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Abstract

For each integer ` ≥ 5, we give a polynomial-time algorithm to test whether a graph contains an
induced cycle with length at least ` and odd.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. A hole of G is an induced
subgraph of G that is a cycle of length at least four, and an antihole is an induced subgraph whose
complement is a cycle of length at least four. In 2005, two of us, with Cornuéjols, Liu and Vušković [4],
gave an algorithm to test whether an input graph G has an odd hole or odd antihole, and thereby
to test whether G is perfect, with running time at most polynomial in |G|. (|G| denotes the number
of vertices of G.) At that time we were unable to separate the test for odd holes from the test for
odd antiholes, and testing for odd holes in poly-time has remained open until very recently. Indeed,
it seemed quite likely that testing for an odd hole was NP-complete; for instance, D. Bienstock [2, 3]
showed that testing if a graph has an odd hole containing a given vertex is NP-complete. So it was
something of a surprise when recently we found a poly-time algorithm to test for odd holes [6]. (This
is modified to run faster in a recent paper [10] by Lai, Lu, and Thorup.)

In this paper we extend that result: for each integer ` ≥ 5 we give a poly-time algorithm to test
whether G has an odd hole of length at least `. More exactly:

1.1 For each integer ` ≥ 5, there is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has an odd hole of length at least `.

Running time: O(|G|20`+40).

We have not tried very hard to optimize the exponent in the running time (although getting the
exponent to be linear in ` took some effort).

We are not aware of previous work on detecting “long” induced subgraphs of specific type,
although it seems a sensible question. Here are three current pieces of work that are related:

� Linda Cook, with Seymour, has a poly-time algorithm to test if a graph has a long even hole [9].

� Eli Berger and Sophie Spirkl, with Seymour, have a poly-time algorithm to test if there is an
induced path between specified vertices s, t of a graph that has length longer than the shortest
st-path [1]. It is open whether there is a poly-time algorithm to test for an induced st-path of
length at least three more than the shortest st-path.

� We have a poly-time algorithm to find the shortest odd hole in a graph, if it has one [5].

Long odd holes have been worked on before, although not for algorithms. In [11] Scott and Seymour
proved that graphs with no odd hole are “χ-bounded ”, and later, with Sophie Spirkl [7], we extended
this to graphs with no long odd hole. Indeed, in [12] Scott and Seymour extended it further, to graphs
with no holes of length p modulo q, for any fixed p, q. We currently see no prospect of extending the
algorithmic work to test for a hole of length p modulo q; even testing for holes of length a multiple
of three seems very challenging, although of interest because such graphs have nice properties [8].

The new algorithm once again uses “cleaning”, as does the algorithm of [6] and several other
algorithms to detect special induced subgraphs. Indeed it was modelled on the algorithm of [6], but
it is considerably more complicated.
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Here is an outline of the method. Throughout the paper, ` ≥ 5 is a fixed number, and throughout,
a long path or hole means a path or hole of length at least `. If C is a hole in G, a vertex v of
V (G) \ V (C) is C-major if there is no three-vertex path of C containing all the neighbours of v in
V (C). A hole C is clean if no vertex is C-major.

� First we test for the presence in the input graph G of certain kinds of induced subgraphs
(“short” long odd holes, “long pyramids” and “long jewels”) that we can test for in polynomial
time, and whose presence would imply thatG contains a long odd hole. We call these three kinds
of subgraphs “easily-detected configurations”. We may assume these tests are unsuccessful.

� Second, we generate a “cleaning list”, a list of polynomially-many subsets of V (G), such that
if G has a long odd hole, and C is a long odd hole of minimum length (a shortest long odd
hole) then some set X in the list contains all the C-major vertices and contains no vertex of C
itself. This relies on the fact that G contains none of the easily-detected configurations.

� Third, for each X in the cleaning list, we test whether G \ X has a clean shortest long odd
hole. (More exactly, we give an algorithm that either decides that G \X has a long odd hole,
or decides that G \X has no clean shortest long odd hole.) This again relies on the absence of
the easily-detected configurations.

The reader familiar with the method of [6] will see the similarity of the two algorithms.
But part of the approach is significantly different. To generate the cleaning list in [6], we used a

theorem that if C is a shortest odd hole, and M is a set of C-major vertices such that one of them
is nonadjacent to all the others, then there is a “heavy edge” in C, an edge uv of C such that every
vertex in M is adjacent to one of u, v. We tried to extend this to the long odd hole situation, but
failed. For our purposes, a “heavy path” of C of bounded length (that is, such that every vertex in
M has a neighbour in the path) would be just as good as a heavy edge; and this extension might
be true, but we were unable to prove it. In its place we had to use a considerably more complicated
method, proving that there is a bounded set of paths of C, each of bounded length, such that every
vertex in M has a neighbour in one of the paths; and we could only prove this when the exceptional
vertex of M was carefully chosen.

The paper is organized as follows. First, we explain how to test for the easily-detected configu-
rations; this is a straightforward adaptation of the algorithms in [4] to test for pyramids and jewels.
Then we give the algorithm for the third step above; and finally we show how to generate the cleaning
list.

Let us remark, finally, that if we want to test for a long hole, rather than a long odd hole, then
this is easy: enumerate all induced paths of G of length ` − 1, and for each one, test directly if it
can be extended to a hole. This has running time O(|G|`+1), and so both this and our algorithm
for 1.1 have running time |G|O(`). We do not know if either can be substantially improved, although
both problems are NP-hard when ` is part of the input. (To see this for the long hole problem, take
a graph with n vertices and subdivide each edge once, and take ` = 2n; then this has an induced
cycle of length at least ` if and only if the original graph has a Hamilton cycle. For the long odd
hole problem, take a graph with an odd number n of vertices, subdivide every edge twice, and take
` = 3n.)
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2 The easily-detected configurations

We begin with the test for what we earlier called “short” long odd holes:

2.1 There is an algorithm with the following specifications:

Input: A graph G, and an integer k ≥ 0.

Output: Decides whether there is a long odd hole in G of length at most k.

Running time: O(|G|k).

Proof. We enumerate all sets of at most k vertices, and for each one, check whether it induces a
long odd hole.

If X ⊆ V (G), we denote the subgraph of G induced on X by G[X]. If X is a vertex or edge of G,
or a set of vertices or a set of edges of G, we denote by G \X the graph obtained from G by deleting
X. Thus, for instance, if b1b2 is an edge of a hole C, then C \ {b1, b2} and C \ b1b2 are both paths,
but one contains b1, b2 and the other does not. If P is a path, we denote by P ∗ the interior of P ,
the set of vertices of the path P that are not ends of P . If P is a path and x, y ∈ V (P ), we denote
the subpath with ends x, y by x-P -y. The length of a path or cycle is the number of edges in it.

Let u, v ∈ V (G), and let Q1, Q2 be induced paths between u, v, of different parity. Let P be
an induced path between u, v of length at least `, such that no vertex of P ∗ equals or is adjacent
to any vertex of Q∗1, Q

∗
2. We say the subgraph induced on V (P ∪ Q1 ∪ Q2) is a long jewel of order

max(|V (Q1)|, |V (Q2)|), formed by Q1, Q2, P . Any graph containing a long jewel has a long odd hole,
since the holes P ∪Q1, P ∪Q2 are both long and one of them is odd. The next result extends theorem
3.1 of [4]:

2.2 There is an algorithm with the following specifications:

Input: A graph G, and an integer k ≥ 0.

Output: Decides whether there is a long jewel in G of order at most k.

Running time: O(|G|2k+`).

Proof. We enumerate all triples of induced paths Q1, Q2, R of G, such that:

� Q1, Q2 join the same pair of vertices, say u, v;

� one of Q1, Q2 is odd and the other is even, and each has at most k vertices;

� R has length `− 2, and has one end u and the other some vertex w say;

� no vertex of V (R) \ {u} equals or has a neighbour in V (Q1 ∪Q2) \ {u}.
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For each such triple of paths, let X be the set of vertices of G that are different from and nonadjacent
to each vertex of V (Q1 ∪Q2 ∪R) \ {v, w}. We test whether there is a path in G[X ∪{w, v}] between
w, v. If so we output that G contains a long jewel of order at most k. If no triple yields this outcome,
we output that G has no such long jewel.

To see the correctness of the algorithm, certainly the output is correct if G contains no long jewel
of order at most k. Suppose then it does, say formed by Q1, Q2, P . Let u, v be the ends of P , and let
R be the subpath of P of length `−2 with one end u. When the algorithm tests the triple Q1, Q2, R,
it will discover there is a path in G[X ∪ {w, v}] between w, v, because the remainder of P is such a
path. Consequently the output is correct.

The running time is O(|G|2) for each triple of paths, and there are at most |G|2k+`−2 such triples,
so the running time is as claimed. This proves 2.2.

Many of the algorithms in this paper follow the same outline; we enumerate all subgraphs, or
sequences of vertices, of some prescribed type, and for each one, perform some test on it. (Critically,
there must be only polynomially many such subgraphs to test.) If the test is successful, we have
found a subgraph of the desired type, and if it is never successful we will apply a theorem that says
that then there is no subgraph of the desired type. For brevity we call the process of enumerating
all these subgraphs and testing them one-by-one “guessing”; thus we would describe the long jewel
algorithm above as “guessing the two paths Q1, Q2 and an initial subpath of P”.

Let v0 ∈ V (G), and for i = 1, 2, 3 let Pi be an induced path of G between v0 and vi, such that

� P1, P2, P3 are pairwise vertex-disjoint except for v0;

� v1, v2, v3 6= v0, and at least two of P1, P2, P3 have length at least `;

� v1, v2, v3 are pairwise adjacent; and

� for 1 ≤ i < j ≤ 3, the only edge between V (Pi) \ {v0} and V (Pj) \ {v0} is the edge vivj .

We call the subgraph induced on V (P1 ∪P2 ∪P3) a long pyramid, with apex v0 and base {v1, v2, v3},
formed by P1, P2, P3.

v1

v2
v3

v0

Figure 1: A long pyramid. The dashed lines represent paths, of indeterminate length, but two of
them must have length at least `.

If G has a long pyramid then G has a long odd hole (because two of the paths P1, P2, P3 have
the same length modulo two, and they induce a long odd hole). The next result extends theorem 2.2
of [4], and is proved similarly:
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2.3 There is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether there is a long pyramid in G.

Running time: O(|G|6`+8).

Proof. Suppose that G contains a long pyramid; then it contains a “smallest” one, one with the
fewest vertices, say with apex v0 and base {v1, v2, v3}, formed by the path P1, P2, P3. For i = 1, 2, 3,
let mi be a vertex of Pi that divides it into two paths with lengths differing by at most one. For
i = 1, 2, 3,

� if Pi has length at least `, let Ai be a subpath of Pi of length ` with one end v0, and let Bi be
a subpath of Pi of length ` with one end vi;

� if Pi has length less than `, let Ai = Bi = Pi.

Let Ai have ends v0, ai, and let Bi have ends vi, bi for i = 1, 2, 3.
The algorithm proceeds as follows. If there is a pyramid as above, we guess the vertex v0 and

for i = 1, 2, 3 we guess the vertices vi,mi, ai, bi and the paths Ai, Bi. Let X be the set of all these
vertices (including the vertices of the paths Ai, Bi for 1 ≤ i ≤ 3). For each i such that mi does
not belong to V (Ai) we choose a shortest path A′i between mi, ai such that its interior is disjoint
from X \ {mi, ai} and contains no vertex with a neighbour in X \ {mi, ai}, and let Q′i = Ai ∪A′i. If
mi ∈ V (Ai) let Q′i = Ai. Similarly, if mi /∈ V (Bi) we choose a shortest path B′i between mi, bi such
that its interior is disjoint from X \ {mi, bi} and contains no vertex with a neighbour in X \ {mi, bi};
and let R′i = Bi ∪B′i. If mi ∈ V (Bi) let R′i = Bi.

Now for 1 ≤ i ≤ 3 we test whether Q′i ∪R′i is an induced path between v0, v1, and if this is true
for each i, and the three paths form a pyramid, we return that G contains a long pyramid. To prove
the correctness, we must now prove a theorem that starting from a smallest pyramid as described,
Q′i∪R′i is indeed a path between v0, vi for 1 ≤ i ≤ 3, and these three paths form a (possibly different)
smallest pyramid.

Let Π be a smallest pyramid in G, formed by paths P1, P2, P3 as above. For i = 1, 2, 3, let Qi, Ri

be the subpaths of Pi between mi, v0 and between mi, vi respectively.

(1) With Q′1 chosen as in the algorithm, no vertex of Q′1 belongs to or has a neighbour in V (P2∪P3).

Suppose that this is false. Consequently Q′1 6= A1, and so m1 /∈ V (A1) and m1 is an end of
Q′1. Let S be a minimal subpath of Q′1 with one end m1 such that its other end has a neighbour in
V (P2 ∪ P3). Let S have ends m1, s. There are three cases.

First, suppose that s has a unique neighbour t in P2 ∪ P3. We may assume that t ∈ V (P2)
from the symmetry; let Π′ be the pyramid with apex t and base {v1, v2, v3}, formed by the paths
t-P2-v2, t-P2-v0-P3-v3 and an induced path between t, v1 with interior in V (S ∪ R1). This is indeed
a pyramid, from the minimality of S; it is long, since all three of the paths have length at least
` (because they include the paths B2, B3, B1 respectively); and it has fewer vertices than Π, since
|V (S)| ≤ |V (Q1)| − `. This is impossible from the choice of Π.
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Second, suppose that s has two nonadjacent neighbours in V (P2 ∪ P3). Let Π′ be the pyramid
with apex s and base {v1, v2, v3} formed by the induced paths between s, v2 and between s, v3, both
with interior in V (P2 ∪P3} (these are unique, and include B2, B3 respectively, and so are long), and
a path between s, v1 with interior in V (S ∪ R1). Again, this is a long pyramid with fewer vertices
than Π, a contradiction.

Third, suppose that s has exactly two neighbours t1, t2 in V (P2 ∪P3) and they are adjacent. We
may assume that t1, t2 ∈ V (P2) and t2 is closer to v2 in P2. Let Π′ be the pyramid with apex v0 and
base {s, t1, t2} formed by the paths v0-P2-t1, v0-P3-v3-v2-P2-t2 and a path between v0, s with interior
in V (S∪Q1). Again, this is a long pyramid (because the three paths include A2, A3, A1 respectively),
and it has fewer vertices than Π, because |V (S)| ≤ |V (Q1)| − ` < |V (R1)|, a contradiction. This
proves (1).

(2) With R′1 chosen as in the algorithm, no vertex of R′1 belongs to or has a neighbour in V (P2∪P3).

The proof is similar and we omit it.

Let P ′1 be an induced path between v0, v1 with interior in V (Q′1∪R′1). From (1) and (2), it follows
that P ′1, P2, P3 form a long pyramid with at most as many vertices as Π. Consequently equality holds,
and so P ′1 = Q′1 ∪R′1; and P ′1, P2, P3 form a smallest long pyramid. Similarly Q′2 ∪R′2 is an induced
path between v0, v2, say P ′2; and P ′1, P

′
2, P3 form a smallest long pyramid. And similarly for Q′3 ∪R′3.

This proves the correctness of the algorithm.
For its running time, we are guessing a sequence of at most 6(`+ 1) vertices, so the running time

is as claimed. This proves 2.3.

Let us say G is a candidate if G contains no long pyramid, no long jewel of order at most `+ 2,
and no long odd hole of length at most 2`+ 2. In view of 2.1, 2.2, and 2.3, we have:

2.4 There is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G is a candidate.

Running time: O(|G|6`+8).

Any graph that is not a candidate has a long odd hole, so now we just need to find a poly-time
algorithm to test whether candidates have long odd holes.

3 Detecting a clean shortest long odd hole

The following was proved in [4]:

3.1 Let G be a graph containing no jewel or pyramid, and let C be a clean shortest odd hole in G.
Let u, v ∈ V (C) be distinct and nonadjacent, and let L1, L2 be the two subpaths of C joining u, v,
where |E(L1)| < |E(L2)|. Then:

� L1 is a shortest path in G between u, v, and

6



� for every shortest path P in G between u, v, P ∪ L2 is a shortest odd hole in G.

This was crucial in that paper. Happily, the exact analogue holds for clean shortest long odd holes:

3.2 Let G be a graph containing no long jewel of order at most ` + 2, and no long pyramid, and
with no long odd hole of length at most 2` + 2. Let C be a clean shortest long odd hole in G. Let
u, v ∈ V (C) be distinct and nonadjacent, and let L1, L2 be the two subpaths of C joining u, v, where
|E(L1)| < |E(L2)|. Then:

� L1 is a shortest path in G between u, v, and

� for every shortest path P in G between u, v, P ∪ L2 is a clean shortest long odd hole in G.

First we prove the first assertion of 3.2. If u, v are vertices of a graph G, dG(u, v) denotes the
length of the shortest path of G joining u, v (dG(u, v) =∞ if there is no such path).

3.3 Let G be a graph containing no long pyramid, no long jewel of order at most `+ 2, and no long
odd hole of length at most 2`. Let C be a clean shortest long odd hole in G. Then dG(u, v) = dC(u, v)
for all u, v ∈ V (C).

Proof. Suppose the result is false; then there is an induced path Q with vertices q1- · · · -qk in
order, such that some vertex u ∈ V (C) is adjacent to q1, some v ∈ V (C) is adjacent to qk, and
dC(u, v) > k + 1. Choose such a path Q with k minimum. Since dC(u, v) > k + 1 ≥ 2, and q1 is not
C-major, it follows that q1 6= qk, and so k ≥ 2. If some vertex of Q belongs to V (C), say qi ∈ V (C),
then from the choice of k, dC(u, qi) ≤ i, and dC(qi, v) ≤ k − i+ 1, and so

dC(u, v) ≤ dC(u, qi) + dC(qi, v) ≤ k + 1,

a contradiction. Thus Q ∩ C is null. There are two paths of C that join u, v; one, L1 say, of length
dC(u, v), and the other, L2 say, longer and of opposite parity.

Since q1 is not C-major, there is a path P1 of C of length at most two such that all neighbours
of q1 in V (C) lie in V (P1); choose P1 minimal, and consequently both its ends are adjacent to q1.
(Possibly P1 has only one vertex.) Define P2 similarly for qk.

(1) P1, P2 are vertex-disjoint.

Suppose that P1 ∩ P2 is non-null. Thus dC(u, v) ≤ 4, and since dC(u, v) > k + 1 ≥ 3 it follows
that k = 2 and dC(u, v) = 4, and P1, P2 both have length exactly two. Hence P1 ∪ P2 = L1, and the
three paths L1, u-q1-q2-v, and L2, form a long jewel of order four, a contradiction. Thus P1 ∩ P2 is
null. This proves (1).

b1

a1

b2

a2

q1 qkQ

A

B

P1 P2

Figure 2: The paths P1, P2, A,B of C.
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Let P1 have ends a1, b1, and let P2 have ends a2, b2, where a1, b1, b2, a2 are in order in C (possibly
a1 = b1 or a2 = b2). Let A,B be two paths of C, where A has ends a1, a2, and B has ends b1, b2,
and the four paths A,B, P1, P2 are pairwise edge-disjoint and have union C.

(2) One of q2, . . . , qk−1 has a neighbour in V (C), and therefore k ≥ 3.

Suppose not. The hole formed by adding the path a1-q1- · · · -qk-a2 to A is shorter than C, so either
it has length less than ` or it has even length; so either |E(A)|+ k+ 1 < `, or |E(A)|+ k+ 1 is even.
Similarly either |E(B)|+k+1 < `, or |E(B)|+k+1 is even. Since |E(A)|+ |E(B)|+4 ≥ |E(C)| > 2`,
we may assume that |E(B)| ≥ ` − 1. In particular, |E(B)| + k + 1 ≥ `, and so |E(B)| + k is odd.
Now the paths b1-q1- · · · -qk-b2, b1-P1-a1-A-a2-P2-b2 and B form a long jewel, of order the maximum
of the lengths of the first two paths. But the second path has length at least dC(u, v) ≥ k + 2, so
the second path is longer; and so the long jewel has order |E(A)|+ |E(P1)|+ |E(P2)|. Consequently
|E(A)|+ |E(P1)|+ |E(P2)| > `+2, and so |E(A)| ≥ `−1. Hence |E(A)|+k+1 ≥ `, and so |E(A)|+k
is odd. Since C is odd, it follows that one of P1, P2 is odd and the other is even, and we may assume
that P2 has length one; and so qk has exactly two neighbours in V (C), a2 and b2, and they are
adjacent. If a1 = b1 then since |E(A)| + |E(P1)| + |E(P2)| ≥ ` + 3, it follows that |E(A)| ≥ ` + 2,
and so the three paths A,B and a1-q1-Q-qk form a long pyramid, a contradiction. Thus P2 has
exactly three vertices. Since |E(A)| + |E(P1)| + |E(P2)| ≥ ` + 3, it follows that |E(A)| > `, and
so the three paths q1-a1-A-a2, q1-b1-B-b2 and Q form a long pyramid, a contradiction. This proves (2).

(3) None of q2, . . . , qk−1 has a neighbour in V (L2).

Suppose that qi has a neighbour w ∈ V (L2) say, where 2 ≤ i ≤ k − 1. Thus w 6= u, v. Let
R2, S2 be the subpaths of L2 between w, u and between w, v respectively. From the minimality of k,
dC(u,w) < dC(u, v), and so the path of C between u,w of length dC(u,w) is a subpath of L2, that
is, R2 has length dC(u,w). Similarly S2 has length dC(v, w), and so dC(u,w) + dC(v, w) = |E(L2)|.
From the minimality of k, dC(u,w) ≤ i + 1 (because otherwise dG(u,w) ≤ i + 1 < dC(u,w) and
dG(u,w) < k + 1, contrary to the minimality of k), and similarly dC(v, w) ≤ k − i + 2, and so
|E(L2)| ≤ k + 3. But |E(L2)| > |E(L1)| = dC(u, v) ≥ k + 2, and so equality holds throughout. In
particular, |E(L2)| = |E(L1)| + 1 = k + 3. Moreover, R2 has length dC(u,w) = i + 1 and S2 has
length k − i+ 2.

The union of L1 and the path u-q1-Q-qk-v therefore is a cycle of length |C| − 2. This is odd, less
than C, and at least `, so this cycle is not induced. Hence there exists j ∈ {1, . . . , k} such that qj
has a neighbour in the interior of L1, say x. From the symmetry under reversing q1, . . . , qk, we may
assume that j ≥ i. Let R1, S1 be the subpaths of L1 between x, u and between x, v respectively.
The path S1 ∪ S2 has length more than the length of S2 and hence at least k − i+ 3; and the path
w-qi- · · · -qj-x has length j − i+ 2 ≤ k − i+ 2. Thus S1 ∪ S2 is longer than w-qi- · · · -qj-x. But from
the minimality of k, it follows that the length of w-qi- · · · -qj-x is at least dC(w, x), and so at least
the length of R1 ∪ R2. Thus j − i + 2 ≥ |E(R1)| + |E(R2)|. Also, the minimality of k implies that
the path x-qj- · · · -qk-v has length at least the length of S1, and so k − j + 2 ≥ |E(S1)|. Adding, we
deduce that k − i+ 4 ≥ |E(R1)|+ |E(R2)|+ |E(S1)|. But |E(R1) + |E(S1)| = |E(L1)| = k + 2, and
|E(R2)| = i+ 1, and so k − 2i+ 4 ≥ k + 3, which is impossible. This proves (3).

We may assume that u, v are chosen, adjacent to q1, qk respectively, with dC(u, v) maximum.
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Then we have

(4) q1, qk have no neighbours in L∗2.

By (2) and (3), one of q2, . . . , qk−1 (say qi) has a neighbour in L∗1, say w. Since dG(u,w) < dG(u, v),
the minimality of k implies that dG(u,w) = dC(u,w). If w, v are adjacent, then

dC(u, v) ≤ dC(u,w) + 1 = dG(u,w) + 1 ≤ i+ 2 ≤ k + 1,

a contradiction; so w is nonadjacent to v and similarly nonadjacent to u. Consequently w ∈ V (A).
Let R,S be the subpaths of A between w and a1, a2 respectively. Since w, v are nonadjacent, the path
R∪P1 has length at most that of L1, and so less than |E(C)|/2, and hence dC(w, b1) = |E(R∪P1)|.
From the minimality of k, the path b1-q1- · · · -qi-w has length at least the length of R ∪ P1; and
similarly w-qi- · · · -qk-b2 has length at least that of S ∪ P2. Adding, we deduce that P1 ∪A ∪ P2 has
length at most k + 3. But |E(L1)| ≥ k + 2, and we suppose for a contradiction that not both b1, b2
belong to V (L1), and so the length of L1 is strictly less than that of P1 ∪ A ∪ P2. Hence we have
equality throughout; so |E(L1)| = k + 2, and P1 ∪ A ∪ P2 has length k + 3, and exactly one edge of
P1 ∪ P2 does not belong to L1; and so from the symmetry between u, v we may assume that u = b1
and v, b2 are adjacent. But the path b1-q1- · · · -qk-b2 has length k + 1, and this has the same parity
as, and is shorter by two than, the path P1 ∪A∪ P2, so its union with the path B is an odd hole C ′

of length two less than that of C. Consequently C ′ is not long; but this is impossible, since C has
length more than 2`. This shows that b1, b2 ∈ V (L1), and so proves (4).

(5) L1 has length k + 2.

From (2) and (3), there exists i ∈ {2, . . . , k − 1} such that qi has a neighbour w ∈ L∗1. From
the minimality of k, the path u-q1- · · · -qi-w has length at least the length of the subpath of L1 be-
tween u,w; and the path w-qi- · · · -qk-v has length at least the length of the subpath of L1 between
w, v. Adding, we deduce that k + 3 is at least the length of L1. But adding the path u-q1- · · · -qk-v
to L2 makes a hole, of length at least ` since L2 has length at least |C|/2; and this hole is shorter
than C, and so has even length. Consequently k + 1 has the same parity as the length of L2, and
hence k has the same parity as the length of L1. Since the length of L1 is at most k + 3, it equals
k + 2. This proves (5).

Let the vertices of L1 in order be u = w0-w1-wk+1-wk+2 = v.

(6) For 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1, if qi, wj are adjacent then j ∈ {i, i+ 1}.

If j < i then the path wj-qi- · · · -qk-v has length less than the length of wj-wj+1- · · · -wk+1-v, since
the first path has length k− i+ 2 and the second has length k+ 2− j = dC(wj , v). This is contrary
to the minimality of k. Similarly, if j > i + 1, the path u-q1- · · · -qi-wj is shorter than u-w1- · · · -wj ,
again a contradiction. This proves (6).

From (2), we may assume (exchanging u, v if necessary) that there exists i ∈ {2, . . . , k − 1} such
that qi is adjacent to wi. Let C ′ be the union of L2 and the path

u-w1- · · · -wi-qi- · · · -qk-v.
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From (3), (4) and (6), C ′ is a hole of length |C|, and so is a shortest long odd hole. Let G′ be the
subgraph of G induced on V (C) ∪ V (Q). Then C ′ is a hole in G′, and moreover, in G′ C ′ is a clean
hole, because of (6). But the path u-q1- · · · -qi is shorter then the path u-w1- · · · -wi-qi, and the latter
has length dC′(u, qi); and this contradicts the minimality of k. This proves 3.3.

We need the following lemma.

3.4 Let G be a graph containing no long jewel of order at most k, and no long odd hole of length
less than k+ `. Let C be a shortest long odd hole, and let v ∈ V (G) be C-major. Then every path of
C that contains all the neighbours of v in V (C) has length more than k.

Proof. Suppose that P is a path of C, with ends a, b say, containing all the neighbours of v in
V (C), and P has length at most k. Since v is C-major, it follows that P has length at least three.
Let Q be the other path of C with ends a, b. Since by hypothesis, C has length at least k + `, it
follows that Q has length at least `. Adding the path a-v-b to Q therefore gives a long hole, and it
is shorter than C since P has length at least three. Consequently this hole is not odd; so Q is even
and so P is odd. But then the three paths P , a-v-b and Q form a long jewel of order at most k, a
contradiction. This proves 3.4.

Now we prove the second statement of 3.2, in the following.

3.5 Let G be a candidate, and let C be a clean shortest long odd hole in G. Let u, v ∈ V (C) be
nonadjacent, and let Q be a shortest path in G joining u, v. Let L1, L2 be the paths of C that join
u, v, where L1 is shorter than L2. Then L2 ∪Q is a clean shortest long odd hole.

Proof. Let Q have vertices u-q1- · · · -qk-v in order. We proceed by induction on k. By 3.3, L1 and
Q have the same length. If some vertex qi of Q∗ belongs to L∗2, then by two applications of 3.3,
dC(u, qi) ≤ i and dC(qi, v) ≤ k − i+ 1, so L2 has length at most k + 1, which is impossible since L1

has length k+1 and L2 is longer. Thus Q∗∩L∗2 = ∅, and so L2∪Q is a cycle, with the same length as C.

(1) L2 ∪Q is induced.

Suppose it is not induced. Then there exist i ∈ {1, . . . , k} and w ∈ L∗2 such that qi, w are adjacent.
Let R,S be the subpaths of L2 between w and u, v respectively. From 3.3, dC(u,w) ≤ i+1 ≤ |E(L1)|,
and so R has length dC(u,w) ≤ i+ 1 (because the other path of C joining u,w includes L1 and so is
too long); and dC(w, v) ≤ k − i+ 2 ≤ |E(L1)|, so similarly S has length dC(u,w) ≤ k − i+ 2. Thus

|E(L2)| = |E(R)|+ |E(S)| = k + 3− (i+ 1− dC(u,w))− (k + i− 2− dC(v, w)).

In particular, L2 has length at most k+3. Since L1 has length k+1 and L1, L2 have opposite parity,
it follows that L2 has length k + 2, and so (i+ 1− dC(u,w)) + (k + i− 2− dC(v, w)) = 1; and from
the symmetry between u, v, we may assume that dC(w, v) = k − i + 2 and dC(u,w) = i. Since the
path w-qi- · · · -qk-v has the same length as S, and the latter is a shortest path between v, w by 3.3,
it follows that w-qi- · · · -qk-v is also a shortest path between v, w. Suppose that i > 1; then from the
inductive hypothesis, the union of the path L1∪R and w-qi- · · · -qk-v is a clean shortest long odd hole
C ′ say. The two subpaths of C ′ between u, qi have lengths |E(L1)|+k− i = 2k+1− i and |E(R)|+1.
By 3.3, one of these paths has length at most the length of u-q1- · · · -qi, that is, at most i. But
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2k+1− i > i since i ≤ k; and |E(R)|+1 > i since |E(R)| = |E(L2)|−|E(S)| = k+2−(k− i+2) = i,
a contradiction. This proves (1).

Let C ′ = L2 ∪Q; then C ′ is a shortest long odd hole. It only remains to check that C ′ is clean.
Suppose not. Then there is a C ′-major vertex x. Since x is not C-major, x has a neighbour in the
interior of Q. Since Q is a shortest path, there is a subpath P1 of Q of length at most two containing
all neighbours of x in V (Q); choose P1 minimal. Since x is C ′-major, it has a neighbour in the
interior of L2. Since x is not C-major, there is a path P2 of L2, of length at most two, containing
all neighbours of x in V (C); choose P2 minimal. Let P1 have ends a1, b1, where u, a1, b1, v are in
order in Q, and let P2 have ends a2, b2, where u, a2, b2, v are in order in L2. Let A be the path of C ′

between a1, a2 that contains u, and let B be the path of C ′ between b1, b2 that contains v. By 3.4,
the path P1∪A∪P2 has length at least `+ 3, and so does the path P1∪B ∪P2. In particular, P1, P2

are vertex-disjoint and do not contain u or v. Since C ′ has length at least 2` + 3, one of A,B has
length at least `, say A. Hence the hole obtained by adding a1-x-a2 to A is long, and shorter than
C, so even; and hence A has even length. The path P1 ∪ B ∪ P2 therefore has odd length, and so
this path, a1-x-a2 and A form a long jewel, of order the length of P1 ∪B ∪ P2; and so this path has
length at least `+ 3. If P1 has length two, let it have vertices qi−1-qi-qi+1; then the path

u-q1- · · · -qi−1-v-qi+1- · · · -qk-v

is a path between u, v with the same length as Q, and violates (1). Thus P1 has length at most one.
Consequently B has length at least `; and so B is even. Since C ′ is odd, and A,B are both even, it
follows that exactly one of P1, P2 is odd. If P2 is odd, that is, if a2, b2 are adjacent, then since P1 is
even and has length at most one, it follows that a1 = b1; and the three paths A,B and a1-x form
a long pyramid. Thus P2 is even and P1 is odd. If a2 = b2 then similarly the three paths A,B and
a2-x form a long pyramid; so P2 has length two. Since x is not C-major, it has no neighbours in L1.
Since P1 is odd, it follows that k ≥ 2, so from the inductive hypothesis, the hole obtained from C by
replacing the middle vertex of P2 by x is a clean shortest long odd hole, violating (1). This proves
that C ′ is clean, and so completes the inductive proof of 3.5.

Now we can give the main result of this section. (In the following, we could bring the running
time down to O(|G|4), but there is no need.)

3.6 There is an algorithm with the following specifications:

Input: A candidate G.

Output: Decides either that G has a long hole, or that there is no clean shortest long odd hole in G.

Running time: O(|G|5).

Proof. If C is a shortest long odd hole in G, let u, v, w ∈ V (C) be chosen such that each of
dC(u, v), dC(v, w), dC(w, u) equals either b|C|/3c or d|C|/3e. Here is the algorithm: guess u, v, w,
find a shortest path between each pair of them, and test whether these three paths make a long odd
hole. If so, output that G has an odd hole. After checking all triples, if none has produced an odd
hole, output that G has no clean shortest long odd hole. It follows immediately from 3.2 that the
output is correct.
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4 Covering by a short path

Now we begin the third step of the main algorithm: cleaning a shortest long odd hole. In this section
we prove some preliminary lemmas. Let C be a shortest long odd hole in G, and let x be C-major.
An x-gap means a path of C of length at least two, with both ends adjacent to x and with no interior
vertices adjacent to x; so if P is an x-gap then adding x gives a hole. If x, y are distinct nonadjacent
C-major vertices in G, an (x, y)-gap means a path P of C such that V (P ) is the interior of an induced
path of G between x and y. If x, y are adjacent C-major vertices, an (x, y)-gap means a path P of
C such that V (P ) is the interior of an induced path of G \ e between x and y, where e is the edge
xy. Two sets of vertices X,Y are anticomplete if they are disjoint and there are no edges between
them. We use the same term for two subgraphs P,Q; thus we say P is anticomplete to Q if V (P ) is
anticomplete to V (Q).

4.1 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices.
Then there is a (u, v)-gap of length less than `/2− 1.

Proof. Let A,B be the sets of neighbours of u, v in V (C) respectively. We may assume that u, v
have no common neighbour in V (C), because that would make an (x, y)-gap of length zero; and so
there are an even number of (u, v)-gaps. Let us number them D1, . . . , D2k say, in order in C. We
may assume that each Di has length at least `/2 − 1, and in particular, have length at least two,
since ` ≥ 5. For 1 ≤ i ≤ 2k, let Di have ends ai ∈ A and bi ∈ B. We say i, j ∈ {1, . . . , 2k} are
consecutive if either |j − i| = 1 or |j − i| = 2k − 1.

(1) For all i, j ∈ {1, . . . , 2k}, if Di, Dj have different parity then i, j are consecutive.

Suppose not; then we may assume that D1, Di have opposite parity where 3 ≤ i ≤ 2k − 1. Let
a′1 be the vertex of C adjacent to a1 that is not in D1, and define b′1 similarly. Since i 6= 2, 2k it
follows that a1, b1 /∈ V (Di). If a′1 ∈ V (Di) then since i, 1 are not consecutive, it follows that {a1, a′1}
includes the vertex set of a (u, v)-gap; but this is impossible since all (u, v)-gaps have length at
least two. So a′1, b

′
1 /∈ V (Di), and adding u, v to D1 ∪ Di gives a long odd hole, shorter than C, a

contradiction. This proves (1).

(2) D1, . . . , D2k all have the same parity.

Suppose not; then k ≤ 2, and we may assume that Di has the same parity as i for 1 ≤ i ≤ 2k.
If say a1 = a2, then adding v to D1 ∪ D2 gives a long odd hole shorter than C (note that b1 6= b2
and they are nonadjacent, since u has at least two neighbours); so D1, . . . , D2k are pairwise vertex-
disjoint. Since D1, D2 have opposite parity, they are not anticomplete, and we may assume that a1
is adjacent to one of a2, b2; and not to b2 since all (u, v)-gaps have length at least two. So a1, a2 are
adjacent. Since u is C-major, it follows that k ≥ 2, and so k = 2. Similarly either a2, a3 are adjacent,
or b2, b3 are adjacent, and the first is impossible since a2 is adjacent to a1 and has a neighbour in
the interior of D2. So b2b3, a3a4, b4b1 are edges; but then C has even length, a contradiction. This
proves (2).

From (2), an even number of edges of C belong to (u, v)-gaps. Let F be the graph obtained
from C by deleting the edges and internal vertices of every (u, v)-gap. Since C is odd, it follows that
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|E(F )| is odd, and so some component P of F is odd. Now the ends of P belong to two consecutive
(u, v)-gaps, D1, D2 say; and so we may assume that P has ends a1, a2. But then D1 ∪P ∪D2 is odd,
and adding v makes a long odd hole of length less than C, a contradiction. This proves 4.1.

A similar proof yields:

4.2 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices.
Suppose that all (u, v)-gaps are odd; then for every long (u, v)-gap Q, there is a (u, v)-gap of length
at most `− 5, anticomplete to Q.

Proof. Since an even number of edges belong to (u, v)-gaps, it follows as in the proof of 4.1 (and
using the notation of that proof) that some component P of F is odd, and we may assume that P
has ends a1, a2. Then D1 ∪ P ∪D2 is odd, and adding v makes an odd hole of length less than that
of C, which therefore has length less than `. Since P is odd, it follows that the sum of the lengths
of D1, D2 is at most ` − 4, and so each has length at most ` − 5. Suppose that neither of them is
anticomplete to Q. Since Q exists and Q 6= D1, D2, there are at least four (u, v)-gaps; let Q = Di say
where 3 ≤ i ≤ 2k. Since Di, D2 are not anticomplete, it follows that i ≤ 4; and similarly i ≥ 2k − 1,
and so k = 2, and we may assume that i = 3 from the symmetry. Since D1, D3 are not anticomplete,
it follows that b1 = b4, a3 = a4, and a4, b4 are adjacent. Also since D2, D3 are not anticomplete, the
vertices b2, b3 are either equal or adjacent; and since C is odd and D1, D2, D3, D4 and P are odd, it
follows that b2 = b3. Now the three paths D1 ∪ P ∪D2, b4-v-b2 and D3 form a long jewel of order
|V (D1 ∪ P ∪D2)| < `, a contradiction. This proves 4.2.

The next result is crucial, and provides the machinery behind all the proof of 1.1 that is novel.
When we apply this, we will have a subpath P of some hole C, and some C-major vertices with
neighbours in V (P ); the sets A1, . . . , Ak in 4.3 will be the neighbour sets in V (P ) of these C-major
vertices.

4.3 Let P be a path of odd length, with ends p, p′. Let A1, . . . , Ak ⊆ V (P ) be nonempty, and let
us say a subpath Q of P is “covering” if V (Q) ∩ As 6= ∅ for 1 ≤ s ≤ k. Suppose that the minimal
covering subpath with one end p, and the minimal covering subpath with one end p′, have the same
parity. Then there is an odd subpath Q of P such that Q is covering, and for some (possibly equal)
s, t ∈ {1, . . . , k}, one end of Q belongs to As, the other end belongs to At, and As, At contain no
other vertex of Q.

Proof. Let P have vertices p0- · · · -pn in order. Thus n is odd. Choose d ∈ {0, . . . , n} minimum
such that p0- · · · -pd is covering. For d ≤ j ≤ n, choose i ≤ j maximum such that pi- · · · -pj is
covering and define m(j) = j − i. If m(d) is odd, then the subpath of P between pd−m(d) and pd
satisfies the theorem; so we assume that m(d) is even. Also, from the hypothesis, m(n) and d have
the same parity, so m(n) + n and m(d) + d have different parity. Consequently there exists i with
d+1 ≤ i ≤ n such that m(i)+i has different parity from m(i−1)+i−1. It follows that m(i),m(i−1)
have the same parity. Choose h ≤ i − 1 maximum such that ph- · · · -pi−1 is covering. Consequently
i − 1 − h = m(i − 1). From the maximality of h, there exists t ∈ {1, . . . , k} such that ph ∈ At, and
ph+1, . . . , pi−1 /∈ At. Since m(i),m(i−1) have the same parity, it follows that one of ph+1, . . . , pi−1, pi
belongs to At, and so pi ∈ At. If i, h have opposite parity, the path ph- · · · -pi satisfies the theorem,
so we assume they have the same parity. Choose g ≤ i maximum such that pg- · · · -pi is covering.
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Thus i − g = m(i). From the maximality of g, there exists s ∈ {1, . . . , k} such that pg ∈ As and
pg+1, . . . , pi /∈ As. Since m(i− 1),m(i) have the same parity, it follows that i− 1− h and i− g have
the same parity, that is, g − h is odd. But i, h have the same parity, so i − g is odd, and the path
pg- · · · -pi satisfies the theorem. This proves 4.3.

5 Bases

In this section we prepare to apply 4.3 to generate a cleaning list.

5.1 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices.
There is not both a long odd (u, v)-gap and a long even (u, v)-gap.

Proof. Let P be a long odd (u, v)-gap, and let Q be a long even (u, v)-gap. They are not anticom-
plete, since otherwise adding u, v to their union gives a long odd hole, shorter than C, a contradiction.
If they share a vertex, then their union is either a long odd u-gap or a long odd v-gap, a contradiction.
So they are vertex-disjoint. Let P have ends p1, p2, and let Q have ends q1, q2, where u is adjacent
to p1, q1 and v to p2, q2. We may assume that one of q1, q2 is adjacent to p2. If q1 is adjacent to
p2 then v-p2-q1-Q-q2-v is a long odd hole shorter than C. So q2 is adjacent to p2. Let R be the
path of C joining p1, q1 that does not contain p2, q2. Thus R has odd length, and so the three paths
R, p1-u-q1 and p1-P -p2-q2-Q-q1 form a long jewel; and therefore this jewel has order at least ` + 3.
Consequently R has at least ` + 4 vertices. Let r1, r2 be the neighbours of p1, q1 respectively in R.
Suppose that v has no neighbours in V (R) \ {p1, r1, r2, q1}. Since v is C-major, it is adjacent to at
least one of r1, r2; not to exactly one, since it would make a long pyramid with C, and not with
both since then v-r1-R-r2-v is a long odd hole shorter than C; in each case a contradiction. So v
has a neighbour in V (R) \ {p1, r1, r2, q1}. Now suppose that u has no neighbour in this set. If u is
adjacent to neither of r1, r2 then u-p1-R-q1-u is a long odd hole shorter than C; if u is adjacent to
both r1, r2 then u-r1-R-r2-u is a long odd hole shorter than C; and if u is adjacent to exactly one
of r1, r2, it makes a long pyramid with C, in each case a contradiction. So u also has a neighbour
in V (R) \ {p1, r1, r2, q1}. But then there is a path joining u, v with interior in V (R) \ {p1, r1, r2, q1};
and this path, with u-p1-P -p2 and u-q1-Q-q2, forms a long pyramid, a contradiction. This proves
5.1.

Let C be a shortest long odd hole in a candidate G. If C is not clean, there is a maximal path
D of C such that some C-major vertex (x say) is adjacent to its ends and not to any of its internal
vertices. We call (x,D) a base (for C in G). A base (x,D) is remote if D has length at least 2`,
and no C-major vertex different from x has a neighbour w ∈ V (C) such that dC(w, di) < ` for some
i ∈ {1, 2}, where d1, d2 are the ends of D. (If there is a C-major vertex different from x, the second
condition just given implies the first.) It is easy to “arrange” algorithmically that a base is remote:
we just guess the two paths of C of length 2` with middle vertex d1, d2 respectively, and delete all
vertices not in these paths with a neighbour in the interior of one of them, except x. (This is safe,
because no vertex of C will be deleted.) If any C-major vertex different from x remains, then the
base has become remote (and if they all have been deleted then we have won). So the theorems to
come will often assume that (x,D) is a remote base. If (x,D) is a remote base then D is even, since
adding v to D gives a long hole shorter than C.
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In what follows, when we have a base (x,D), we will always denote the ends of D by d1, d2. If v
is a C-major vertex nonadjacent to x, then v has a neighbour in V (D) from the maximality of D,
and since (x,D) is remote, there are two (x, v)-gaps included in D, D1(v) and D2(v) say, where for
i = 1, 2, Di(v) has ends di and di(v) say. Both of them are long, since (x,D) is remote, so they have
the same parity by 5.1.

We will use this notation throughout the paper without defining it again.

5.2 Let C be a shortest long odd hole C in a candidate G, and let (x,D) be a remote base. Then
for every C-major vertex v nonadjacent to x, all (x, v)-gaps have the same parity.

Proof. Let D′ be the path of C different from D with ends d1, d2. Since D is even (because adding
x gives a long hole shorter than C) it follows that D′ is odd. Thus the three paths D′, d1-x-d2 and
D form a long jewel, and so D′ has length at least ` + 3. Consequently x has a neighbour in C
that is different from and nonadjacent to d1, d2 (to see this, suppose not; then x has at most four
neighbours in C, and if three then it makes a long pyramid, and if two or four then it makes a long
odd hole shorter than C). Hence every (x, v)-gap different from D1(v), D2(v) is anticomplete to one
of D1(v), D2(v), and therefore has the same parity as D1(v), D2(v). This proves 5.2.

Let (x,D) be a remote base for C. If v is a C-major vertex nonadjacent to x, we say the x-parity
of v is the common parity of all (x, v)-gaps.

5.3 Let C be a shortest long odd hole in a candidate G, and let (x,D) be a remote base. Let v1, v2
be nonadjacent C-major vertices, nonadjacent to x, and with the same x-parity, and let Q be a long
odd (v1, v2)-gap edge-disjoint from D. Then x has no neighbour in V (Q).

Proof. Let Q have ends q1, q2, where v1q1 and v2q2 are edges. Since qi is adjacent to vi, it follows
that dC(qi, dj) ≥ ` for j = 1, 2; and so Q is anticomplete to D.

Suppose x has a neighbour in V (Q). If x has no neighbour in the interior of Q, then x is adjacent
to one of q1, q2, so one and therefore both of v1, v2 have even x-parity, and consequently Q is not an
(x, v1) or (x, v2)-gap; and therefore x is adjacent to both q1, q2, and adding x to Q would give a long
odd hole shorter than C, a contradiction. So x has a neighbour in the interior of Q.

v1 v2
q1 q2

d1 d2

x

d1(v1)

d0
d1(v2)

Q

D

P2P1

Figure 3: For 5.3.
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Consequently there is an (x, v1)-gap P1 that is anticomplete to D and v2 has no neighbour in
V (P1); and also there is P2 similarly. For i = 1, 2, let P+

i be the path between vi, x with interior
V (Pi). Now every (v1, v2)-gap included in D is anticomplete to Q, and since Q is odd and has
length at least `, it follows that every (v1, v2)-gap included in D has odd length. In particular,
d1(v1) 6= d1(v2). From the symmetry we may assume that D1(v2) is a proper subpath of D1(v1).
Choose a vertex d0 of the path d1(v1)-D-d1(v2), adjacent to v2, such that the subpath d1(v1)-D-d0
is minimal. The latter is a (v1, v2)-gap, and so odd. On the other hand, since v1, v2 have same
x-parity, the paths D1(v1), D1(v2) have the same parity, and so d1(v1)-D-d1(v2) is even; and hence
d1(v2)-D-d0 is odd. If d1(v2), d0 are nonadjacent, then the path d0-D-d1(v1)-v1-P

+
1 -x-d1-D-d1(v1)

can be extended to a hole by adding either the path d1(v2)-D-d0 or d1(v2)-v2-d0, and since these
two paths have different parity, one of these holes is odd. It is long since d1-D-d1(v2) has length at
least `; and it is shorter than C, a contradiction. Thus d1(v2), d0 are adjacent. Choose a minimal
subpath R of D with one end d2 such that the other end, r say, is adjacent to one of v1, v2. Thus
R has length at least `, and only one of v1, v2 has a neighbour in V (R). If r is adjacent to v1, the
three paths x-d2-R-r-v1-d1(v1)-D-d0, x-d1-D-d1(v2) and x-P+

2 -v2 form a long pyramid (omitting v1
from the first if d1(v1), d0 are equal or adjacent). If r is adjacent to v2, the three paths x-d2-R-r-v2,
x-d1-D-d1(v1) and x-P+

1 -v1-d1(v1)-D-d0 form a long pyramid, a contradiction. This proves 5.3.

6 Catch and clean

Let C be a shortest long odd hole, and let P be a path of C. If v is a vertex, we say that P catches
v if v /∈ V (P ) and v is adjacent to an internal vertex of P . The point is, if P is a path of C then we
are sure that no vertices it catches belong to V (C); they might not all be C-major, but it does no
harm to delete them. This is a quite effective way to clean C of C-major vertices: we guess a path
of bounded length (or a bounded number of such paths) and delete all the vertices each one catches.
For instance, if we could prove that there is such a set of paths of C (of bounded size, and each of
bounded length) that together catch all the C-major vertices, we could clean C and be done. We
have not been able to prove or disprove this. Nonetheless, catching C-major vertices by paths is a
useful technique, and we will develop it in this section. If F is a set of paths of C, its cost is the
number of vertices in the union of the paths; and it catches v if one of its paths catches v.

6.1 Let C be a shortest long odd hole in a candidate G, and let (x,D) be a remote base. Let M be a
set of C-major vertices, all nonadjacent to x and with the same x-parity. Let v1, v2 ∈M be adjacent,
and let Q be an odd (v1, v2)-gap, with ends q1, q2, edge-disjoint from D, where vi, qi are adjacent for
i = 1, 2. Suppose that x has a neighbour in V (Q) and every vertex in M has a neighbour in V (Q).
Then there is a set of paths of C with cost at most 5`+ 12 that catches all the vertices in M .
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Figure 4: For 6.1.

Proof. For i = 1, 2, let Pi be the (x, vi)-gap included in Q, and let its ends be qi, pi.

(1) d1(v1) = d1(v2).

Suppose not; then we can assume that D1(v1) is a proper subpath of D1(v2). But then the holes

v2-d1(v2)-D1(v2)-d1-x-p2-P2-q2-v2

v2-v1-d1(v1)-D1(v1)-d1-x-p2-P2-q2-v2

have opposite parity, and are both long and shorter than C, a contradiction. This proves (1).

(2) p1, p2 are distinct; and if p1, p2 are nonadjacent then the sum of the lengths of P1, P2 is at
most `− 6.

Since P1, P2 have the same parity, it follows that the path p1-Q-p2 is odd, and in particular p1 6= p2.
If p1, p2 are nonadjacent, there is an odd hole

x-p1-P1-q1-v1-v2-q2-P2-p2-x

which is shorter than C, and hence has length less than `. This proves (2).

(3) Let T be a (v1, x)-gap. If v ∈ M is adjacent to v1, then either d1(v) = d1(v1), or v has a
neighbour in V (T ).

Let v ∈M be adjacent to v1, and suppose that d1(v) 6= d1(v1), and v has no neighbour in V (T ). One
of D1(v), D1(v1) is a proper subpath of the other. If D1(v1) is a proper subpath of D1(v), choose a
path S joining v, x with interior in the interior of Q; then since S and D1(v1) have the same parity, it
follows that the hole v-v1-d1(v1)-D1(v1)-d1-x-S-v is a long odd hole shorter than C, a contradiction.
If D1(v) is a proper subpath of D1(v1), let T+ be the path between v1, x with interior V (T ); then
since T and D1(v) have the same parity, the hole v1-v-d1(v)-D1(v)-d1-x-T+-v1 is a long odd hole
shorter than C, a contradiction. This proves (3).
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For each v ∈M and for i = 1, 2, let Qi(v) be the (v, vi)-gap in Q, and let qi(v) be the neighbour
of v in Qi(v). Now there are two cases, depending whether p1, p2 are adjacent or not.

(4) If p1, p2 are adjacent, we can catch M with a set of paths of C with cost at most 5`+ 12.

Let M0 be the set of all v ∈ M such that either one of Q1(v), Q2(v) has length less than `, or
one of the (x, v)-gaps in Q has length less than `. We can catch M0 with a set of three paths of C,
two of length ` + 1 and one of length 2` + 1, so with cost at most 4` + 6. For i = 1, 2, let Mi be
the set of v ∈ M \M0 that are adjacent to vi. By 4.1, there is a (v1, x)-gap T of length less than
`/2 − 1, and the same for v2, so by (3) we can catch M1 ∪M2 with a set of paths of C with cost
at most ` + 6. We claim that M0 ∪M1 ∪M2 = M ; for suppose that v ∈ M \ (M0 ∪M1 ∪M2).
Hence v is nonadjacent to both v1, v2. Suppose first that v has a neighbour in P1 and a neighbour in
P2. Then there are two (x, v)-gaps in Q, with the same parity, and there is a long odd hole shorter
than C, consisting of the union of the two (x, v)-gaps, the edge p1p2, and the two edges from v to
the ends of the (x, v)-gaps; and this is impossible. Thus we may assume that all neighbours of v in
V (Q) belong to V (P1). Since x has neighbours in Q2(v), and Q2(v) is long, it is even by 5.3; but
then the (v, x)-gap and the (x, v2)-gap in Q2(v) have different parities, a contradiction. This proves
that M0 ∪M1 ∪M2 = M . Consequently we can catch M with a set of paths of C with cost at most
5`+ 12. This proves (4).

Henceforth we assume that p1, p2 are nonadjacent. Let M0 be the set of all vertices v ∈M such
that either one of Q1(v), Q2(v) has length less than `, or d1(v) = d1(v1). We can catch M0 with a
set of three paths of C, with lengths `+ 1, `+ 1 and 2, and hence with cost at most 2`+ 7.

(5) If v ∈M \M0, then

� v is nonadjacent to v1, v2

� Q1(v), Q2(v) are both even; and

� q1(v), q2(v) are adjacent (and so v has exactly two neighbours in V (Q), namely q1(v), q2(v)).

Since Q1(v) has length at least `, and P1 has length less than ` by (2), it follows that v has no
neighbour in V (P1). Since P1 is an (x, v1)-gap, and d1(v) 6= d1(v1), (3) implies that v, v1 are
nonadjacent, and similarly v, v2 are nonadjacent. All neighbours of v in V (Q) lie strictly between
p1, p2 in Q. Since Q1(v) is long and contains a neighbour of x, 5.3 implies that Q1(v) is even, and
similarly Q2(v) is even. Thus q1(v) 6= q2(v). If q1(v), q2(v) are nonadjacent, the hole

v-q1(v)-Q1(v)-q1-v1-v2-q2-Q2(v)-q2(v)-v

is long, odd, and shorter than C, a contradiction. Thus q1(v), q2(v) are adjacent. This proves (5).

(6) We can catch M \M0 with a set of paths of C with cost at most `+ 4.

We may assume that M \M0 is nonempty. Choose u ∈ M \M0 such that the path Q1(u) is as
short as possible. Now there are three kinds of vertices v ∈M \M0:
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� Let N0 be the set of all v ∈M \M0 such that some (u, v)-gap in Q has length less than ` (the
(u, v)-gap in Q is unique unless u, v have the same two neighbours in V (Q));

� Let N1 be the set of all v ∈M \ (M0 ∪N0) such that u, v are nonadjacent;

� Let N2 be the set of all v ∈M \ (M0 ∪N0) such that u, v are adjacent.

We can catch N0 with one path of length `+ 1 (because of the minimality of Q1(u)). We claim that
N1 = ∅. For suppose that v ∈ N1. Since Q1(u), Q1(v) are both even, it follows that the (u, v)-gap
in Q is odd, and long; and so x has no neighbour in it, by 5.3. But then there is a long pyramid
formed by the path x-d1-D1(v)-d1(v)-v, and the two (x, v)-gaps in Q, extended to x (note that one
of the latter is long, since it includes the (u, v)-gap). Thus N1 = ∅.

We claim that d1(v) = d1(u) for all v ∈ N2. Suppose not. If D1(u) is a proper subpath of D1(v),
let S be an induced path between x, v with interior in V (Q) that is edge-disjoint from the (u, v)-gap,
and therefore contains no neighbour of u. Since D1(u), D1(v) have the same parity, the holes

v-d1(v)-D1(v)-d1-x-S-v

v-u-d1(u)-D1(u)-d1-x-S-v

have opposite parity, and both are long and shorter than C, a contradiction. If D1(v) is a proper
subpath of D1(u), let S be an induced path between x, u with interior in V (Q) that is edge-disjoint
from the (u, v)-gap, and therefore contains no neighbour of v. Since D1(u), D1(v) have the same
parity, the holes

u-d1(u)-D1(u)-d1-x-S-u

u-v-d1(v)-D1(v)-d1-x-S-u

have opposite parity, and are both long and shorter than C, a contradiction. This proves that
d1(v) = d1(u) for all v ∈ N2; and hence we can catch N2 with one path of length two and hence cost
three. Since N1 = ∅ and we can catch N0 with one path of length ` + 1 and hence cost ` + 2, this
proves (6).

But we can catch M0 with a set of paths of C with cost at most 2`+ 7; so from (6) we can catch
M with cost at most 3`+ 11. This proves 6.1.

As a consequence we have:

6.2 Let C be a shortest long odd hole in a candidate G, and let (x,D) be a remote base. Then
there is a set of paths of C with cost at most 5`+ 12 that catches all C-major vertices that both are
nonadjacent to x and have even x-parity.

Proof. Let M be the set of all C-major vertices nonadjacent to x with even x-parity. Let P be
the path of C obtained by deleting the interior of D. Every vertex in M ∪ {x} has at least two
neighbours in V (P ). Moreover, for each v ∈M ∪{x}, the shortest subpath of P with one end d1 and
the other adjacent to v has the same parity as D1(v) and so is even; and the same holds for d2. Thus
M ∪ {x} and P satisfy the hypotheses of 4.3, and so there is an odd path Q of C with ends q1, q2,
edge-disjoint from D, and there are vertices v1, v2 ∈M ∪ {x}, such that v1q1 and v2q2 are edges and
there are no other edges between {v1, v2} and V (Q); and every vertex in M ∪ {x} has a neighbour
in V (Q). If Q has length less than ` the result follows, so we assume Q is long. Hence v1 6= v2. Now
x is nonadjacent to all vertices in M , and they all have even x-parity; so v1, v2 6= x. By 5.3, v1, v2
are adjacent, and the result follows from 6.1. This proves 6.2.
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6.3 Let C be a shortest long odd hole in a candidate G, and let (x,D) be a remote base. Then there
is a set of paths of C with cost at most 16`+ 28 that catches all C-major vertices nonadjacent to x.

Proof. By 6.2 there is a set F1 of paths of C with cost at most 5` + 12 that catches all C-major
vertices nonadjacent to x with even x-parity. Let M1 be the set of all C-major non-neighbours of
x not caught by F1. Now let us apply 4.3 to the path P of C obtained by deleting the interior of
D, and the set M1 ∪ {x}. We may assume that M1 6= ∅. Again, the hypotheses of 4.3 are satisfied,
since for each v ∈ M1, the shortest subpath of P with one end d1 and the other adjacent to v has
the same parity as D1(v) and so is odd; and the same holds for d2; and so for i = 1, 2 the shortest
subpath of P with one end di containing a neighbour of each vertex in M1 ∪ {x} is odd. (Note that
although x is adjacent to di, the members of M1 are not adjacent to di, and M1 6= ∅, so this shortest
subpath does not have length zero.)

It follows that there is an odd path Q of C with ends q1, q2, edge-disjoint from D, and there are
vertices v1, v2 ∈ M ∪ {x}, such that v1q1 and v2q2 are edges and there are no other edges between
{v1, v2} and V (Q); and every vertex in M1 ∪{x} has a neighbour in V (Q). If Q has length less than
` the result follows, so we assume Q is long. Hence v1 6= v2.

First, suppose that v1, v2 6= x. By 5.3, v1, v2 are adjacent; and by 6.1 the result holds. So we
may assume that v2 = x say. Let B be the v1-gap that includes Q. Then (v1, B) is a base for C in
G \N1, where N is the set of all C-major neighbours adjacent to x, and N1 is the union of N with
the set of all C-major vertices caught by F1. Let F2 be the set of the two paths of C of length 2`
with middle vertices the ends of B, and let N2 be the union of N1 with the set of C-major vertices
caught by F2; then (v1, B) is a remote base for C in G \N2. By 6.2 there is a set F3 of paths of C
with cost at most 5` + 15 that catches all C-major vertices of G \ N2 nonadjacent to v1 and with
even v1-parity. Let N3 be the union of N2 with the set of C-major vertices caught by F3. Thus
every C-major vertex in G \ N3 is nonadjacent to x, and has odd x-parity, and odd v1-parity, and
its neighbours in V (C) all have C-distance at least ` from each end of B.

By 4.2 there is an (x, v1)-gap T of length at most `− 5 anticomplete to Q; and it follows that T
is vertex-disjoint from and anticomplete to D. let T+ be the path between x, v1 with interior V (T ).
Let T have ends t1, t2, where t1v and t2x are edges. For each C-major vertex v of G \N3, let Q1(v)
be the (v1, v)-gap in Q, with ends q1(v) and q1, and let Q2(v) be the (x, v)-gap in Q, with ends q2(v)
and q2. Note that Q1(v) is long, since (v1, B) is a remote base.

(1) For every C-major vertex v of G\N3, either v has a neighbour in V (T ), or Q2(v) has length less
than `.

Let v be a C-major vertex of G \ N3, and suppose that v has no neighbour in V (T ), and Q2(v)
is long. Suppose first that v, v1 are adjacent. Now T is odd, since v1 has odd x-parity; and also
Q2(v) is odd, since v has odd x-parity. But v1 has no neighbour in Q2(v), since q1 is the only
neighbour of v1 in Q, and q1 /∈ V (Q2(v)) since v, q1 are not adjacent. Since T is anticomplete to
Q and hence to Q2(v), the hole v1-v-q2(v)-Q2(v)-q2-x-T+-v1 is a long odd hole shorter than C, a
contradiction.

Now suppose that v, v1 are nonadjacent. Since Q, Q1(v) and Q2(v) are odd, and Q1(v), Q2(v)
are edge-disjoint, it follows that the path q1(v)-Q-q2(v) is odd. There is an induced path R between
q1, q2 with interior in V (T )∪{x, v1}, and there are no edges between the interior of R and the interior
of Q, or between the interior of R and v. Consequently if q1(v), q2(v) are nonadjacent, the paths
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q1(v)-v-q2(v), q1(v)-Q-q2(v) and q1(v)-Q1(v)-q1-R-q2-Q2(v)-q2(v) form a long jewel, and so there is a
long odd hole of length less than C, a contradiction. Hence q1(v), q2(v) are adjacent. Since the paths
Q1(v) and T are disjoint and anticomplete, there is a long pyramid formed by v1-q1-Q1(v)-q1(v), a
path between v1, q2(v) with interior in V (T )∪{x}∪V (Q2(v)) and a path between v1, v with interior
in the interior of D, a contradiction. This proves (1).

It follows from (1) that there is a set F4 of paths of C with cost at most 2` − 1 that catches
every C-major vertex of G \N3. Then F1 ∪ F2 ∪ F3 ∪ F4 catches every C-major vertex of G that is
nonadjacent to x. This set has cost at most

(5`+ 15) + (4`+ 2) + (5`+ 15) + (2`− 1) = 16`+ 28.

This proves 6.3.

7 The algorithm

In this section we will use the results of the previous sections to give our main theorem. We need

7.1 There is an algorithm with the following specifications:

Input: A candidate G.

Output: Either decides that G has a long odd hole, or decides that G does not have a shortest long
odd hole C and a remote base (x,D) such that all C-major vertices are equal or adjacent to x.

Running time: O(|G|9).

Proof. Suppose that C is a shortest long odd hole with a remote base (x,D), and every other
C-major vertex is adjacent to x. Here is an algorithm: we guess x and the ends d1, d2 of the path D,
and its middle vertex d0 (D has even length). Let Z be the set consisting of x and all its neighbours.
For i = 1, 2, compute the set Di of internal vertices of all shortest paths with interior in G \ Z
between di, d0. Let Y be the set of vertices of G not in D1 ∪D2 ∪ {d0, d1, d2} and with a neighbour
in D1 ∪D2 ∪ {d0}. Apply 3.6 to G \ (Y ∪ {x}). If it finds a long odd hole, output that G has a long
odd hole. If (after checking all possible guesses) we did not find a long odd hole, output that G has
no shortest long odd hole C and base (x,D) such that every other C-major vertex is adjacent to x.

To see correctness, we only need to check correctness when G has a shortest long odd hole C and
a remote base (x,D), and every other C-major vertex is adjacent to x. In this case, when we guess
correctly, the interior of D contains no vertices in Z; and since the subpath of D between d1, d0 has
length less than |C|/2, it is a shortest path of G between d1, d0 containing no C-major vertices, by
3.2. Any shortest path with interior in G\Z between d1, d0 will contain no C-major vertices, because
they all belong to Z. Hence the interior of D is a subset of the set D1 ∪D2 ∪ {d0} computed by the
algorithm. Also by 3.2, V (C) \ V (D) is anticomplete to D1 ∪D2 ∪ {d0}; and so the set Y computed
by the algorithm contains no vertices of C. But it does contain all the C-major vertices except x;
because they all have neighbours in the interior of D, and do not belong to D1 ∪D2 since D1 ∪D2

is disjoint from Z. Hence after deleting Y ∪ {x}, all C-major vertices have been deleted and C has
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become a clean shortest long odd hole, and the algorithm of 3.6 will detect a long odd hole; and so
the output is correct.

For running time, there are |G|4 guesses to check, and each one takes time O(|G|5) (because we
are applying 3.6). Thus the total running time is O(|G|9). This proves 7.1.

Now our main result 1.1, which we restate:

7.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether G has a long odd hole.

Running time: O(|G|20`+40).

Proof. First we apply 2.4, and we may assume we determine that G is a candidate. Next we apply
3.6 to G, and we assume we find that there is no clean shortest long odd hole. So either G has no
long odd hole, or it has a shortest long odd hole C with a base (x,D). We assume the latter. Let
R1, R2 be the paths of C of length 2` with middle vertices the ends d1, d2 of D. We guess x and
R1, R2, and delete all vertices caught by {R1, R2} different from x, producing H say, and run 3.6 on
H \ {x}; and assuming it still does not find a long odd hole, and G has a long odd hole, then when
we guess correctly, H has a shortest long odd hole C with a remote base (x,D).

Now by 6.3 there is a set F of paths of C, with cost at most 16`+28, that catches every C-major
vertex of H nonadjacent to x. We guess the paths in F , and delete all the vertices they catch. Then
we apply 7.1 to the resulting graph. If it finds a long odd hole we are done; and it will do so in the
case when we guess correctly. If after all guesses we never find a long odd hole, we return that there
is none.

The total cost of guesses for the paths is (4` + 2) + (16` + 28) = 20` + 30, and we also have
to guess x; and checking each guess takes time O(|G|9), since we are applying 7.1. Thus the total
running time is O(|G|20`+40). This proves 7.2.
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