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Abstract

We show that for every two cycles C,D, there exists c > 0 such that if G is both C-free and
D-free then G has a clique or stable set of size at least |G|c. (“H-free” means with no induced
subgraph isomorphic to H, and D denotes the complement graph of D.) Since the five-vertex cycle
C5 is isomorphic to its complement, this extends the earlier result that C5 satisfies the Erdős-Hajnal
conjecture. It also unifies and strengthens several other results.

The results for cycles are special cases of results for subdivisions, as follows. Let H,J be obtained
from smaller graphs by subdividing every edge exactly twice. We will prove that there exists c > 0
such that if G is both H-free and J-free then G has a clique or stable set of size at least |G|c. And
the same holds if H and/or J is obtained from a graph by choosing a forest F and subdividing every
edge not in F at least five times. Our proof uses the framework of iterative sparsification developed
in other papers of this series.

Along the way, we will also give a short and simple proof strengthening a celebrated result of
Fox and Sudakov, that says that for all H, every H-free graph contains either a large stable set or a
large complete bipartite subgraph.



1 Introduction

A graph is H-free if it has no induced subgraph isomorphic to H; and if H is a set of graphs, then a
graph G is H-free if it is H-free for all H ∈ H. We say a set H has the Erdős-Hajnal property if there
exists c > 0 such that for every H-free graph G, there is a clique or stable set of G with cardinality
at least |G|c; and a graph H has the property if {H} does.

A famous old conjecture of Erdős and Hajnal [11, 12] says that every graph has the Erdős-Hajnal
property; or equivalently, every non-null set of graphs has the property. Despite extensive efforts,
the conjecture has only been proved for a small family of graphs H. By a theorem of Alon, Pach
and Solymosi [1], graphs that are made by vertex-substitution from other graphs with the property
also have the property, so we could confine our attention to prime graphs, those that cannot be built
from smaller graphs by vertex-substitution. But until recently, there were only three prime graphs
with more than two vertices that were known to have the property: the four-vertex path, the bull [6]
and the five-vertex cycle [7]. (Very recently, more graphs have been added to this list, including the
five-vertex path [19] and infinitely many other prime graphs [16]; see also [17, 18, 5] for other recent
progress.)

There has been significant progress when more than one graph is excluded (we review this in detail
in the next section). For example, it was shown in [7] that {H,H} has the Erdős-Hajnal property if
H is a cycle of length at most seven [7], and extending this to longer cycles was mentioned as a nice
open question. Here we will prove a substantially stronger result:

1.1 Let H and J be cycles. Then {H,J} has the Erdős-Hajnal property.

Kn denotes the complete graph with n vertices, throughout the paper. We will also show that:

1.2 Let H be obtained from Kn by subdividing every edge twice. Then {H,H} has the Erdős-Hajnal
property.

Both these results are consequence of more general theorems, which we give below. We discuss
related work in section 2 and then give our results in section 3.

2 Related work

There has been a substantial body of work proving the Erdős-Hajnal property when two or more
graphs are excluded. Some of this has proceeded by proving a stronger property: we say that a set
of graphs H has the strong Erdős-Hajnal property if there exists c > 0 such that for every H-free
graph G with at least two vertices, there are disjoint sets A,B ⊆ V (G) with size at least c|G| such
that the pair (A,B) is either complete or anticomplete (i.e. either all possible edges between A and
B are present in G, or there are no edges between A and B). It is not hard to show that the strong
Erdős-Hajnal property implies the Erdős-Hajnal property (see [3] for example).

Which families H satisfy the strong Erdős-Hajnal property? By considering sparse random
graphs, it follows that every finite set H with the strong Erdős-Hajnal property must contain both
a forest and the complement of a forest. It was shown in [8] that every such H has the strong
Erdős-Hajnal property:

2.1 Let H and J be forests. Then {H,J} has the strong Erdős-Hajnal property.
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This characterizes finite sets H with the strong Erdős-Hajnal property, and shows that excluding
both a forest and the complement of a forest implies the Erdős-Hajnal property. (By contrast, much
less is known if we forbid just a forest H: for example, the Erdős-Hajnal property was only recently
proved in the case H = P5 [19], and only the “near Erdős-Hajnal” property is known if H is a longer
path [17].)

If H has the strong Erdős-Hajnal property but does not include both a forest and the complement
of a forest, then H must be infinite. There has been progress here as well. Bonamy, Bousquet and
Thomassé [2] showed that excluding all long holes and antiholes gives the strong Erdős-Hajnal
property:

2.2 Let k ≥ 3, and let H contain all cycles of length at least k and their complements. Then H has
the strong Erdős-Hajnal property.

It is interesting to compare this with 1.1. One can show it is necessary to exclude infinitely many
cycles and infinitely many complements of cycles to obtain the strong Erdős-Hajnal property. By
contrast, 1.1 shows that excluding a single cycle and a single cycle complement is enough to give the
Erdős-Hajnal property.

A strengthening of 2.2 was also known, but first we need some definitions. Subdividing an edge
uv means deleting the edge, and adding a path between u, v whose internal vertices are new. If the
path has length k + 1 this is called k-subdividing the edge; and if the path has length at least k + 1
it is called (≥ k)-subdividing. A graph obtained from another graph H by subdividing some of the
edges of H is called a subdivision of H, and it is a k-subdivision or (≥ k)-subdivision if every edge is
k-subdivided or every edge is (≥ k)-subdivided, respectively.

The following substantial strengthening of 2.2 was proved in [9]:

2.3 Let H be a graph, and let H contain all subdivisions of H and their complements. Then H has
the strong Erdős-Hajnal property.

Once again, we need to exclude infinitely many induced subdivisions of H, and the complements of
infinitely many induced subdivisions. By contrast, 1.2 shows that the Erdős-Hajnal property holds
if we exclude a single subdivision and its complement. In fact, we prove a more general result (3.4),
which we discuss in the next section.

3 Results

1.1 and 1.2 are both consequences of the following more general results.

3.1 Let H,J be 2-subdivisions of multigraphs H0, J0 respectively. Then {H,J} has the Erdős-Hajnal
property.

3.2 Let H be obtained from a multigraph H0 by choosing a forest F of H0, and (≥ 5)-subdividing
every edge of H0 not in E(F ). Let J be constructed similarly. Then {H,J} has the Erdős-Hajnal
property.

Let us mention that we can also prove a variant of 3.2 (this will appear in Tung Nguyen’s thesis [15]):

3.3 Let H,J be (≥ 4)-subdivisions of multigraphs H0, J0 respectively. Then {H,J} has the Erdős-
Hajnal property.
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We do not give its proof here, and the proof method is different from those used in this paper.
There is a common generalization of 3.1 and 3.2, which is our objective. Let F be a forest, and

let s, t ≥ 1 be integers. The graph F s
t is obtained as follows. Let us:

� add a set X of t new vertices to F ;

� for all distinct u, v ∈ X, add s parallel edges with ends u, v, and for each u ∈ V (F ) and v ∈ X,
add s parallel edges with ends u, v, making a multigraph;

� subdivide exactly twice every edge of this multigraph with an end in X (that is, all its edges
except those of F ).

If H is a graph such that H = F s
t for some such F, s, t, we call H a Swiss Army graph.

forest

Figure 1: A Swiss Army graph with s = 1 and t = 3.

We will prove:

3.4 If H,J are Swiss Army graphs, then {H,J} has the Erdős-Hajnal property.

Like the famous knives, Swiss Army graphs are cumbersome objects, but they contain several
useful and interesting features. For instance:

� Every cycle of length at least six is an induced subgraph of a Swiss Army graph. (If the cycle
has length at least seven, make the forest a path of the right length, while if the cycle has
length six take s = 2.)

� Every 2-subdivision of a multigraph is an induced subgraph of a Swiss Army graph. (Let the
forest be the null graph, and s the edge-multiplicity of the multigraph.)

� Let H be obtained from a multigraph H0 by choosing some forest F of H0, and (≥ 5)-
subdividing every edge of H0 not in F . Then H is an induced subgraph of a Swiss Army
graph. (By adding leaves to F , we may assume every edge of H0 not in F needs to be subdi-
vided exactly five times, and then the result is clear: take t to be the number of edges of H0

not in F .)

Since we already know the Erdős-Hajnal property for H-free graphs when H is a cycle of length
five or less, the first bullet above shows that 3.4 implies 1.1. The second bullet shows that it implies
3.1, and the third that it implies 3.2. So now we need to prove 3.4, and that occupies the remainder
of the paper.
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James Davies (private communication) pointed out a nice application of our results, for “pivot-
minors” (for definitions, see [10]). For every graph J , there is a graph H such that if G does not
contain J as a pivot-minor, then it contains neither the 2-subdivision of H nor its complement as an
induced subgraph (see Lemmas 2.1 and 2.3 of [10]). Consequently, 3.1 implies that for every graph
J , the class of graphs not containing J as a pivot-minor has the Erdős-Hajnal property, a result
recently proved by Davies in [10]. (He actually proved more, the strong Erdős-Hajnal property.)

We use standard terminology. Graphs are assumed to be finite, and to have no parallel edges or
loops. Occasionally we need to allow parallel edges (but not loops), and in that case we call them
multigraphs; G[X] denotes the induced subgraph with vertex set X of a graph G; |G| denotes the
number of vertices of G; and G is the complement graph of G.

4 A sketch of the proof

Let us give some idea of how the proof will work. (In the proof proper, there are numerous constant
factors that we will ignore here.) We have two Swiss Army graphs H,J , and we can assume that
H = J without loss of generality. We need to show that every {H,H}-free graph has a stable set
or clique of size at least |G|c, where c > 0 is some small constant depending on H but not on G. It
is just as good to show that α(G)ω(G) ≥ |G|c for all such graphs G. Choose c > 0 very small, and
suppose it does not work; then there is a minimal counterexample G, that is, G is “c-critical”.

A graph G is y-sparse if it has maximum degree at most y|G|. We use the strategy of iterative
sparsification developed in other papers of this series (see [16, 17, 18, 19]). Since G is H-free, a
theorem of Rödl implies that there is a subset S ⊆ V (G) with size linear in |G|, inducing a subgraph
that is either very sparse or very dense; and by replacing G by its complement we may assume it
is very sparse. Consequently, for some 0 < y < 1 (at most any positive constant we wish), there is
a subset S ⊆ V (G) with density at most y and size at least ya|G| (where a is some large positive
constant that we choose for convenience). Say such a value of y is “good”, and choose a good value
of y such that y2 is not good. There must be such a value, because there is no good value that is
between |G|−c and |G|−2c (because if there were, we could find a large stable set contradicting that
G is c-critical). From now on we just work inside the set S.

Now the proof breaks into two parts. We need to find in G[S] an appropriate object, a “blown-
up” relative of a Swiss Army graph that we (temporarily) call a “template”, that can be described
as follows. The graph H equals F s

t for some F, s, t; let F ′ be a forest with no edges and about y−1/16

vertices, and consider the graph (F ′)st . Now blow up each vertex of (F ′)st that belongs to F ′ into a
subset, a “block”, pairwise disjoint, and pairwise sparse (with sparsity at most y1/6 to each other).
We want each of the blocks to be large (at least poly(y)|G| for some fixed polynomial), but there is
no condition on the subgraph induced on each block. That is what we mean by a template.

The first half of the proof is to show that we can find a template in G[S], using the minimality of
y. Then, once we have such an object, the second half of the proof is to find a copy of F within the
union of the blocks, with at most one vertex in each block (that is, a “rainbow” copy of F ). If we
can do that, then F can be extended within the template to make a copy of H in G, a contradiction
(which would prove that there is no {H,H}-free c-critical graph G after all).

The first half of the proof, finding the template within G[S], uses a refinement of a result of Fox
and Sudakov, that we prove in the next section and use in sections 6 and 7. The theorem says that for
any H, in any H-free graph we can find either a large sparse subset or two large sets of vertices that
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are very dense to each other (and “large”, “sparse” and “very dense” can be tuned). We will apply
this inside the graph G[S], which is already y-sparse, and the first outcome is impossible because
of the minimality of y. If the second happens, with two large sets A1, B1 say, there are only a few
vertices in S \ (A1 ∪B1) that have many neighbours in A1 or in B1 (because G[S] is y-sparse), so we
can put them aside and repeat. We get a sequence of about y−1/16 pairs Ai, Bi of large sets, each
pair very dense to each other, and the sets in different pairs sparse to each other. Each Bi includes
a large stable set (since G is c-critical). If we can get a large induced matching within the union of
these stable sets, with not many edges joining the same two sets, then we have the template; and
otherwise there is a large stable set that contradicts the c-criticality of G.

The second half uses a result of [8], that says that for every forest F , in every sparse F -free
graph G there are two sets of vertices of linear size that are anticomplete (that is, there are no edges
between them). We need to replace the F -free hypothesis with the weaker hypothesis that there
is no rainbow copy of F ; and to replace the “two anticomplete sets of linear size” outcome with a
“poly(1/y) anticomplete sets of poly(y)|G| size” outcome. Then we apply this result to the template.
The “poly(1/y) anticomplete sets of poly(y)|G| size” outcome would contradict the c-criticality of
G, so there must be a rainbow copy of F , which is what we want. This is all done in section 8.

5 Stable sets and complete bipartite subgraphs

We need to use a strengthening of a celebrated result of Fox and Sudakov [13]. Their proof was
complicated, and used dependent random choice, and we begin with giving a simple proof of their
theorem. Then we will modify it to prove the strengthening that we need.

The result is an asymmetric weakening of the Erdős-Hajnal conjecture in which the clique is
replaced by a complete bipartite subgraph (not necessarily induced).

5.1 (Fox and Sudakov [13]) For every graph H, there exists c > 0 such that every H-free graph G
contains either a stable set of size at least |G|c, or a complete bipartite subgraph with both parts of
size at least |G|c.

We will give a simple proof of the following stronger result:

5.2 For every graph H, and every δ > 0, there exists c > 0 such that the following holds: every
sufficiently large H-free graph G contains either a stable set of size |G|c, or a complete bipartite
subgraph with parts of cardinality at least |G|1−δ and |G|c respectively.

The same method, with a little more effort, also yields a second strengthening of 5.1, which is what
we actually need, but we will prove that separately. If H,G are graphs, a copy of H in G means an
isomorphism from H to an induced subgraph of G, and indH(G) denotes the number of copies of H
in G.

The proof of 5.2 relies on the following key lemma, which was proved (with different constants)
by Fox and Sudakov [13]; as they showed, 5.1 follows in a few lines.

5.3 Let H be a graph, and let 0 < ε < 1. Let G be an H-free graph, and let t > 0 be an integer,
with |G| ≥ t. Then either

� there is a stable set of G with size t; or
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� there are disjoint subsets W1,W2 of V (G), with |W1|, |W2| ≥ (2t)−|H|2ε|H|2/2|G|/4, such that
every vertex in W1 is nonadjacent to at most 2ε|W2| vertices in W2.

Proof. We may assume that G has no stable set of size t, and so it has an edge; and therefore we
may assume that |G| > t|H|2 , since otherwise the second bullet holds (taking |W1| = |W2| = 1). So
we may assume that t, |H| ≥ 2. Let h := |H| and n := |G|.

Let H0, H1, . . . ,Hm be a sequence of graphs, each with vertex set V (H), where m = h(h− 1)/2,
such that for 1 ≤ i ≤ m, Hi is obtained from Hi−1 by adding an edge joining two nonadjacent vertices
of Hi−1 (and consequently Hi has i edges), and such that one of H0, . . . ,Hm equals H. The proof
starts with Hm and works downwards. For each i ≥ 1, we will show that if G contains many copies
of Hi then either it contains many copies of Hi−1 or we can find a very dense bipartite subgraph.
Since, as we shall see, we have many copies of Hm and no copy of H, the bipartite outcome must
occur at some point. We begin with:

(1) indHm(G) ≥ t−h2
nh.

Every graph with at least th vertices has either a stable set of size t or an h-clique (that is, a
clique of size h), by one of the standard forms of Ramsey’s theorem (see for instance theorem 2.1
of [21]). By our assumption, G has no stable set of size t, and so every subset X ⊆ V (G) with
|X| = s includes an h-clique, where s = th. Since each h-clique is included in only

(
n−h
s−h

)
subsets of

size s, and there are
(
n
s

)
subsets of size s altogether (because n ≥ th), it follows that there are at

least (
n

s

)
/

(
n− h

s− h

)
=
n(n− 1) · · · (n− h+ 1)

s(s− 1) · · · (s− h+ 1)
≥

(n
s

)h
= t−h2

nh

h-cliques in G. This proves (1).

For 0 ≤ i ≤ m, let f(i) = indHi(G)/n
h. Thus we have seen that f(m) ≥ t−h2

.

(2) For 1 ≤ i ≤ m, either f(i − 1) ≥ (ε/4)f(i), or there are disjoint subsets W1,W2 of V (G)
with |W1| · |W2| ≥ (f(i)/8)n2, such that there are fewer than ε|W1| · |W2| nonedges between W1,W2.

We suppose the second outcome is false. Let p, q ∈ V (H) be distinct, such that Hi is obtained
from Hi−1 by adding the edge pq. Let J = Hi \ {p, q}, and let ψ be a copy of J in G. (We recall
that a “copy” is an isomorphism.) We define x(ψ), y(ψ) to be the number of copies of Hi, Hi−1

respectively in G that extend ψ (a copy ϕ of Hi or Hi−1 extends ψ if the restriction of ϕ to V (J)
equals ψ). A copy ψ of J in G is royal if x(ψ) ≥ f(i)n2/2, and a copy of Hi in G is noble if it extends
a royal copy of J . Since indJ(G) ≤ nh−2, the number of copies of Hi that are not noble is at most
nh−2(f(i)n2/2) = indHi(G)/2. It follows that at least half of the copies of Hi in G are noble.

Let ψ be a royal copy of J . We claim that y(ψ) ≥ (ε/2)x(ψ). Let P be the set of vertices
v ∈ V (G) such that mapping p to v extends ψ to a copy of Hi \ {q}, and let Q be the set of vertices
v ∈ V (G) such that mapping q to v extends ψ to a copy of Hi \{p}. Thus either P = Q or P ∩Q = ∅,
depending whether p, q are twins in Hi or not.

Suppose first that P ∩Q = ∅. Since ψ is royal, it follows that |P | · |Q| ≥ x(ψ) ≥ f(i)n2/2. Hence
there are at least ε|P | · |Q| nonedges between P,Q, from our assumption; but then y(ψ) ≥ ε|P | · |Q| ≥
εx(ψ) as claimed.
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Now suppose that P = Q. Since ψ is royal, and pq ∈ E(Hi), there are at least x(ψ)/2 edges
with both ends in P (since each such edge corresponds to two copies of Hi), and so |P |(|P | − 1)/2 ≥
x(ψ)/2 ≥ f(i)n2/4. Choose C ⊆ P with size ⌊|P |/2⌋, and let D = P \ C. Thus

|C| · |D| ≥ |P |(|P | − 1)/4 ≥ x(ψ)/4 ≥ f(i)n2/8.

Consequently there are at least ε|C| · |D| nonedges between C,D, from our assumption; and since
each of these gives two ways to extend J to a copy of Hi−1, and |C| · |D| ≥ x(ψ)/4, it follows that
y(ψ) ≥ (ε/2)x(ψ).

This proves our claim that y(ψ) ≥ (ε/2)x(ψ), for each royal ψ. Summing over all royal ψ, we
deduce that the number of copies of Hi−1 in G is at least ε/2 times the number of noble copies of
Hi in G, and hence at least ε/4 times the number of copies of Hi. This proves (2).

Since one of H0, . . . ,Hm equals H, and G is H-free, it is not the case that f(i− 1) ≥ εf(i)/4 for
all i with 1 ≤ i ≤ m; choose i ∈ {1, . . . ,m} maximum such that f(i − 1) < εf(i)/4. Consequently,
f(j − 1) ≥ εf(j)/4 for i+ 1 ≤ j ≤ m, and so by (1),

f(i) ≥ (ε/4)m−if(m) ≥ (ε/4)m−1t−h2
.

From (2), there are disjoint subsets W1,W2 of V (G) with |W1| · |W2| ≥ (f(i)/8)n2, such that there
are fewer than ε|W1| · |W2| nonedges between W1,W2. Since |W1|, |W2| ≤ n, it follows that

|W1|, |W2| ≥ (f(i)/8)n ≥ 1

8
(ε/4)m−1t−h2

n ≥ (ε/4)h(h−1)/2t−h2
n/2.

Since there are fewer than ε|W1| · |W2| nonedges between W1,W2, fewer than half the vertices in W1

have at least 2ε|W2| non-neighbours in W2, and the result follows.

Let us deduce 5.2 from 5.3, in the following form (to deduce 5.1 itself, take δ = 1/2, say):

5.4 For every graph H, and every δ with 0 < δ ≤ 1/2, let c = δ/(6|H|2); then every H-free graph
G with 2|G|−1 + |G|−δ ≤ 1 contains either a stable set of size |G|c, or a complete bipartite subgraph
with parts of cardinality at least |G|1−δ and at least |G|c respectively.

Proof. Let H, δ, c be as in the theorem, and let G be H-free. Suppose first that |G|c ≤ 2. If G is
not complete, the first outcome holds, since |G|c ≤ 2; and if G is complete, the second holds, since
|G| ≥ |G|1−δ + 2. Thus we may assume that |G|c > 2. Let t := ⌈|G|c⌉ and ε := 1/(4t).

Since |G|c ≥ 2, it follows that

|G|δ−3c|H|2/2 = |G|9c|H|2/2 ≥ 29|H|2/2 ≥ 21+7|H|2/2.

Consequently

t−|H|2
(ε
4

)|H|2/2
= t−|H|2

(
1

16t

)|H|2/2
≥ (2|G|c)−3|H|2/24−|H|2 ≥ 2|G|−δ

since t ≤ 2|G|c.
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We may assume that G has no stable set of size t, and so by 5.3, and since δ ≤ 1/2 and so
1− δ ≥ c, there are disjoint subsets W1,W2 of V (G), with

|W1|, |W2| ≥ t−|H|2
(ε
4

)|H|2/2
|G|/4 ≥ 2|G|1−δ ≥ 2|G|c ≥ t,

such that every vertex in W1 is nonadjacent to at most 2ε|W2| vertices in W2. Choose A ⊆W1 with
cardinality t. Since each vertex in A has at most 2ε|W2| non-neighbours in W1, there are at least
|W2|(1− 2εt) = |W2|/2 ≥ |G|1−δ vertices in W2 adjacent to every vertex in A. This proves 5.4.

For its application later in this paper, we need a more powerful version of 5.3, replacing the
hypothesis that G is H-free by the weaker hypothesis that G does not contain many copies of H,
and replacing the stable set outcome with a linear sparse set outcome. (Actually, we only need the
second strengthening, but the first comes for free anyway.) After some preliminaries, its proof is
much the same as that of 5.3.

We need a lemma:

5.5 Let h ≥ 1 be an integer and let 0 < c < 1. For every graph G, either:

� indKh
(G) ≥ ch(h+1)/2|G|h, or

� there exists S ⊆ V (G) with |S| ≥ ch(h−1)/2|G| such that G[S] has fewer than c|S|2 edges.

Proof. Suppose that G is a graph such that G[S] has at least c|S|2 edges for every S ⊆ V (G) with
|S| ≥ ch(h−1)/2|G|. We observe first:

(1) For every set S ⊆ V (G) with |S| ≥ ch(h−1)/2|G|, there are at least c|S| vertices in S that have
degree at least c|S| in G[S].

Let there be x|S| vertices in S that have degree at least c|S|. Then the sum of the degrees in
G[S] is at most x|S|2+ c|S|2, and since G[S] has at least c|S|2 edges, it follows that x+ c ≥ 2c. This
proves (1).

Choose v1, . . . , vh ∈ V (G) independently and uniformly at random. For 1 ≤ i ≤ h, let Ei be
the event that x1, . . . , xi are distinct and pairwise adjacent, and there are at least ci|G| vertices that
are distinct from x1, . . . , xi and adjacent to all of x1, . . . , xi; and let pi be the probability of Ei. We
claim that:

(2) pi ≥ ci(i+1)/2 for 1 ≤ i ≤ h.

We prove this by induction on i. The result holds for i = 1, since at least c|G| vertices of G
have degree at least c|G| by (1). We assume that i ≥ 2 and the result holds for i− 1. But Ei is the
event that

� Ei−1 holds, and

� vi belongs to X where X is the set of vertices that are distinct from x1, . . . , xi−1 and adjacent
to all of x1, . . . , xi−1, and
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� vi is adjacent to at least ci|G| members of X.

If Ei−1 holds, then the set X above has size at least ci−1|G| ≥ ch(h−1)/2|G|, and so by (1), at least
c|X| vertices in X are adjacent to at least c|X| vertices in X. Consequently

pi ≥ pi−1(c|X|/|G|) ≥ pi−1c
i ≥ c(i−1)i/2ci = ci(i+1)/2.

This proves (2).

In particular, the probability that v1, . . . , vh are all distinct and pairwise adjacent is at least
ch(h+1)/2; and so indKh

(G) ≥ ch(h+1)/2|G|h. This proves 5.5.

We deduce the following more powerful version of 5.3:

5.6 Let H be a graph with h ≥ 1 vertices, and let 0 < ε < 1/4. Let G be a graph with indH(G) <
(εh|G|)h. Then either

� there exists S ⊆ V (G) with |S| ≥ εh(h−1)/2|G| such that |E(G[S])| < ε|S|2, or

� there exist disjoint W1,W2 ⊆ V (G) with |W1|, |W2| ≥ 2(ε/2)h
2 |G| such that there are fewer

than ε|W1| · |W2| nonedges between W1 and W2.

Proof. Let n := |G|. We may assume there is no S satisfying the first outcome, and so indKh
(G) ≥

εh(h+1)/2nh by 5.5. Define m and H0, H1, . . . ,Hm as in the proof of 5.3, and for 0 ≤ i ≤ m, let f(i)nh

be the number of copies of Hi in G. Thus we have seen that f(m) ≥ εh(h+1)/2. As in the proof of
5.3, we have

(1) For 1 ≤ i ≤ m, either f(i − 1) ≥ (ε/4)f(i), or there are disjoint subsets W1,W2 of V (G)
with |W1| · |W2| ≥ (f(i)/8)n2, such that there are fewer than ε|W1| · |W2| nonedges between W1,W2.

Since one of H0, . . . ,Hm equals H, and f(m) < (εh(h+1)/2) < (ε/4)m (because ε ≤ 1/4), it is not
the case that f(i− 1) ≥ εf(i)/4 for all i with 1 ≤ i ≤ m; choose i ∈ {1, . . . ,m} maximum such that
f(i− 1) < εf(i)/4. Consequently, f(j − 1) ≥ εf(j)/4 for i+ 1 ≤ j ≤ m, and so

f(i) ≥ (ε/4)m−if(m) ≥ (ε/4)m−1εh(h+1)/2 = εh(h−1)/2−1+h(h+1)/241−m = 2−h2+h+2εh
2−1 ≥ 16(ε/2)h

2
.

From (1), there are disjoint subsets W1,W2 of V (G) with |W1| · |W2| ≥ (f(i)/8)n2 ≥ 2(ε/2)h
2
n2,

such that there are fewer than ε|W1| · |W2| nonedges between W1,W2.

We remark that 5.6 implies 5.3, with worse constants: given t and ε as in 5.3, define ε′ =
min(ε, 1/(2t)), and apply 5.6 with ε replaced by ε′.

6 A sparse sequence of dense pairs

Suppose we are given a y-sparse H-free graph G. The goal of this section is to show that either we
can drop to a much sparser (with density O(y2)) induced subgraph that is still large (size poly(y)|G|),
or we can find a “nice” structure: a sequence of disjoint sets A1, . . . , Ak, B1, . . . , Bk such that the
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pairs Ai, Bi are dense to each other for each i, while all other pairs are sparse to each other (and
all the parameters have suitable polynomial dependence on y). We will use these structures in later
sections to build the induced subgraphs (Swiss Army graphs) that we are looking for.

If A,B ⊆ V (G) are disjoint, and 0 ≤ x ≤ 1, we say that B is x-sparse to A if every vertex in
B has at most x|A| neighbours in A; and B is x-dense to A if every vertex in B has at least x|A|
neighbours in A.

6.1 Let H be a graph, let 0 < y < min(2−99, 2−3|H|/2), and let G be an H-free y-sparse graph.
Suppose that there is no subset S ⊆ V (G) with |S| ≥ y|H|2 |G| such that G[S] is y2-sparse. Then
there exist disjoint A1, A2, . . . , Ak, B1, B2, . . . , Bk ⊆ V (G), where k = ⌈y−1/4⌉, such that:

� |Ai|, |Bi| = ⌈(y2/16)|H|2 |G|⌉, and there are at most (y2/2)|Ai||Bi| nonedges between Ai, Bi, for
1 ≤ i ≤ k; and

� each of Ai, Bi is y
1/6-sparse to each of Aj , Bj, for all distinct i, j ∈ {1, . . . , k}.

Proof. Let h := |H|. We may assume that h ≥ 2. Since there is no S as in the theorem, it
follows that E(G) ̸= ∅ and so y|G| ≥ 1. Let s ≥ 0 be maximum such that there are disjoint
X1, . . . , Xs, Y1, . . . , Ys ⊆ V (G) satisfying:

� for all i ∈ [s], |Xi|, |Yi| = ⌈(3/2)(y2/16)h2 |G|⌉, and there are at most (y2/8)|Xi||Yi| nonedges
between Xi, Yi; and

� for 1 ≤ i < j ≤ s, each of Xj , Yj is y1/2-sparse to each of Xi, Yi.

We claim that:

(1) s ≥ y−1/4.

Suppose not. For 1 ≤ i ≤ s,

|Xi| = |Yi| = ⌈(3/2)(y/16)h2 |G|⌉ ≤ max(1, 4(y/16)h
2 |G|) ≤ y|G|

(since y|G| ≥ 1). Let A :=
⋃

i∈[s](Xi ∪ Yi). For each i ∈ [s], let Di be the set of vertices in

V (G) \ A that have either at least y1/2|Xi| neighbours in Xi or at least y1/2|Yi| neighbours in Yi.
Then |Di| ≤ 2y1/2|G|, since there are at most y|Xi||G| edges between Xi and V (G) \ A (because G
is y-sparse), and the same for Yi. Let G

′ := G \ (A ∪
⋃

i∈[s]Di); then since s < y−1/4, we have

|G′| ≥ |G| − s(2y|G|+ 2y1/2|G|) ≥ |G| − 2y−1/4(y|G|+ y1/2|G|) ≥ (1− 4y1/4)|G| ≥ 3|G|/4.

By 5.6 applied to G′, taking ε = y2/8, either

� there exists S ⊆ V (G′) with |S| ≥ (y2/8)h(h−1)/2|G′| such that |E(G[S])| < (y2/8)|S|2, or

� there exist disjoint W1,W2 ⊆ V (G′) with |W1|, |W2| ≥ 2(y2/16)h
2 |G′| such that there are fewer

than (y2/8)|W1| · |W2| nonedges between W1 and W2.
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Suppose that the first holds, and let S be the corresponding set. Since |E(G[S])| < (y2/8)|S|2, at
most |S|/2 vertices in S have degree in G[S] at least y2|S|/2; and so there is a subset S′ ⊆ S that
is y2-sparse, with |S′| ≥ |S|/2 ≥ (y2/8)h(h−1)/2|G′|/2 ≥ y|H|2 |G| (since y < 2−3h/2), contrary to the
hypothesis.

If the second bullet holds, then since |W1|, |W2| ≥ 2(y2/16)h
2 |G′| ≥ (3/2)(y2/16)h

2 |G|, it follows
by averaging that there are subsets Xs+1 ⊆ W1 and Ys+1 ⊆ W2, both of size ⌈((3/2)(y2/16)h2 |G|⌉,
such that there are fewer than (y2/8)|Xs+1| · |Ys+1| nonedges between Xs+1 and Ys+1, contrary to
the maximality of s. This proves (1).

Let k = ⌈y−1/4⌉. For 1 ≤ i ≤ k, and for each j with i < j ≤ k, there are at most y1/2|Xi| · |Xj |
edges between Xi, Xj (since Xj is y1/2-sparse to Xi), and so at most 2y1/3|Xi| vertices in Xi have
at least 1

2y
1/6|Xj | neighbours in Xj . Similarly there are at most 2y1/3|Xi| vertices in Xi that have

at least 1
2y

1/6|Yj | neighbours in Yj . Let A′
i ⊆ Xi be the set of vertices v ∈ Xi such that for each

j ∈ {i+1, . . . , k}, v has at most 1
2y

1/6|Xj | neighbours in Xj and at most 1
2y

1/6|Yj | neighbours in Yj .
It follows that

|A′
i| ≥ (1− 2y1/3y−1/4)|Xi| ≥ 2|Xi|/3 ≥ (y2/16)h

2 |G|;

and so there exists Ai ⊆ A′
i with |Ai| = ⌈(y2/16)h2 |G|⌉. Define Bi ⊆ Yi similarly: that is, Bi is a set

of vertices v ∈ Yi such that for each j ∈ {i+1, . . . , k}, v has at most 1
2y

1/6|Xj | neighbours in Xj and

at most 1
2y

1/6|Yj | neighbours in Yj , and |Bi| = ⌈(y2/16)h2 |G|⌉.
Consequently there are at most (y2/8)|Xi||Yi| ≤ (y2/2)|Ai||Bi| nonedges between Ai, Bi. Now,

for all i, j ∈ {1, . . . , k} with i < j, each of Ai, Bi is y
1/6-sparse to each of Aj , Bj , since they are both

1
2y

1/6-sparse to Xj and to Yj ; and each of Aj , Bj is y1/6-sparse to each of Ai, Bi since each of Aj , Bj

is y1/2-sparse to each of Xi, Yi and 2y1/2 ≤ y1/6. This proves 6.1.

7 Blockades, and growing a hand

A blockade in G is a sequence B = (B1, . . . , Bk) of pairwise disjoint subsets of V (G), and we call
B1, . . . , Bk its blocks. (In some earlier papers, the blocks of a blockade must be nonempty, but here
it is convenient to allow empty blocks.) We define V (B) = B1 ∪ · · · ∪Bk. The length of the blockade
B = (B1, . . . , Bk) is k, and its width is the minimum of the cardinalities of its blocks. If its length is
at least ℓ and width at least w we call it an (ℓ, w)-blockade. For ε > 0, the blockade B = (B1, . . . , Bk)
is ε-sparse if Bi+1∪ · · · ∪Bk is ε-sparse to Bi for all i with 1 ≤ i ≤ k; and similarly B is (1− ε)-dense
if Bi+1 ∪ · · · ∪Bk is (1− ε)-dense to Bi for all i with 1 ≤ i ≤ k.

Let α(G), ω(G) be the cardinalities of the largest stable sets and cliques of G respectively; and
for c > 0, let us say a graph G is c-critical if α(G)ω(G) < |G|c, and α(G′)ω(G′) ≥ |G′|c for every
induced subgraph G′ of G with |G′| < |G|. In order to prove 3.4, it suffices to show that for every
two Swiss Army graphs H,J , if c > 0 is sufficiently small, then no {H,J}-free graph is c-critical. If
X,Y ⊆ V (G) are disjoint, we say X is anticomplete to Y if there are no edges of G between X and
Y .

As a first step, we will prove that if c is sufficiently small, then every c-critical graph contains
a piece of machinery that will provide the 2-subdivision paths of a Swiss Army graph. Thus, let
B = (B1, . . . , Bk) be a blockade in G. A Bi-finger is an induced path in G of length two, with three
vertices ai-bi-ci in order, such that
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� ai, bi, ci /∈ V (B);

� ci is complete to Bi and is anticomplete to V (B) \Bi; and

� ai, bi are both anticomplete to V (B).

Let ai-bi-ci be a Bi-finger, for 1 ≤ i ≤ k. We call the union of these fingers a hand for B if

� a1, a2, . . . , ak are all the same vertex;

� b1, c1, b2, c2, . . . , bk, ck are all distinct;

� the union of these fingers is induced; that is, for 1 ≤ i < j ≤ k, {bi, ci} is anticomplete to
{bj , cj}.

We call a1 the palm of the hand.
Now let H1, . . . ,Hs be hands for B, all with the same palm but otherwise pairwise vertex-disjoint

and anticomplete, and take their union. We call the result an s-thickened hand, with palm the
common palm of H1, . . . ,Hs. See Figure 2.

palm

B1 B2 Bk−1 Bk

Figure 2: A 2-thickened hand for (B1, . . . , Bk).

Finally, let T1, . . . , Tt be s-thickened hands for B, pairwise disjoint and anticomplete. Take their
union, and for 1 ≤ i < j ≤ t add s paths of length three joining the palms of Ti, Tj (that is, add
s edges each joining the two given palms, and then subdivide each of them twice). The graph we
produce is called a (s, t)-handset for B.

We need the following easy lemma:

7.1 Let F be a graph and let t, n ≥ 0 and m ≥ 1 be integers, with |F | ≥ mtn. Then either:

� F has a stable set of size m; or

� there are disjoint subsets X,Y of V (F ), such that X is a clique and |X| = t, and X is complete
to Y and |Y | ≥ n.

Proof. We proceed by induction on t. If t = 0 the result is true (take X = ∅ and Y = V (F )), so
we assume that t > 0 and the result holds for t− 1. We may assume that F has no stable set of size
m, and so its chromatic number is more than |F |/m, and therefore it has a vertex with more than
|F |/m − 1 ≥ mt−1n − 1 neighbours, and hence with at least mt−1n neighbours. The result follows
from the inductive hypothesis applied to the subgraph induced on this set of neighbours. This proves
7.1.

12



A blockade (B1, . . . , Bk) is equicardinal if all its blocks have the same size; and symmetrically
x-sparse if Bi is x-sparse to Bj for all distinct i, j ∈ {1, . . . , k}. We will prove the following.

7.2 Let s, t ≥ 1 be integers, let ρ > 0, and let H be a graph. Then there exist δ, η, ξ > 0 with
the following property. Let 0 ≤ c ≤ δ , and let G be a c-critical H-free graph. Let Z ⊆ V (G) with
|Z| ≥ yρ|G| such that G[Z] is y-sparse for some y with 0 < y < η. Then either:

� there is a subset S ⊆ Z with |S| ≥ y|H|2 |Z| that is y2-sparse; or

� there is a symmetrically 2y1/6-sparse equicardinal blockade B in G of length at least y−1/64 and
width at least yξ|Z|/2, and there is an (s, t)-handset for B.

Proof.
Let h := |H|. Choose η > 0 such that

η ≤ min
(
2−99, 2−3h/2,

(
16st2

)−6
, (8s)−24, 2−96t

)
and

ηs
(
t+ 2η−1/64

)
+
(
2st

(
t+ 2η−1/64

)
+ t

)
η1/6 < 1/2.

Choose ξ > 1 such that (y2/16)h
2 ≥ yξ for all y ≤ η, and let δ = 1/(64(ξ+ρ)t). We claim that δ, η, ξ

satisfy the theorem.
Let 0 < c ≤ δ, let G be a c-critical H-free graph, and let Z ⊆ V (G) with |Z| ≥ yρ|G|, such that

G[Z] is y-sparse, where 0 < y < η. We may assume that the first outcome of the theorem, applied
to G[Z], is false. So by 6.1, there exist disjoint

A1, A2, . . . , Ak′ , B1, B2, . . . , Bk′ ⊆ Z,

where k′ = ⌈y−1/4⌉, such that:

� |Ai|, |Bi| = ⌈(y2/16)h2 |Z|⌉, and there are at most (y2/2)|Ai| · |Bi| nonedges between Ai, Bi, for
1 ≤ i ≤ k′; and

� each of Ai, Bi is y
1/6-sparse to each of Aj , Bj , for all distinct i, j ∈ {1, . . . , k′}.

Let k := ⌈y−1/16⌉; we will only need the sets Ai, Bi for 1 ≤ i ≤ k.
Let 1 ≤ i ≤ k. Since there are at most (y2/2)|Ai| · |Bi| nonedges between Ai, Bi, there exists

X ⊆ Bi with |X| ≥ |Bi|/2 that is (1− y2)-dense to Ai. Since G is c-critical, the graph G[X] satisfies
α(G[X])ω(G[X]) ≥ |X|c; and since ω(G[X]) ≤ ω(G), we deduce that there is a stable subset Ci ⊆ Bi

of size at least (|Bi|/2)c/ω(G) that is (1− y2)-dense to Ai.
Let C := C1 ∪ · · · ∪ Ck. An induced matching of G[C] means a set of edges of G[C], pairwise

vertex-disjoint and anticomplete. Choose an induced matchingM of G[C], maximal (under inclusion)
with the property that for all distinct i, j ∈ {1, . . . , k}, at most s edges of M have an end in Ci and
an end in Cj . It follows that |M | ≤ sk2/2. Let F be the graph with vertex set {1, . . . , k} in
which i, j are adjacent if there are s members of M with an end in Ci and an end in Cj . Let

m := ⌈(y2/16)−ch2
y−cρ2c⌉, and n := ⌈y−1/64⌉. Thus

m < 2(y2/16)−ch2
y−cρ2c ≤ y−cξ−cρ2c+1.

By 7.1, either:
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� k < mtn; or

� F has a stable set of size m; or

� there are disjoint subsets X,Y of V (F ), such that X is a clique of F and |X| = t, and X is
complete to Y in F , and |Y | ≥ n.

Suppose the first bullet holds. Since m < y−cξ−cρ2c+1, and n ≤ 2y−1/64, it follows that

y−1/16 ≤ k < 2t(c+1)y−c(ξ+ρ)t
(
2y−1/64

)
.

Since c(ξ + ρ)t ≤ 1/64, we deduce that y−1/16 < 2t(c+1)+1y−1/32, that is, y−1/32 < 2t(c+1)+1 < 23t, a
contradiction since y ≤ 2−96t.

Suppose the second bullet holds; then we may assume that I is a stable set of F and |I| = m.
Let P be the set of vertices in

⋃
i∈I Ci that either belong to a member of M or are adjacent to a

member of M . For each i ∈ I, if v is incident with an edge in M , then at most y1/6|Ci| vertices in
Ci are equal or adjacent to v (because Ci is stable and Cj is y1/6-sparse to Ci for all j ∈ I \ {i}).
Consequently

|P ∩ Ci| ≤ 2y1/6|M | · |Ci| ≤ sk2y1/6|Ci| ≤ |Ci|/2,

since k ≤ 2y−1/16, and y ≤ (8s)−24. Each set Ci is stable, and since I is stable in F , there are strictly
fewer than s edges inM between Ci and Cj , for all distinct i, j ∈ I. Thus, from the maximality ofM ,
the union of the sets Ci \P (i ∈ I) is stable in G, and so has cardinality at most α(G) ≤ |G|c/ω(G).
Consequently ∑

i∈I
|Ci|/2 < |G|c/ω(G).

But |Ci| ≥ (|Bi|/2)c/ω(G) for each i ∈ I, and so∑
i∈I

(|Bi|/2)c/ω(G) < |G|c/ω(G).

Each |Bi| ≥ (y2/16)h
2 |Z|, and so m(y2/16)ch

2
(|Z|/2)c < |G|c. Since |Z| ≥ yρ|G|, it follows that

m(y2/16)ch
2
ycρ2−c < 1, a contradiction, from the choice of m.

Suppose the third bullet holds, and let X,Y be the corresponding subsets of V (F ). For each
edge ij of F with one end in X and the other end in X ∪ Y , there are s edges in M between Ci and
Cj ; let M

′ be the set of all these edges. Thus |M ′| ≤ st(t + n). Let N be the set of ends of all the
edges in M ′. For each i ∈ X, choose ai ∈ Ai as follows: ai is adjacent to each vertex in Ci ∩N , and
nonadjacent to every vertex in N \ Ci, and the vertices ai (i ∈ I) are pairwise nonadjacent. To see
that this is possible, observe that, since Ci is (1 − y)-dense to Ai, and |N ∩ Ci| ≤ s(t + n), there
are at most y|Ai|s(t + n) vertices in Ai that have a non-neighbour in Ci ∩ N ; and since C \ Ci is
y1/6-sparse to Ai, there are at most (2st(t + n) + t)y1/6|Ai| vertices in Ai that have a neighbour in
N \ Ci or are adjacent to some already-selected aj . Since

y|Ai|s(t+ n) + (2st(t+ n) + t)y1/6|Ai| < |Ai|/2

from the definition of η, such a choice of ai is possible.
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For each j ∈ J , let D′
j be the set of vertices in Aj that are adjacent to every vertex in N ∩ Cj ,

and nonadjacent to every vertex in N \Cj , and nonadjacent to the vertices ai (i ∈ X). By the same
argument, |D′

j | ≥ |Aj |/2 for each j ∈ Y . Choose Dj ⊆ D′
J of size ⌈|Aj |/2⌉. But then (Dj : j ∈ Y )

is an equicardinal (n, yξ|G|/2)-blockade, that is symmetrically 2y1/6-sparse; and there is an (s, t)-
handset for it. This proves 7.2.

8 From a sparse blockade to an anticomplete blockade

In this section we complete the proof of 3.4. The main step is moving from a sparse blockade
to an anticomplete blockade, in 8.4. (A blockade is anticomplete if every two of its blocks are
anticomplete.) If B = (B1, . . . , Bk) is a blockade in G, we say an induced subgraph H of G is
B-rainbow if V (H) ⊆ V (B) and |Bi ∩V (H)| ≤ 1 for 1 ≤ i ≤ k. We need the following theorem of [8]:

8.1 For every forest F , there is an integer d > 0 with the following property. Let G be a graph
with a blockade B of length at least d, and let w be the width of B. If every vertex of G has degree
less than w/d, and there is no anticomplete pair A,B ⊆ V (G) with |A|, |B| ≥ w/d, then there is a
B-rainbow copy of F in G.

This implies:

8.2 For every forest F , let d be as in 8.1. Let G be a graph with a blockade B of length at least
3d2, and let w be the width of B. If B is equicardinal and symmetrically 1/d2-sparse, and there is no
B-rainbow copy of F , then there is an anticomplete pair X,Y ⊆ V (G) with |X|, |Y | ≥ w.

Proof. Let G be a graph with a symmetrically 1/d2-sparse equicardinal blockade B = (B1, . . . , BD)
of width w, where D = 3d2. Let G′ be the subgraph with vertex set V (B) and edge set the edges
of G that have ends that belong to different blocks of B. Thus G′ has maximum degree at most
(D−1)w/d2 ≤ 3w. Partition {1, . . . , D} into d sets of cardinality 3d, say I1, . . . , Id. LetB

′
h =

⋃
i∈Ih Bi

for 1 ≤ i ≤ d; then B′ = (B′
1, . . . , B

′
d) is a (d, 3wd)-blockade. Since there is no B-rainbow copy of F ,

it follows that there is no B′-rainbow copy of F ; and so by 8.1 applied to B′, there is an anticomplete
pair (X,Y ) with X,Y ⊆ V (G) and |X|, |Y | ≥ 3w. Choose i ∈ {1, . . . , D} minimum such that one of

X ∩ (B1 ∪ · · · ∪Bi), Y ∩ (B1 ∪ · · · ∪Bi)

has cardinality at least w, and we may assume that |X∩(B1∪· · ·∪Bi)| ≥ w. From the minimality of i,
|Y ∩(B1∪· · ·∪Bi−1)| < w, and since |Bi| = w and |Y | ≥ 3w, it follows that |Y ∩(Bi+1∪· · ·∪BD)| ≥ w.
But then X ∩ (B1∪ · · · ∪Bi), Y ∩ (Bi+1∪ · · · ∪BD) is a pair of subsets of V (G) that are anticomplete
in G (not just in G′), and both have size at least w. This proves 8.2.

8.3 Let F be a forest, and let d be as in 8.1; then for every integer s ≥ 1 and every graph G,
the following holds. Let B be a blockade in G of length 2(2d2)s, that is equicardinal and symmetri-
cally 2/(2d2)s-sparse, such that there is no B-rainbow copy of F . Then G admits an anticomplete
(2s, w/(2d2)s−1)-blockade, where w is the width of B.
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Proof. This is true if s = 1, from 8.2, and so we assume it is true for some s− 1 ≥ 1 and prove it
for s. Let D = 2(2d2)s, and let G be a graph with an equicardinal, symmetrically 2/(2d2)s-sparse
blockade B = (B1, . . . , BD) of width w, and there is no B-rainbow copy of F . Partition {1, . . . , D}
into d sets of cardinality D/d, say I1, . . . , Id. Let B

′
h =

⋃
i∈Ih Bi for 1 ≤ i ≤ d; then B′ = (B′

1, . . . , B
′
d)

is an equicardinal, symmetrically 2/(2d2)s-sparse (d,wD/d)-blockade. Let G′ = G[B1 ∪ · · · ∪BD]. It
follows that there is no B′-rainbow copy of F ; so from 8.1, there is an anticomplete pair (A,B) of G′

with |A|, |B| ≥ wD/d2.
Let D′ = 2(2d2)s−1, and let I be the set of all i ∈ {1, . . . , D} such that |A∩Bi| ≥ w/(2d2). Then

|I|w + Dw/(2d2) ≥ |A| ≥ wD/d2, and so |I| ≥ D/(2d2) = D′. For each i ∈ I choose Ci ⊆ A ∩ Bi

of cardinality ⌈w/(2d2)⌉, and let C be the blockade (Ci : i ∈ I). Then C is equicardinal, of width at
least w/(2d2), and it is symmetrically 2/(2d2)s−1-sparse, and there is no C-rainbow copy of F . Thus
the inductive hypothesis, applied to C, implies that G[A] admits an anticomplete blockade, of width
at least (w/(2d2))/(2d2)s−2 = w/(2d2)s−1 and length 2s−1; and similarly so does G[B]. But then
combining these gives an anticomplete (2s, w/(2d2)s−1)-blockade in G. This proves 8.3.

We apply this to prove the following (in which logarithms are to base two):

8.4 Let F be a forest, and let α, β > 0. Let d be as in 8.1, with d ≥ 8. Define α′ = α/(5 log d) and
β′ = α + β. Suppose that 0 < y ≤ (4d2)−1/α, and there is a (y−α, yβ|G|)-blockade B in a graph G
that is equicardinal and symmetrically yα-sparse. If there is no B-rainbow copy of F , then G admits
an anticomplete (y−α′

, yβ
′ |G|)-blockade.

Proof. Choose an integer s maximal such that y−α ≥ 2(2d2)s. It follows that s ≥ 1 (since
y ≤ (4d2)−1/α), and

y−α ≤ 2(2d2)s+1 ≤ d5s

(since d ≥ 8 and therefore 2s+2 ≤ ds). Since B is a (y−α, yβ|G|)-blockade, B has length at least
2(2d2)s and is equicardinal and symmetrically 1/(2(2d2)s)-sparse and therefore 2/(2d2)s-sparse. By
8.3, G admits an anticomplete (2s, w/(2d2)s−1)-blockade, where w is the width of B. But

2s = d5s/(5 log d) ≥ y−α/(5 log d) = y−α′
,

and
w/(2d2)s−1 ≥ w/(2(2d2)s) ≥ yαw ≥ yαyβ|G| = yβ

′ |G|.

This proves 8.4.

8.5 Let F be a forest, and let α, β, γ > 0. Let d ≥ 8 as in 8.1. Then there exists δ′ > 0 such that
for all c with 0 < c ≤ δ′, and all y with 0 < y ≤ (4d2)−1/α, if G is c-critical, and B is a (y−α, yβ|G|)-
blockade in G that is equicardinal and symmetrically yγ-sparse, then there is a B-rainbow copy of
F .

Proof. By reducing α or γ, we may assume that α = γ without loss of generality. Choose α′, β′ as
in 8.4. Choose δ′ > 0 such that δ′ < α′/β′. We claim that δ′ satisfies the theorem. Let 0 < c ≤ δ′,
and let B be a (y−α, yβ|G|)-blockade in a c-critical graph G, that is equicardinal and symmetrically
yα-sparse, where 0 < y ≤ (4d2)−1/α. Suppose there is no B-rainbow copy of F . By 8.4, G admits an
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anticomplete (y−α′
, yβ

′ |G|)-blockade A. Let A = (A1, . . . , Ak) say. Since G is c-critical, for 1 ≤ i ≤ k
there exists a stable subset Ci ⊆ Ai with |Ci|ω(G[Ai]) ≥ |Ai|c, and hence with |Ci| ≥ yβ

′c|G|c/ω(G).
The the union C1 ∪ · · · ∪ Ck is stable, and hence has cardinality less than |G|c/ω(G); and so, since
k ≥ y−α′

, it follows that
y−α′

yβ
′c|G|c/ω(G) ≤ |G|c/ω(G),

that is, yβ
′c−α′ ≤ 1, a contradiction, since β′c− α′ < 0. This proves 8.5.

Finally, we need a version of a theorem of Rödl [20]:

8.6 For every graph H and all ϵ > 0 there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G| such that one of G[X], G[X] is ε-sparse.

We use these lemmas to complete the proof of 3.4, which we restate:

8.7 If H,J are Swiss Army graphs, then {H,J} has the Erdős-Hajnal property.

Proof. Choose s, t, F such thatH,J are both induced subgraphs of F s
t for some forest F . If {F s

t , F
s
t }

has the Erdős-Hajnal property, then so does {H,J}, so we may assume that H = J = F s
t . Choose

d ≥ 8 as in 8.1. Let δ, η, ξ satisfy 7.2. By reducing η if necessary, we may assume that η ≤ (4d2)−128.
By 8.6, there exists ζ > 0 such that for every H-free graph G, there exists S ⊆ V (G) with |S| ≥ ζ|G|
such that one of G[S], G[S] is η/2-sparse. Choose ρ > 0 such that ζ ≥ ηρ and ρ ≥ |H|2. Choose
α = 1/128, β = 2ξ + ρ + 1, γ = 1/12, and choose δ′ to satisfy 8.5. Choose c > 0 with c ≤ δ′ such
that 4(ρ+1)c ≤ 1, and such that tc < log t for all integers t with 1 < log t ≤ η−1/2. (Logarithms are
to base two.) We will show that every c-critical graph contains one of H,H as an induced subgraph,
and hence the theorem holds.

Suppose that G is a c-critical graph that is {H,H}-free. Thus |G|c ≥ 2, and so |G| ≥ 21/c ≥
24(ρ+1). Moreover, since log |G| > 1, and |G|c > α(G)ω(G) (since G is c-critical), and α(G)ω(G) ≥
log |G| (because this is true for every graph), it follows from the choice of c that log |G| > η−1/2; and
hence η|G|2c > 1 since |G|c > log |G|.

We say that y is good if 0 < y ≤ η and there is a subset S ⊆ V (G) with |S| ≥ yρ|G|, such that
G[S] is y/2-sparse. We observe that if y is good, then y ≤ (4d2)−128, from the choice of η, and so we
can apply 8.5. By the choice of ζ, and replacing G by its complement if necessary, we may assume
that there exists S ⊆ V (G) with |S| ≥ ζ|G| such that G[S] is η/2-sparse. Consequently η is good.

Suppose there is a good value of y with |G|−2c/2 ≤ y ≤ |G|−c, and let S be the corresponding
subset. Since

y|S| > yρ+1|G| ≥ |G|1−2c(ρ+1)2−ρ−1 ≥ |G|1/2|G|−1/4 ≥ 2

and G[S] has maximum degree at most y|S|/2, S includes a stable set of size at least

|S|/(y|S|/2 + 1) ≥ 1/y

(since y|S| ≥ 2). But 1/y ≥ |G|c, contradicting that G is c-critical. Thus there is no good value of y
with |G|−2c/2 ≤ y ≤ |G|−c.

On the other hand, η is good, and η > |G|−2c as we saw earlier. Choose a good value of y with
|G|−2c ≤ y ≤ η and minimal with this property. It follows that y > |G|−c, and y2/2 is not good.

From 7.2, taking Z = S and with y replaced by y/2, we deduce that either:
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� there is a subset S′ ⊆ S with |S′| ≥ (y/2)|H|2 |S| that is (y/2)2-sparse; or

� there is an equicardinal, symmetrically 2(y/2)1/6-sparse ((y/2)−1/64, (y/2)ξ|S|/2)-blockade B
in G, and there is an (s, t)-handset for B.

Suppose the first holds. Then

|S′| ≥ (y/2)|H|2 |S| ≥ (y/2)|H|2yρ|G| ≥ (y2/2)ρ|G|,

and so y2/2 is good, a contradiction. Thus the second holds. Since (y/2)−1/64 ≥ y−1/128 = y−α, and

(y/2)ξ|S|/2 ≥ y2ξ+ρ|G|/2 ≥ yβ|G|,

and 2(y/2)1/6 ≤ yγ , there is a symmetrically yγ-sparse equicardinal (y−α, yβ|G|)-blockade B in G,
and there is an (s, t)-handset for B. By 8.5, there is a B-rainbow copy of F ; and combining this with
the handset gives a copy of F s

t , a contradiction. This proves 8.7.
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