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Abstract. Our aim in this note is to prove a conjecture of Bondy, extending a classical

theorem of Dirac to edge-weighted digraphs: if every vertex has out-weight at least 1 then

the digraph contains a path of weight at least 1. We also give several related conjectures

and results concerning heavy cycles in edge-weighted digraphs.
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§1. Introduction
A basic theorem of Dirac [11] states that every graph G with δ(G) = d contains

a path of length d and, for d ≥ 2, a cycle of length at least d+ 1; furthermore, if

G is 2-connected, then G contains a cycle of length at least min{2d, |G|}. Bounds

in terms of just the size were given by Erdős and Gallai [12], who proved that

every graph G of order n contains a path of length at least 2e(G)/n and, provided

e(G) ≥ n, a cycle of length 2e(G)/(n− 1).

As conjectured by Bondy and Fan [8], both results of Erdős and Gallai can be

generalized to edge-weighted graphs. Frieze, McDiarmid and Reed [14] proved

that every weighted graph contains a heavy path.

Theorem A. Let G be a weighted graph of order n. Then G contains a path of

weight at least 2w(G)/n.

Bondy and Fan [9] proved the following theorem about heavy cycles.

Theorem B. Let G be a weighted 2-edge-connected graph of order n. Then G

contains a cycle of weight at least 2w(G)/(n− 1).

Dirac’s theorem is easily generalized to digraphs: if every vertex in a digraph G

has outdegree at least d, then G contains a path of length at least d and a cycle

of length at least d+ 1.

In 1992, Bondy [6] made two other conjectures, extending Dirac’s theorem to

edge-weighted digraphs. First he conjectured that if every vertex in an edge-

weighted digraph has outweight at least 1 then the digraph contains a (directed)

path of weight at least 1. Secondly, if every vertex in an edge-weighted digraph

has outweight at least 1 then the digraph contains a (directed) cycle of weight at

least 1. The second conjecture was disproved by T. Spencer of Nebraska.

Our main aim in this note is to find extensions of the theorems of Dirac and

of Erdős and Gallai to edge-weighted digraphs. In particular, we prove the first

(paths) conjecture of Bondy and give a lower bound on the weight of the heaviest

cycle in an edge-weighted digraph in which every vertex has outweight at least
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1. We also consider other conditions that could guarantee a heavy cycle in an

edge-weighted digraph and make a number of conjectures.

We use standard notation (see, e.g., [3]). We shall consider only loopless digraphs;

in other words, if 〈x, y〉 is a (directed) edge (or arc) of G then x 6= y. We shall

write xy for 〈x, y〉. An oriented graph G is a digraph with no cycles of length two:

thus if xy ∈ E(G) then yx 6∈ E(G). An edge-weighting of a graph or digraph G is a

function w : E(G)→ R. We shall only consider edge-weightings with non-negative

weights. For x ∈ V (G), the inweight of x is

win(x) =
∑

y∈Γ−(x)

w(yx)

and the outweight of x is

wout(x) =
∑

y∈Γ+(x)

w(xy).

We shall assume that graphs and digraphs have at least one vertex.

§2. Results and problems
We begin by looking for a version of Theorem A for edge-weighted digraphs. If we

consider the complete bipartite graph Kdn/2e,bn/2c with all edges oriented in the

same direction (so that the longest path has length 1) and give weight 1 to every

edge, then no path has weight more than w(G)/bn2

4 c. R.C. O’Brien [18] proved

that every digraph G of order n has an edge-partition into bn2

4 c paths; therefore

some path must weigh at least

w(G)/bn
2

4
c. (1)

It can also be shown that, for oriented graphs, there is a path of length at most

three with weight at least w(G)/bn2

4 c.

Now clearly a digraph G need not contain cycles. However, even if we demand that

G be strongly connected, we cannot do much better than (1). Indeed, let G be

the complete tripartite graph with vertex sets V1, V2, V3 such that |V1| = dn−1
2 e,

|V2| = bn−1
2 c and |V3| = 1, and the edges are oriented from V1 to V2, from V2 to
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V3 and from V3 to V1. If we give weight 1 to all edges from V1 to V2 and weight

0 to the other edges, then the heaviest path has weight 2w(G)/d (n−1)2

4 e and the

heaviest cycle has weight w(G)/d (n−1)2

4 e. More generally, if we take |V1| = dn−k
2 e,

|V2| = bn−k
2 c and |V3| = k, we get a strongly k-connected graph with heaviest

path weighing (k+1)w(G)/d (n−k)2

4 e and heaviest cycle weighing kw(G)/d (n−k)2

4 e.

In order to guarantee the existence of heavier paths and cycles, we have to impose

some conditions on our graphs or our edge-weightings. The natural condition,

corresponding to Dirac’s minimal degree condition, is that every vertex have large

outweight. Our main result, proving a conjecture of Bondy [6], asserts that this

condition is indeed sufficient to guarantee a heavy path.

Theorem 1. Let G be a digraph with edge-weighting w such that every vertex v

in G satisfies wout(v) ≥ 1. Then G contains a path P such that

w(P ) ≥ 1. (2)

Proof. The key idea of our proof is that, in order to make induction easy, we

prove a stronger assertion. Indeed, let G be a digraph with edge-weighting w and

let v0 ∈ V (G). We prove by induction on n = |G| that if every v ∈ V (G) \ {v0}
satisfies wout(v) ≥ 1 then G contains a path P such that w(P ) ≥ 1. If n = 2, then

the result is clear. Suppose n > 2 and v0 ∈ V (G).

If v0 has no inedges, then consider the graph G∗ = G \ {v0} with the same edge-

weighting. Every vertex has outweight at least 1, so picking any u ∈ V (G∗), the

conditions of the inductive hypothesis are satisfied, so we can find a path P in G∗

with w(P ) ≥ 1, which can also be considered as a path in G.

Otherwise, d−(v0) > 0. Let uv0 be an edge with w(uv0) maximal, ie uv0 is the

heaviest inedge. Let G∗ be the digraph G \ {u, v0} with an extra vertex x and,

for v ∈ V (G) \ {u, v0}, an edge from v to x iff vu ∈ E(G) or vv0 ∈ E(G). Thus

Γ+
G∗(x) = ∅ and Γ−G∗(x) = (Γ−G(u) ∪ Γ−G(v0)) \ {u, v0}. Let w∗ be the weighting

obtained by setting w∗ = w on G∗ \ x and, for vx ∈ E(G∗),

w∗(vx) =
{
w(vu) + w(uv0) vu ∈ E(G)
w(vv0) otherwise (3)
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It is easily checked that G∗, w∗ and x satisfy the conditions of the inductive

hypothesis. Indeed, for v ∈ V (G∗) \ {x}, we have w∗out(v) = wout(v) − w(vu) −
w(vv0) + w∗(vx). If vu ∈ E(G), then

w∗out(v) = wout(v)− w(vu)− w(vv0) + w(vu) + w(uv0)

= wout(v)− w(vv0) + w(uv0)

≥ wout(v)

by maximality of w(uv0). If vu 6∈ E(G), then clearly w∗out(v) = wout(v). Thus

w∗out(v) ≥ 1 for all v 6= x. Now G∗ has fewer vertices than G. Therefore, by our

inductive hypothesis, there is a path P ∗ contained in G∗ such that w∗(P ∗) ≥ 1.

Now if x 6∈ V (P ∗) then P ∗ can also be thought of as a path P in G, where

w(P ) = w∗(P ∗), so we have the required path. Otherwise, P ∗ must end in x,

since d+
G∗(x) = 0. Suppose the last edge in P ∗ is vx. We use P ∗ to define a path

P contained in G as follows. P ∗ is the same as P except for the last vertex. If

vu ∈ E(G) then replace vx with vuv0; otherwise replace vx with vv0. In either

case, it follows immediately from (3) that w(P ) ≥ w∗(P ∗) ≥ 1, so we have found

the required path.

This result is best possible: consider, for instance, the complete digraph, where

all edges have equal weight. For strongly connected digraphs, however, we can say

slightly more about our heavy paths.

Corollary 2. Let G be a strongly connected digraph with edge-weighting w such

that every vertex v in G satisfies wout(v) ≥ 1. Then, for every vertex v in G, there

is a path P such that w(P ) ≥ 1 and P ends in v.

Proof. As in the proof of Theorem 1, we prove a stronger assertion. Let G be

a digraph with edge-weighting w and let v ∈ V (G). We prove that if, for every

vertex v′ 6= v, wout(v′) ≥ 1 and there is a path from v′ to v, then there is a path

P ending in v such that w(P ) ≥ 1. It is easily checked that this condition is

stable under the contraction used in the proof of Theorem 1; the result follows by

a similar induction.
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What can we say about cycles? Surprisingly, this question seems to be rather more

difficult. Indeed, as remarked above in the introduction, Bondy’s conjecture, that

if every vertex in an edge-weighted digraph G has outweight at least 1 then G

contains a cycle of weight at 1;2cleast 1, is false. We give upper and lower bounds

on the minimum possible weight of a heaviest cycle under these conditions. After

obtaining the (upper bound) construction below, we discovered from Bondy that

the construction had previously been obtained by T. Spencer [7].

For an upper bound, consider the digraph G defined as follows. Let k, l ≥ 2

be fixed integers. Let V be the set of strings of at most l digits from [k], so

V = {∅, 1, 2, . . . , k, 11, 12, . . .}. For each string x1 · · ·xp with p < l, we add edges

to x1 · · ·xpi, for i = 1, . . . , k, each with weight 1/k (this includes edges from

∅ to 1, . . . , k). From each string x1 · · ·xl we add edges to its initial segments

∅, x1, x1x2, . . . , x1 · · ·xl−1, each with weight 1/l. Thus every vertex has outweight

1. It is easily seen that a heaviest cycle is given by ∅, x1, x1x2, x1 · · ·xl,∅ for any

x1 · · ·xl, and has weight (l/k) + (1/l). Furthermore, |V | = 1 + k+ k2 + · · ·+ kl <

kl+1. If we set k = l2 and |V | = n, we get that the maximal weight of a cycle is

at most
c log log n

log n
w(G). (4)

Let us note that we can make this example bipartite by taking edges from each

x1 · · ·xl only to x1 · · ·xl−2, x1 · · ·xl−4 and so on. We can also demand that G have

girth at least g, for any G, by taking edges from x1 · · ·xl to ∅, . . . , x1 · · ·xl−g+1.

For a lower bound, it is easy to see that if every vertex v ∈ V (G) satisfies wout ≥ 1

then we can find a cycle of weight at least n−1/2/2. Indeed, we may assume that G

is strongly connected, or else replace G with a strongly connected component of G

with no outedges. This still satisfies the condition that every vertex has outweight

at least 1, and has fewer vertices than G. Now, if any edge xy weighs more than

n−1/2/2 then we can extend it to a cycle with weight at least n−1/2/2. Otherwise,

consider the subgraph G∗ of G, where we take only those edges that weigh at least

1/2n. Every vertex has outweight at least 1/2, and so outdegree at least
√
n, since

each edge weighs at most n−1/2/2. It follows immediately that there must be a

cycle of length at least
√
n, which must weigh at least

√
n · (1/2n) = n−1/2/2.
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With a little more work we can do slightly better.

Theorem 3. Let G be a digraph with edge-weighting w, such that every vertex v

in V (G) satisfies wout(v) ≥ 1. Then G contains a cycle C with w(C) ≥ (24n)−1/3.

Proof. Let c = 24−1/3. We prove the assertion of the theorem by induction

on n = |G|. As noted above, we may assume that G is strongly connected (by

considering a strongly connected component with no outedges). If there is an

edge weighing more than cn−1/3 then we can extend it to a cycle and we are done.

Suppose then that no edge weighs more than cn−1/3, and that G contains no cycle

of weight cn−1/3.

Suppose first that some v ∈ V (G) satisfies d+(v) ≥ 6cn2/3. Starting with the

triple (G0, w0, v0) = (G,w, v), consisting of our graph G, edge-weighting w and

special vertex v, we shall perform a sequence of contractions to obtain triples

(G1, w1, v1), (G2, w2, v2), . . ., where each Gi is a strongly connected digraph with

edge weighting wi such that every vertex except vi has outweight at least 1.

Given (Gi, wi, vi), if there is an edge weighing at least cn−1/3 then we can extend

it to a cycle of weight at least cn−1/3. As we shall note below, this corresponds

to a cycle in G with weight at least cn−1/3, which is a contradiction. Thus we

may assume that no edge of Gi has weight more than cn−1/3. Let vvi be the

heaviest edge into vi (d−Gi
(vi) > 0 since Gi is strongly connected). We define G∗

by contracting the edge vvi: G∗ is obtained from G by deleting v and vi and adding

a vertex vi+1 with edges from vi+1 to y ∈ V (G∗) iff viy ∈ E(Gi) and from y to

vi+1 iff yv ∈ E(Gi) or yvi ∈ E(Gi). We define the weighting w∗ by w∗ = wi on

G∗ \ {vi+1}, and w∗(vi+1y) = wi(viy) for vi+1y ∈ E(G∗) and, for yvi+1 ∈ E(G∗),

w∗(yvi+1) =
{
wi(yv) + wi(vvi) if vu ∈ E(Gi)
wi(vvi) if vu 6∈ E(Gi)

(5)

Clearly, no edge in G∗ weighs more than 2cn−1/3, since no edge in Gi weighs

more than cn−1/3. Furthermore, a cycle in G∗ corresponds to a cycle of equal or

greater weight in Gi, where we replace an edge yvi+1 by yvvi or yvi as appropriate.

Since all our operations will be contractions of this form and taking subgraphs,

any cycle in Gi corresponds to a cycle of equal or greater weight in G. Now let
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H be a strongly connected component of Gi \ {vi+1} (this is well-defined, since

w∗(xy) ≤ 2cn−1/3 < 1 for xy ∈ E(G∗)). We define Gi+1 to be the subgraph of G∗

induced by H ∪ {vi+1} and wi+1 to be w∗ restricted to this graph. For y 6= vi+1,

the outweight of y in Gi+1 is equal to the outweight of y in G∗; it follows from (5)

that this is at least as large as the outweight of y in Gi, which is at least 1.

We claim that Gi+1 is also strongly connected. Indeed, it is enough to show that

d−(vi+1) > 0 and d+(vi+1) > 0. If d−(vi+1) = 0, then consider the digraph

G′ = Gi+1 \ {vi+1}. Every vertex has outweight at least 1, so G′ contains a cycle

of weight at least c|G′|−1/3 > cn−1/3, which corresponds to a cycle in G of weight

at least cn−1/3, which is a contradiction. Thus d−(vi+1) > 0. If d+(vi+1) =

0, then consider the same digraph G′. Each y ∈ V (G′) has outweight at least

1 − wi+1(yvi+1) ≥ 1 − 2cn−1/3. However, G′ contains no vertices from Γ+
G(v) (if

vy ∈ E(G) and y ∈ V (Gi+1) then we would have vjy ∈ E(Gj) for j = 0, . . . , i+1),

and so |G′| ≤ n− d+
G(v)− 1 < n− 6cn2/3. Thus, by our inductive hypothesis, G′

contains a cycle of weight at least

c(1− 2cn−1/3)
(n− 6cn2/3)1/3

> cn−1/3,

which corresponds to a cycle of weight at least cn−1/3 in G, a contradiction. Thus

d+(vi+1) > 0, and so Gi+1 is strongly connected. However, clearly |G| = |G0| >
|G1| > · · ·, so at some point we reach a contradiction.

Therefore, every vertex v ∈ V (G) must satisfy d+(v) < 6cn2/3. LetG′ be the graph

obtained from G by deleting every edge weighing less than n−2/3/12c. Then every

vertex still has outweight at least 1 − 6cn2/3(n−2/3/12c) = 1/2. Now no edge

weighs more than cn−1/3, so every vertex must satisfy

d+
G′(v) ≥ (1/2)/(cn−1/3) = n1/3/2c.

Therefore, G′ contains a cycle of length at least n1/3/2c, which must weigh at least

(n1/3/2c)(n−2/3/12c) = n−1/3/24c2 = cn−1/3, which is a contradiction.

It seems likely that n−1/3 is much too small, and log log n/ log n is closer to the

truth. However, some new idea will probably be required before such a bound can

be achieved. We make the following conjecture.
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Conjecture 4. Let G be a digraph with edge-weighting w such that every vertex

in G has outweight at least 1/2. Then G contains a cycle of weight at least

1/ log |G|.

What other condition can we place on G and w to ensure that we have heavy

cycles as well as heavy paths? So far we have only restricted outweights; perhaps

it is enough to restrict inweights as well. The following conjecture seems natural.

Conjecture 5. Let G be a digraph with edge-weighting w such that every vertex

v in G satisfies

win(v) = wout(v) = 1. (6)

Then G contains a cycle C with w(C) ≥ 1.

For strongly connected graphs we make the stronger conjecture that win(v) ≥ 1

and wout(v) ≥ 1 for every v in G would also suffice to guarantee a cycle with weight

at least 1. Let us note that if Corollary 2 failed badly then we could construct a

counterexample: let G be a digraph with minimal outweight 1 and v ∈ V (G) a

vertex such that no path of weight at least 1/3 ends in v. Let G′ be a copy of G

with all edges reversed, and add every edge from G′ to G and a single edge from

v to its copy v′ in G′. If we give weight 1/3 to all the edges between G′ and G

then the resulting graph satisfies the conditions of the conjecture but contains no

cycle of weight at least 1.

Another question arises when we replace the weight condition (6) by a condition

on the structure of G. It seems likely that the following is true.

Conjecture 6. Let G be a digraph with edge-weighting w such that d−(v) =

d+(v) for every vertex v in G. Then G contains a cycle of weight at least

cw(G)/(n− 1), where c is an absolute constant.

A stronger conjecture (Conjecture 7) will be presented in the next section. The

complete weighted digraph on n vertices with all weights equal to 1/(n− 1) shows

that, if true, Conjecture 6 is best possible up to a constant factor.
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§3. Related questions and conjectures
One approach to finding heavy cycles in a digraph G is to look for good cycle

covers or partitions of G: if we can partition or cover the edges of G with fairly

few cycles, then one of the cycles must be fairly heavy. For instance, a weaker

form of Theorems A and B follows from a result of Lovász [17], that every graph

on n vertices can be covered by bn/2c edge-disjoint paths and cycles. Gallai (see

[3]) conjectured that every connected graph of order n can be covered by dn/2e
paths, which would almost give Theorem A. Another result of this type was given

by Pyber [19], who proved that every graph of order n can be covered by n − 1

edges and cycles; this also gives a weaker for of Theorem B.

Of course, we are equally happy with multiple covers. For instance, a perfect path

double cover P of a graph G is a family of |G| paths such that every edge of G is

contained in exactly two paths and every vertex of G is an endvertex for exactly

two paths. Bondy [5] conjectured that every graph has a perfect path double

cover, and this was proved by Hao Li [16]. This implies Theorem A, since

∑
P∈P

w(P ) = 2w(G),

and so some path in P must weigh at least 2w(G)/|P| = 2w(G)/|G|.

Possibly the best known conjecture about cycle covers for graphs is the cycle

double cover conjecture of Szekeres [22] and Seymour [21], which asserts that

for every bridgeless graph G there exists a collection of cycles that covers every

edge of G exactly twice. Bondy [4] makes the stronger conjecture that every 2-

edge-connected graph has a cycle double cover with at most n − 1 cycles. This

would clearly imply Theorem B. Seymour (see [9]) has proved the slightly weaker

assertion (which also implies Theorem B) that for every 2-edge-connected graph

G there is a collection C of cycles and a collection {αC : C ∈ C} of positive reals

such that G =
∑

C∈C αCC and
∑

C∈C αC ≤ (n− 1)/2.

Similar questions can be asked for digraphs. Clearly, a digraph G can be parti-

tioned into cycles iff d+(v) = d−(v) for every vertex v in G. A digraph satisfying

this condition is called eulerian. Meyniel (see [1], [2]) conjectured that every such

digraph has a partition into at most n − 1 cycles. This was shown to be false by
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Dean [10], who conjectured that every eulerian digraph can be decomposed into

at most 8n
3 − 3 cycles, and every eulerian oriented graph can be decomposed into

at most 2n− 3 cycles. It would be useful to prove even the following weak version

of this conjecture.

Conjecture 7. There exists an integer k such that every eulerian digraph G has

an edge decomposition into at most k(n− 1) cycles.

Let us note that this would imply a weaker version of Theorem B, namely that

every weighted 2-edge-connected graph of order n contains a cycle of weight at

least w(G)/k(n− 1) (see [20]).

Conjecture 7 clearly implies Conjecture 6. However, in order to get Conjecture 4

we would need a weighted result. For instance, given a collection C of cycles, for

each v in G let mC denote the minimum number of times that any outedge from

v is covered by C. Then it would be enough to prove that, for some collection C
of cycles, ∑

v∈V (G)

mC(v) ≥ |C|.

Finally, let us remark that the cycle cover problem for digraphs in general is not

very hard. Indeed, we have the following easy but best possible result.

Theorem 8. Every strongly connected digraph of order n has an edge-covering

with at most
(
n
2

)
cycles. This is best possible for all n.

Proof. Finding a cover with
(
n
2

)
cycles is easy. For each pair of vertices {x, y}

we define a cycle C{x,y}. If both xy and yx are edges then take the two-cycle they

generate. If only one is an edge, say xy, then since G is strongly connected, we

can extend xy to a cycle. Let C{x,y} be any cycle through the edge xy. If neither

edge is present, then pick an arbitrary cycle. We have defined
(
n
2

)
cycles, and

these cover E(G).

To see that the result is best possible, consider the directed path x1, . . . , xn with

additional directed edges {xixj : i > j}. Any cycle in this digraph contains at
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most one edge from the set {xixj : i > j}, so any cycle cover requires at least

|{xixj : i > j}| =
(
n
2

)
cycles.

This is again in sharp contrast to the situation for graphs: as mentioned above,

Pyber [19] has proved that every graph of order n can be covered by n− 1 edges

and cycles; therefore every 2-edge-connected graph of order n can be covered by

n− 1 cycles.
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