσ(i) ≥ 0.
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Therefore, A(x) ⊇ A(z). If we get z by adding a small Uniform[0, ε/n] random variable
to each entry of x, then z is almost surely sum-distinct and the result follows since
|A(x)| ≥ |A(z)| = (2n− 1)!! almost surely.

The second bound is similar. For x ∈ Rn, let

A′(x) =
{
(σ, s) : σ ∈ Sn, s ∈ {−1, 1}n,

∑k
i=1 sixσ(i) > 0 for all k ∈ [n]

}
.

By definition, A′(x) ⊆ A(x) with equality if x is sum-distinct, and we therefore conclude
that |A′(x)| = (2n− 1)!! when x is sum-distinct.

Let ε be as before and note that if each entry of x is perturbed by less than ε/2n to
get a vector z, then

k∑
i=1

sixσ(i) > 0 ⇐⇒
k∑

i=1

sizσ(i) > ε/2 =⇒
k∑

i=1

sizσ(i) > 0.

Hence, A′(x) ⊆ A′(z). If we obtain z by adding a small Uniform[0, ε/2n] random variable
to each entry of x, then z is almost surely sum-distinct and the result follows since
|A′(x)| ≤ |A′(z)| = (2n− 1)!! almost surely.

We now return to the proof of Claim B.1.

Proof of Claim B.1. Let k = |L ∪ R|, and consider the function f : Sn × {−1, 1}n →
Sn ×{−1, 1}n which acts as follows. For any (σ, s) ∈ Sn ×{−1, 1}n, the function f maps
(σ, s) to (σ′, s′) where σ′ is the permutation which is reversed on the first k inputs, and
s′ is formed by reversing the order of the first k entries in s and negating them. That is,
σ′(i) = σ(k + 1 − i) for i ∈ [k] and σ′(i) = σ(i) for i ∈ [k + 1, n], and s′i = −sk+1−i for
i ∈ [k] and s′i = si for i ∈ [k + 1, n].

The function f is clearly self-inverse and hence bijective, and we will show that
f(A(x) \ A(x′)) ⊆ A(x′) \ A(x). By switching the roles of x and x′ and of L and R,
it follows that f(A(x′) \ A(x)) ⊆ A(x) \ A(x′), and so |A(x)| = |A(x′)|.

Suppose that (σ, s) ∈ A(x) \ A(x′) and let f(σ, s) = (σ′, s′). It is obvious that
(σ′, s′) /∈ A(x) as

k∑
i=1

s′ixσ′(i) = −
k∑

i=1

sixσ(i) < 0.

Since (σ, s) /∈ A(x′), there must be at least one ℓ for which
∑ℓ

i=1 six
′
σ(i) < 0. We first

show that there is exactly one choice for ℓ, and that it is k. Let S± = {σ(i) : i ∈ [ℓ], si =
±1}. Then

ℓ∑
i=1

sixσ(i) = xS+ − xS− > 0,

ℓ∑
i=1

six
′
σ(i) = x′

S+
− x′

S− < 0.

In other words, S− <x S+ and S+ <x′ S−. Since S+ ∩ S− = ∅, we find that (S−, S+) =
(L,R) and the only option for ℓ is k.
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Using this we can check that (σ′, s′) ∈ A(x′). For j ∈ [k], we have

j∑
i=1

s′ix
′
σ′(i) = −

k∑
i=k−j+1

six
′
σ(i)

= −
k∑

i=1

six
′
σ(i) +

k−j∑
i=1

six
′
σ(i).

Both of these terms are non-negative since
∑ℓ

i=1 six
′
σ(i) < 0 if and only if ℓ = k. Similarly,

for j > k, we have

j∑
i=1

s′ix
′
σ′(i) =

k∑
i=1

s′ix
′
σ′(i) −

k∑
i=1

six
′
σ(i) +

j∑
i=1

six
′
σ(i)

= −2
k∑

i=1

six
′
σ(i) +

j∑
i=1

six
′
σ(i) ≥ 0.

Hence, (σ′, s′) ∈ A(x′) \ A(x).

C Proof of Lemma 4.4

Lemma 4.4. We have

lim
n→∞

sup
a,b

∣∣n2P(Yn = a,An = b)− ϕ(n−1/2a, n−3/2b)
∣∣ = 0

where the supremum runs over all (a, b) ∈ Z2 and

ϕ(x, y) =
2
√
3

π
exp

(
− 4x2 + 12xy − 12y2

)
.

The proof is an adaptation of the proof of Proposition 1 in [4].
Let a, b ∈ Z. We will use Fourier inversion to estimate P(Yn = a,An = b). We let

fn : R2 → C given by
(t1, t2) 7→ E

[
ei(t1Yn+t2An)

]
be the characteristic function of (Yn, An), so that by 2-dimensional Fourier inversion, we
have

P(Yn = a, An = b) =
1

(2π)2

∫ π

−π

∫ π

−π

fn(t1, t2)e
−i(t1a+t2b)dt1dt2. (C.1)

We observe that, for L1, L2, . . . i.i.d. random variables distributed as the steps of Y (i.e.
P(Li = 0) = 1

2
, P(Li = −1) = P(Li = 1) = 1

4
) we have

L1
d
= 1

2
(B1 +B2)

for B1 and B2 two i.i.d. Bernoulli random variables with P(B1 = 1) = P(B2 = −1) = 1
2
.

Therefore, the characteristic function of L1 satisfies

E
[
eitL1

]
= E

[
eitB1/2

]2
= cos2

(
t
2

)
.
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Moreover, note that

(Yn, An)
d
= (
∑n

k=1 Lk,
∑n

k=1(n− k + 1)Lk)
d
= (
∑n

k=1 Lk,
∑n

k=1 kLk),

so

fn(t1, t2) =
n∏

k=1

E
[
ei(t1+kt2)Lk

]
=

n∏
k=1

cos2
(
t1+kt2

2

)
.

In particular, we observe that for n ≥ 2, the absolute value of the integrand in (C.1)
is equal to 1 if and only if t = (t1, t2) = (0, 0) and is strictly smaller otherwise. We will
examine the contribution to the integral of t in a small region around (0, 0), and we will
show that the contribution is negligible outside of that region.

Define T1 = {(t1, t2) ∈ [−π, π]2 : |t1|+ n|t2| ≥ π}. Then, for n ≥ 2, it is not too hard
to see that there exists a c < 1 such that | cos( t1+kt2

2
)| ≤ c for at least half of the values

of k = 1, . . . , n. Hence, on T1,

|fn(t1, t2)| ≤ cn = exp(−Ω(n)).

Now define T2 = {(t1, t2) : n−1/3 ≤ |t1|+ n|t2| < π}. We observe that we have the bound
cos2 x ≤ e−x2

for |x| ≤ π
2
and

n∑
k=1

(t1 + kt2)
2 = nt21 + n(n+ 1)t1t2 +

1
6
n(n+ 1)(2n+ 1)t22. (C.2)

Hence, on T2, we have
∑n

k=1(t1 + kt2)
2 = n(t1 + (n+1)t2/2)

2 +n(n2 − 1)t22/12 = Ω(n1/3)
as max{|nt2|, |t1 + (n+ 1)t2/2|} = Ω(n−1/3). Thus

|fn(t1, t2)| ≤ exp
(
− 1

4

n∑
k=1

(t1 + kt2)
2
)
= exp(−Ω(n1/3)).

We deduce that
n2

(2π)2

∫∫
T1∪T2

f(t1, t2)e
−i(t1a+t2b)dt1dt2 = o(1)

as n → ∞, uniformly in a and b.
Finally consider T3 = {t : |t1|+ n|t2| < n−1/3}. Now for small x, cos2 x = exp(−x2 +

O(x4)), and so (C.2) implies that on T3 we have

fn(t1, t2) = exp
(
−1

4

(
nt21 + n2t1t2 +

n3

3
t22 +O(n−1/3)

))
.

Writing t1 = n−1/2s1, t2 = n−3/2s2, v1 = n−1/2a and v2 = n−3/2b, we have

n2

(2π)2

∫∫
T3

f(t1, t2)e
−i(t1a+t2b)dt1dt2

=
n2

(2π)2

∫∫
T3

exp
(
−1

4

(
nt21 + n2t1t2 +

n3

3
t22 +O(n−1/3)

))
e−i(t1a+t2b)dt1dt2

=
1

(2π)2

∫∫
|s1|+|s2|≤n1/6

exp
(
−1

4

(
s21 + s1s2 +

1
3
s22 +O(n−1/3)

))
e−i(s1v1+s2v2)ds1ds2

→ 1

(2π)2

∫∫
R2

exp
(
−1

4

(
s21 + s1s2 +

1
3
s22
))
e−i(s1v1+s2v2)ds1ds2
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as n → ∞ uniformly over all v1 and v2. Now

1

(2π)2

∫∫
exp
(
−1

4

(
s21 + s1s2 +

1
3
s22
))
e−i(s1v1+s2v2)ds1ds2

=
1

(2π)2

∫∫
exp
(
−1

2
sTR−1s

)
e−isT vds1ds2 =

√
detR

2π
exp
(
−1

2
vTRv

)
,

where

s =

(
s1
s2

)
, v =

(
v1
v2

)
, R−1 =

1

2

(
1 1

2
1
2

1
3

)
, R =

(
8 −12

−12 24

)
, detR = 48.

Therefore, we deduce that

n2P(Yn = a,An = b) →
√
detR

2π
exp
(
−1

2
vTRv)

)
=

2
√
3

π
exp
(
−4v21 + 12v1v2 − 12v22

)
as n → ∞, uniformly over all (v1, v2), as required.

D Proof of Lemma 4.5

Lemma 4.5. There exists a constant C such that for all n ≥ 1,

P(An = Yn = 0, A1, . . . , An ≥ 0) ≤ Cn−5/2.

With Lemma 4.4 in hand, the proof of Lemma 4.5 is a direct adaptation of the proof
of the upper bound of Theorem 1 of [4] for simple symmetric random walks. We include
the proof for our case for completeness. Let Ȳ = Ȳ (Y, n) be the adjoint process of Y on
[n], i.e. for i ∈ [n], we set Ȳi := Yn − Yn−i and let Ā be the area process of Ȳ .

Denote Yk =
∑k

i=1 Li for all k, set b = ⌊n/4⌋, and define the events

Ω+
n = {A1, . . . , Ab ≥ 0} ∈ σ(L1, . . . , Lb),

Ω̄+
n = {Ā1, . . . , Āb ≥ 0} ∈ σ(Ln−b+1, . . . , Ln).

Observe that Ȳ has the same law as Y , so Ω+
n and Ω̄+

n are independent and have equal
probability. Moreover, by Theorem 1 and 2 in [42], P(Ω+

n ) = Θ(n−1/4).
Furthermore, on the event {Yn = An = 0}, we see that Āk = An−k for any k ∈ [n], so

P(Yn = An = 0, A1, . . . , An ≥ 0) ≤ P
(
Ω+

n ∩ Ω̄+
n ∩ {Yn = An = 0}

)
= P(Ω+

n )
2P
(
Yn = An = 0 | Ω+

n ∩ Ω̄+
n

)
= Θ(n−1/2)P

(
Yn = An = 0 | Ω+

n ∩ Ω̄+
n

)
.

Now, we observe that Ω+
n ∩ Ω̄+

n only depends on L1, . . . , Lb and Ln−b+1, . . . , Ln, so

P
(
Yn = An = 0 | Ω+

n ∩ Ω̄+
n

)
≤ sup

(ℓi)

P
(
Yn = An = 0 | Li = ℓi for i ∈ {1, . . . , b} ∪ {n− b+ 1, . . . , n}

)
,
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where the supremum is over all choices of ℓ1, . . . , ℓb, ℓn−b+1, . . . , ℓn ∈ {−1, 0, 1}. We see
that given the values of L1, . . . , Lb and Ln−b+1, . . . , Ln, the processes (Y,A) restricted
to b + 1, . . . , n − b have the same distribution as a lazy random walk and its integrated
counterpart with both processes started at some different point, which implies that

P
(
Yn = An = 0 | Ω+

n ∩ Ω̄+
n

)
≤ sup

y,a
P
(
Yn−2b = y, An−2b = a

)
,

which is Θ(n−2) by Lemma 4.4. The result now follows.
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