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Abstract

Given k pairs of vertices (si, ti) (1 ≤ i ≤ k) of a digraph G, how can we test whether there exist
vertex-disjoint directed paths from si to ti for 1 ≤ i ≤ k? This is NP-complete in general digraphs,
even for k = 2 [4], but in [3] we proved that for all fixed k, there is a polynomial-time algorithm
to solve the problem if G is a tournament (or more generally, a semicomplete digraph). Here we
prove that for all fixed k there is a polynomial-time algorithm to solve the problem when V (G) is
partitioned into a bounded number of sets each inducing a semicomplete digraph (and we are given
the partition).



1 Introduction

A linkage in a digraph G is a family L = (Pi : 1 ≤ i ≤ k) of pairwise vertex-disjoint directed
paths of G. (With a slight abuse of terminology, we call k the cardinality of L, and P1, . . . , Pk its
members.) Let s1, t1, . . . , sk, tk be distinct vertices of a digraph G. We call (G, s1, t1, . . . , sk, tk) a
problem instance. A linkage L = (Pi : 1 ≤ i ≤ k) in G is for the problem instance if Pi is from si
to ti for each i. The k vertex-disjoint paths problem is to determine whether there is a linkage for a
given problem instance. Fortune, Hopcroft and Wyllie [4] showed that this is NP-complete, even for
k = 2. This motivates the study of subclasses of digraphs for which the problem is polynomial-time
solvable.

In this paper, all digraphs are finite, and without loops or parallel edges; thus if u, v are distinct
vertices of a digraph then there do not exist two edges both from u to v, although there may be
edges uv and vu. Also, by a “path” in a digraph we always mean a directed path. A digraph is a
tournament if for every pair of distinct vertices u, v, exactly one of uv, vu is an edge; and a digraph is
semicomplete if for all distinct u, v, at least one of uv, vu is an edge. Bang-Jensen and Thomassen [2]
showed:

1.1 The k vertex-disjoint paths problem is NP-complete if k is not fixed, even when G is a tourna-
ment.

In an earlier paper [3] we showed:

1.2 For all fixed k ≥ 1, the k vertex-disjoint paths problem is solvable in polynomial time if G is
semicomplete.

Can this be extended to more general digraphs? One natural question is, what about digraphs
with bounded stability number? (A set of vertices is stable if no edge has both ends in the set,
and the stability number is the size of the largest stable set.) For the edge-disjoint directed paths
problem, the bounded stability number case is solvable in polynomial time [5]. But for the vertex-
disjoint problem, this extension remains out of our reach; indeed, we suspect the problem might be
NP-complete for digraphs with stability number two.

In this paper we do indeed extend 1.2 to a wider class of digraphs, motivated also by an application
in [1] where the result of this paper is needed. If G is a digraph, a set C ⊆ V (G) is a clique of G if
the subdigraph of G induced on C is semicomplete. Let us say a clique-partition for a digraph G is
a partition (C1, . . . , Cc) of V (G) into cliques (we permit the Ci’s to be empty). Our main result is:

1.3 For all fixed k and c, there is a polynomial-time algorithm to solve the k vertex-disjoint directed
paths problem in a digraph G that is given with a clique-partition (C1, . . . , Cc). Its running time is
O(|V (G)|t) where t is about 4(ck)5 for c, k large.

The idea of the algorithm for 1.3 is a refinement of that for 1.2, presented in [3]. As before, we will
define an auxiliary digraph H with two special sets of vertices S0, T0, and prove that there is a path
in H from S0 to T0 if and only if there is a linkage for (G, s1, t1, . . . , sk, tk). Thus to solve the problem
of 1.3 it suffices to construct H in polynomial time. In the present context, the auxiliary digraph is
more complicated than the one in [3], because it needs extra bells and whistles to accommodate the
clique-partition of G.
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There are two extensions of 1.2 proved in [3]. First, we were able to determine all the minimal
k-tuples (x1, . . . , xk) such that there is a linkage in which the ith path has at most xi vertices, for
1 ≤ i ≤ k. We have not been able to do the same in the present context. We can determine the
minimum integer x such that there is a linkage for the problem instance that uses at most x vertices
in total, but we cannot control the individual path lengths.

Let P be a path of a digraph G, with vertices v1lvn in order. We say P is minimal if j ≤ i + 1
for every edge vivj of G with 1 ≤ i, j ≤ n. We also showed in [3] that essentially the same algorithm
works for “d-path-dominant” digraphs instead of just semicomplete digraphs (these are digraphs in
which every d-vertex minimal path contains a neighbour of every vertex). Again, we were not able
to extend this to the present context.

2 The quest for an auxiliary digraph

Our method is to define an auxiliary digraph H, with two special sets of vertices S0, T0, in such a way
that there is a path in H between S0 and T0 if and only if a linkage exists for (G, s1, t1, . . . , sk, tk).
We refer to the parts of this statement as the “if” direction and the “only if” direction. To make a
polynomial-time algorithm, we need that (a) the number of vertices of H is at most some polynomial
in |V (G)|, and (b) we can construct H in polynomial time without knowledge of a linkage in G.

Here are some attempts, to explain the difficulty and the way we solve it. First, we might try: let
V (H) be the set of all k-tuples of distinct vertices of G; let S0 contain just the k-tuple (s1, . . . , sk),
and define T0 similarly; and say vertex (u1, . . . , uk) of H is adjacent in H to vertex (v1, . . . , vk) if
ui = vi for all i except one, and vi is adjacent from ui for the exceptional value. We can certainly
construct this in polynomial time; and it is easy to see that “if” direction holds; but the “only if”
direction fails. There might be a path from S0 to T0 in H, for which when we trace out the trajectory
in G of the ith coordinate, we obtain a walk from si to ti rather than a path (not a problem, we
could short-cut); but worse, the trajectory of one coordinate might use vertices that also have been
used by the trajectory of another coordinate. This is the main difficulty; how can we avoid it?

If L = (Pi : 1 ≤ i ≤ k) is a linkage, we define V (L) to be V (P1) ∪ · · · ∪ V (Pk). A second
attempt: let us try to somehow mark the vertices that have already been used, so that they do not
get used twice. Let H consist of k + 1-tuples, in which the first k terms are vertices of G and the
last is a subset of V (G). Say (v1, . . . , vk, D) is adjacent to (v′1, . . . , v

′
k, D

′) if again vi = v′i for all i
except one, and for the last value of i, v′i is adjacent from vi, and vi /∈ D, and D ∪ {vi} = D′. Take
S0 = {(s1, . . . , sk, {s1, . . . , sk})} and T0 to be all terms of the form {(t1, . . . , tk, D)}. Then both “if”
and “only if” directions works; but H has exponential size.

This is of course still naive in several ways. One is that, if the linkage exists, we are tracing it
out by walking k-tuples of vertices along its paths, but not being clever about the sequence of moves
of these k-tuples. We don’t need every sequence of moves of k-tuples that traces out the linkage
to correspond to a path in our auxiliary digraph H – one such sequence giving a path of H would
be enough – so we are being wasteful here. We could afford to remove some parts of H to make it
smaller, as long as we preserve the property that every linkage in G gives us at least one path in H.
And even this is wasteful – we don’t need every linkage for the problem instance to give a path; we
might as well just make sure that the linkages L work that have vertex set V (L) as small as possible.
These “minimum” linkages are nicer than general ones, so this helps.

Suppose we could generate a set D of polynomially many subsets of V (G), with the following
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property: that for every minimum linkage L, there is a way of tracing L with k-tuples such that at
each stage, the set of vertices that have been used already is a member of D. This would be ideal,
because then we make an auxiliary digraph with vertices of the form (v1, . . . , vk, D) and adjacency
as before, but only using sets D ∈ D, and this would all work. However, in general there is no such
set D; even for k = 1 it is easy to see that there are tournaments in which every set D with the
property above is exponentially large.

But we are getting closer to an answer. Suppose we could find a polynomially-sized set of subsets
D, with the property that for every minimum linkage L, there is a way of tracing out L with k-tuples
of vertices, such that for every k-tuple (v1, . . . , vk) used in this tracing, there is a set D ∈ D which
includes the vertices already used, and includes none of those in the remainder of V (L) (and possibly
contains some vertices not used by the linkage). As far as we see, this would not yet be enough,
because there seems no way to define the auxiliary graph. We would take V (H) to be the set of all
k+ 1-tuples (v1, . . . , vk, D) where v1, . . . , vk ∈ V (G) and D ∈ D, but how should we define adjacency
in H? If (v1, . . . , vk, D) is to be adjacent to (v′1, . . . , v

′
k, D

′) in H, we would presumably want at least
that

• v1, . . . , vk ∈ D′

• vi = v′i for all values of i except one; and

• vi is adjacent to v′i and v′i ∈ D′ \D for the exceptional value of i.

If we make this the definition of adjacency in H then “if” direction works, but the “only if” direction
fails. If we impose the additional condition

• D ⊆ D′

then the “only if” direction works, but the “if” direction fails.
To make the “if” direction work (for the four-bullet version of H described above), we need D to

have the following additional property: that, for each k-tuple (v1, . . . , vk) used to trace a minimum
linkage L, there exists D ∈ D that intersects V (L) in the set of vertices already used, such that each
set D is a subset of the next. (This used to be automatic when D was just the set of vertices that has
been used already; but now that D may contain vertices not in V (L), we must impose it as an extra
condition.) That then would work. There is indeed such a set D when G is a semicomplete digraph,
and that was the idea of our algorithm in [3]. Unfortunately, in the present case all we know is that
G admits a clique-partition into a bounded number of cliques, and we have not been able to prove
that such a set D exists, and suspect that in general it does not.

Let us stop trying to trace out the linkage with k-tuples of vertices, and trace it out in a different
way, suggested by 3.4. That lemma, the key result of the paper, provides, for any minimum linkage
L, an enumeration of the vertices in V (L), which has some useful properties. It gives a sequence
of subsets of V (L), starting from {s1, . . . , sk} and growing one vertex at a time until it reaches
V (L) \ {t1, . . . , tk}; and each path of the minimum linkage winds in and out of any set in this
sequence only a bounded number of times. (The enumeration has some other useful properties too
that will be introduced later.) We have therefore a sequence of partitions (Ah, Bh) (h = 0, . . . , n) of
V (L); and for each (Ah, Bh), there are only at most constantly many (at most K say) “jumping”
edges (edges of the linkage paths that pass from A to B or from B to A). Let Jh be the set of
jumping edges at stage h; then we can regard the sets Jh (0 ≤ h ≤ n) as tracing out the linkage
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(albeit not as nicely as before: at a general stage h we will have traced some disjoint set of subpaths
of each member of L, not just one initial subpath). Let us try to design an auxiliary digraph H with
the sets Jh replacing the k-tuples of vertices. When there is a minimum linkage L in G, and we take
sets of jumping edges Jh (0 ≤ h ≤ n) tracing it, the corresponding vertex of H at stage h will be the
pair (Jh, Dh). We need Dh to have three properties:

• Dh must contain the vertices already used by the partial tracing of the linkage L (that is,
Bh ⊆ Dh), and must not contain any vertices in Ah (but it is allowed to contain vertices not
in V (L));

• as h increases, each set Dh must be a subset of the next; and

• there must be a polynomially-size set D of subsets of V (G), containing all the sets Dh produced
by the chosen tracing of the minimum linkage. The sets Dh depend on the choice of L; but,
crucially, we must be able to define D without knowledge of L.

It will follow from the other desirable features of 3.4 that D and the sets Dh exist with these three
properties. Then we define H to be the digraph with vertex set all the pairs (J,D) where J is a set
of at most K edges and D ∈ D, and define adjacency in the natural way, and it nearly works; the
problem is, a path in H yields a linkage in G with k paths, all starting in {s1, . . . , sk} and ending in
{t1, . . . , tk}, but not necessarily linking si to ti for 1 ≤ i ≤ k. This used not to be a problem because
we used to have k-tuples of vertices, so we could tell which vertex was supposed to belong to which
path; but now we are tracing the linkage with sets of edges, and we can’t tell any more which edge
is supposed to be in which path. We can fix this by partitioning each set of edges into k labelled
subsets and redefine the adjacency in H to respect the partitions; in other words, trace with sets of
coloured edges, where the colours are 1, . . . , k, and we can tell from the colour of an edge which path
it belongs to. Doing all this in detail is the content of the remainder of the paper.

3 The key lemma

The reduction of the linkage question to the question about finding one path in a different digraph is
thus a more-or-less straightforward consequence of 3.4, and this section is to prove that lemma. We
need a few definitions first. If P is a directed path of a digraph G, its length is |E(P )| (every path
has at least one vertex); and s(P ), t(P ) denote the first and last vertices of P , respectively. If F is a
digraph and v ∈ V (F ), F \ v denotes the digraph obtained from F by deleting v; and if X ⊆ V (F ),
F [X] denotes the subdigraph of F induced on X, and F \ X denotes the subdigraph obtained by
deleting all vertices in X.

Now let L = (Pi : 1 ≤ i ≤ k) be a linkage in G. The linkage L is minimum if there is no linkage
L′ = (P ′i : 1 ≤ i ≤ k) in G with |V (L′)| < |V (L)| joining the same k pairs of vertices (that is, such
that s(Pi) = s(P ′i ) and t(Pi) = t(P ′i ) for 1 ≤ i ≤ k). A vertex v is an internal vertex of L if v ∈ V (L),
and v is not at either end of any member of L. A linkage L is internally disjoint from a linkage L′ if
no internal vertex of L belongs to V (L′) (note that this does not imply that L′ is internally disjoint
from L); and we say that L,L′ are internally disjoint if each of them is internally disjoint from the
other (and thus all vertices in V (L) ∩ V (L′) must be ends of paths in both L and L′)

Let Q,R be paths of a digraph G. A planar (Q,R)-matching is a linkage (Mj : 1 ≤ j ≤ n) for
some n ≥ 0 (and we call n its cardinality), such that
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• M1, . . . ,Mn each have at most three vertices;

• s(M1), . . . , s(Mn) are vertices of Q, in order in Q; and

• t(M1), . . . , t(Mn) are vertices of R, in order in R.

(It is convenient not to insist that Q,R are vertex-disjoint; but in all our applications, the planar
matching will be between subpaths Q′, R′ of Q,R respectively that are vertex-disjoint.) If X,Y ⊆
V (G), and each Mj has first vertex in X and last vertex in Y , we say this planar (Q,R)-matching is
from X to Y .

If P is a directed path, a subpath Q of P with s(Q) = s(P ) is called an initial subpath. Let
L = (P1, . . . , Pk) be a linkage for a problem instance (G, s1, t1, . . . , sk, tk). Let C ⊆ V (G) be a clique.
A subset B ⊆ C is said to be C-acceptable (for L) if (where A = C \B):

• {s1, . . . , sk} ∩ C ⊆ B and {t1, . . . , tk} ∩B = ∅;

• for all i ∈ {1, . . . , k}, there is an initial subpath Q of Pi with V (Q) ∩ C = V (Pi) ∩B; and

• for all i, j ∈ {1, . . . , k}, there is no planar (Pi, Pj)-matching L′ from B to A of cardinality
k2 + k + 2 internally disjoint from L.

The next result is a modification of theorem 2.1 of [3].

3.1 Let (G, s1, t1, . . . , sk, tk) be a problem instance, and let L = (P1, . . . , Pk) be a minimum linkage
for (G, s1, t1, . . . , sk, tk). Let C be a clique of G, and suppose that B ⊆ V (L) is C-acceptable for L
and B 6= (V (L) ∩ C) \ {t1, . . . , tk}. Then there exists v ∈ (V (L) ∩ C) \ (B ∪ {t1, . . . , tk}) such that
B ∪ {v} is C-acceptable for L.

Proof. Let A = C \ B. For 1 ≤ i ≤ k, let ri be the first vertex of Pi in A \ {ti}, if there is such a
vertex; and let qi be the vertex immediately preceding it in Pi. Since L is a minimum linkage, we have:

(1) For 1 ≤ i ≤ k, Pi is a minimal path of G, and in particular, if ri exists then the only edge
of G from V (Pi) ∩ B to V (Pi) ∩ A (if there is one) is qiri. Moreover, every three-vertex path from
V (Pi)∩B to V (Pi)∩A with internal vertex in V (G) \V (L) uses at least one of qi, ri. Consequently,
there is no planar (Pi, Pi)-matching from B to A of cardinality three internally disjoint from L.

From (1), the theorem holds if k = 1, setting v = r1, so we may assume that k ≥ 2.

(2) We may assume that for all i ∈ {1, . . . , k}, if ri exists then for some j ∈ {1, . . . , k} \ {i}, rj
exists and there is a (Pi, Pj)-planar matching from B to A \ {rj} of cardinality k2 + k internally
disjoint from L.

For let i ∈ {1, . . . , k} such that ri exists. We may assume that B ∪ {ri} is not C-acceptable.
Consequently, one of the three conditions in the definition of “C-acceptable” is not satisfied by
B ∪ {ri}. The first two are satisfied since ri is the first vertex of Pi in C \ B and ri 6= ti. Thus the
third is false, and so for some i′, j ∈ {1, . . . , k}, there is a planar (Pi′ , Pj)-matching from B ∪ {ri} to
A \ {ri} of cardinality k2 + k + 2 internally disjoint from L. Since there is no such matching from B
to A, it follows that i′ = i, and rj exists, and there is a planar (Pi, Pj)-matching from B to A \ {rj}
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of cardinality k2 + k internally disjoint from L. Since k2 + k ≥ 4 (because k ≥ 2), (1) implies that
j 6= i. This proves (2).

(3) We may assume that for some p ≥ 2, and for all i with 1 ≤ i < p, there is a planar (Pi, Pi+1)-
matching from B to A \ {ri+1} of cardinality k2 + k internally disjoint from L, and there is a planar
(Pp, P1)-matching from B to A \ {r1} of cardinality k2 + k internally disjoint from L.

For since B 6= C \ {t1, . . . , tk}, there exists i ∈ {1, . . . , k} such that ri exists. By repeated ap-
plication of (2), there exist p ≥ 2 and distinct h1, . . . , hp ∈ {1, . . . , k} such that for 1 ≤ i ≤ p there is
a planar (Phi

, Phi+1
)-matching from B to A \ {rhi+1

} of cardinality k2 + k internally disjoint from L,
where hp+1 = h1. Without loss of generality, we may assume that hi = i for 1 ≤ i ≤ p. This proves
(3).

Let us say a planar (Q,R)-matching is 2-spaced if no edge of Q or R meets more than one member
of the matching.

(4) We may assume that for some p ≥ 2, and for all i with 1 ≤ i < p, there is a planar (Pi, Pi+1)-
matching Li from B to A \ {ri+1}, and there is a planar (Pp, P1)-matching Lp from B to A \ {r1},
such that

• L1, . . . , Lp all have cardinality p

• they are pairwise internally disjoint

• each of L1, . . . , Lp is internally disjoint from L, and

• each of L1, . . . , Lp is 2-spaced.

For let L′i be a planar (Pi, Pi+1)-matching from B to A \ {ri+1} of cardinality k2 + k internally
disjoint from L, for 1 ≤ i < p, and let L′p be a planar (Pp, P1)-matching from B to A \ {r1} of
cardinality k2 + k internally disjoint from L. We choose Li ⊆ L′i inductively. Suppose that for some
h < p, we have chosen L1, . . . , Lh, such that

• L1, . . . , Lh all have cardinality p

• they are pairwise internally disjoint, and

• each of L1, . . . , Lh is 2-spaced.

We define Lh+1 as follows. The union of the sets of internal vertices of L1, . . . , Lh has cardinality at
most hp ≤ k(k − 1), and so L′h+1 includes a planar (Ph+1, Ph+2)-matching from B to A \ {rh+2} (or
(Pp, P1)-matching from B to A \ {r1}, if h = p− 1) of cardinality k2 + k − k(k − 1) = 2k, internally
disjoint from each of L1, . . . , Lh. By ordering the members of this matching in their natural order,
and taking only the ith terms where i < 2p is odd, we obtain a 2-spaced matching of cardinality p.
Let this be Lh+1. This completes the inductive definition of L1, . . . , Lp, and so proves (4).

Henceforth we read subscripts modulo p. For 1 ≤ i ≤ p, let Li = {M1
i , . . . ,M

p
i }, numbered in

order; thus, if qhi and rhi+1 denote the first and last vertices of Mh
i , then q1i , . . . , q

p
i are distinct and

in order in Qi, and ri+1, r
1
i+1, . . . , r

p
i+1 are distinct and in order in Ri+1.
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Since rhi+1 6= ri+1, (1) implies that rhi+1 is not adjacent from qh+1
i+1 ; and so there is an edge from

rhi+1 to qh+1
i+1 , since C is semicomplete. For 1 ≤ i ≤ p, and 1 ≤ h < p, let Sh

i be the path

qhi -Mh
i -rhi+1-q

h+1
i+1 ;

then Sh
i is a path from qhi to qh+1

i+1 , of length at most 3. Thus concatenating S1
i , S

2
i+1, . . . , S

p−1
i+p−2

and Mp
i+p−1 gives a path T ′i from q1i to rpi of length at most 3p− 1 (since Mp

i+p−1 has at most three

vertices, from the definition of a planar matching). The subpath Ti of Pi from q1i to rpi has length
at least 4(p − 1) + 2, since Li−1, Li are 2-spaced and ri is different from r1i ; and so Ti has length
strictly greater than that of T ′i . Let P ′i be obtained from Pi by replacing the subpath Ti by T ′i , for
1 ≤ i ≤ p, and let Pi′ = Pi for p + 1 ≤ i ≤ k. Then {P ′1, . . . , P ′k} is a linkage for (G, s1, t1, . . . , s,tk),
contradicting that L is minimum. This proves 3.1.

Let P be a path of a digraph G, and let X,Y be disjoint subsets of V (G). Let v1, . . . , vt be
distinct vertices of P , in order in P . This sequence is (X,Y )-alternating if t is even and vi ∈ X
for i odd and vi ∈ Y for i even. The (X,Y )-wiggle number of P is half the length of the longest
(X,Y )-alternating sequence v1, . . . , vt where v1, . . . , vt are in order in P . Next we need a lemma, the
following:

3.2 Let w > 0, let L be a linkage in G, and let Q1, . . . , Qc each be a subpath of some member of
L. Let X1, Y1, X2, Y2, . . . , Xc, Yc be pairwise disjoint subsets of V (L), such that the (Xi, Yi)-wiggle
number of Qi is at least cw for 1 ≤ i ≤ c. Then for 1 ≤ i ≤ c there is a subpath Ri of Qi, such that
the (Xi, Yi)-wiggle number of Ri is at least w, and the paths R1, . . . , Rc are pairwise vertex-disjoint.

Proof. We proceed by induction on c. If c = 1 the result holds, so we assume that c ≥ 2. Choose
an initial subpath P0 of some member of L, minimal such that for some i ∈ {1, . . . , c}, P0 ∩ Qi is
nonnull and the (Xi, Yi)-wiggle number of the path P0∩Qi is at least w. We may assume that i = c,
that is, the (Xc, Yc)-wiggle number of P0 ∩ Qc is at least w. Let Rc = P0 ∩ Qc. For 1 ≤ i < c let
Q′i = Qi \ V (P0). From the minimality of P0, the (Xi, Yi)-wiggle number of P0 ∩ Qi is at most w,
and either this number is less than w or the last vertex of P0 is in Yi. So the (Xi, Yi)-wiggle number
of Q′i is at least w(c− 1). The result follows from the inductive hypothesis applied to Q′1, . . . , Q

′
c−1,

since they are all disjoint from Rc.

Let k, c ≥ 1 and define z = c(c(k2 + k + 1) + k + 2). Now let L = (P1, . . . , Pk) be a minimum
linkage for a problem instance (G, s1, t1, . . . , sk, tk), and let (C1, . . . , Cc) be a clique-partition of G.
Let B ⊆ V (G) and A = V (G) \B. We say that B is acceptable if:

• s1, . . . , sk ∈ B and t1, . . . , tk /∈ B;

• for 1 ≤ a ≤ c, B ∩ Ca is Ca-acceptable; and

• for all distinct a, b with 1 ≤ a, b ≤ c, and for 1 ≤ i ≤ k, the (B ∩Cb, A ∩Ca)-wiggle number of
Pi is at most z.

3.3 Let k, c, z and (G, s1, t1, . . . , sk, tk), L and (C1, . . . , Cc) be as above. Let B ⊆ V (L) be acceptable,
with B 6= V (L) \ {t1, . . . , tk}. Then there exists v ∈ V (L) \ (B ∪ {t1, . . . , tk}) such that B ∪ {v} is
acceptable.
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Proof. Let w = c(k2 + k + 1) + k + 2. Let A = V (L) \ B. For 1 ≤ a ≤ c, if Ca ∩ A 6⊆ {t1, . . . , tk},
choose ra ∈ (Ca ∩ A) \ {t1, . . . , tk} such that B ∩ Ca ∪ {ra} is Ca-acceptable (this is possible by
3.1). Since B 6= V (L) \ {t1, . . . , tk}, there is at least one value of a ∈ {1, . . . , c} such that ra exists.
Suppose that there is no a ∈ {1, . . . , c} such that ra exists and B ∪ {ra} is acceptable.

(1) If 1 ≤ a ≤ c and ra exists, let ra ∈ V (Pi); then there exists b ∈ {1, . . . , c} with b 6= a such
that the (B ∩ Ca, A ∩ Cb)-wiggle number of Pi is at least z.

Let B′ = B ∪ {ra}. From the choice of ra, it follows that B ∩ Cb is Cb-acceptable for 1 ≤ b ≤ c; and
so, since B′ is not acceptable, there exist distinct a′, b′ ∈ {1, . . . , c}, and i ∈ {1, . . . , k}, such that the
(B′ ∩ Cb′ , A

′ ∩ Ca′)-wiggle number of Pi is at least z + 1, where A′ = A \ {ra}. Let v1, v2, . . . , v2z+2

be a (B′ ∩ Cb′ , A
′ ∩ Ca′)-alternating sequence of vertices of Pi, in order in Pi. This sequence is

not (B ∩ Cb′ , A ∩ Ca′)-alternating, since B is acceptable; and so one of v1, . . . , v2z+2 equals ra. In
particular, ra belongs to one of A′ ∩Ca′ , B

′ ∩Cb′ . Since ra /∈ A′, it follows that ra ∈ B′ ∩Cb′ , and so
a = b′. Since B is Ca-acceptable, we deduce that ra is later in Pi than every vertex of Pi in B ∩Ca;
and since v1, . . . , v2z+2 are in order in Pi, and

v2z+1 ∈ B′ ∩ Cb′ = (B ∪ {ra}) ∩ Ca,

it follows that ra = v2z+1. Consequently v1, . . . , v2z is (B ∩ Ca, A ∩ Ca′)-alternating, and so setting
b = a′ satisfies the claim. This proves (1).

From (1), and 3.2, for each a ∈ {1, . . . , c} such that ra exists, there is a subpath Ra of some
member of L and b ∈ {1, . . . , c} with b 6= a such that the (B ∩ Ca, A ∩ Cb)-wiggle number of Ra is
at least w, and the paths Ra (1 ≤ a ≤ c) are pairwise disjoint (if they exist). In particular, if b is
as above then Cb ∩A 6⊆ {t1, . . . , tk} and so rb exists. Renumbering, we may assume that for some p
with 2 ≤ p ≤ c:

• there are paths R1, . . . , Rp, each a subpath of some member of L and pairwise disjoint;

• for 1 ≤ a < p, the (B∩Ca, A∩Ca+1)-wiggle number of Ra is at least w, and the (B∩Cp, A∩C1)-
wiggle number of Rp is at least w.

Consequently the (A ∩ Ca+1, B ∩ Ca)-wiggle number of Ra is at least w − 1. For 1 ≤ a ≤ p,
choose vertices x1a, y

1
a, . . . , x

w−1
a , yw−1a in order in Ra and (A∩Ca+1, B ∩Ca)-alternating (henceforth

we read subscripts modulo p). Thus x1a, x
2
a, . . . , x

w−1
a ∈ A ∩ Ca+1, and y1a, y

2
a, . . . , y

w−1
a ∈ B ∩ Ca.

Since B is Ca-acceptable, there is no planar (Ra, Ra−1)-matching of cardinality k2 + k + 2 from
B ∩ Ca to A ∩ Ca internally disjoint from L; and in particular, since x1a−1, x

2
a−1, . . . , x

w−1
a−1 ∈ A ∩ Ca

and y1a, y
2
a, . . . , y

w−1
a ∈ B ∩Ca, it follows that yia is adjacent to xia−1 for at most k2 + k + 1 values of

i. Since Ca is semicomplete, it follows that yia is adjacent from xia−1 for all except k2 + k + 1 values
of i. Hence there exists I ⊆ {1, . . . , w − 1} of cardinality at least w − 1 − c(k2 + k + 1) = k + 1,
such that yia is adjacent from xia−1 for all i ∈ I and a ∈ {1, . . . , p}. Renumbering, and using the fact
that k + 1 ≥ p + 1, it follows that for 1 ≤ a ≤ p, there exist u1a, v

1
a, . . . , u

p
a, v

p
a in order in Ra and

(A ∩ Ca+1, B ∩ Ca)-alternating, such that via is adjacent from uia−1 for all i, a with 1 ≤ i ≤ p and
1 ≤ a ≤ p, and in addition u11, v

1
1 are not consecutive vertices of R1.
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For 1 ≤ a ≤ p and 1 ≤ i < p, let T i
a be the subpath of Ri with first vertex via and last vertex

ui+1
a . Then for 1 ≤ a ≤ p,

u1a-v1a+1-T
1
a+1-u

2
a+1-v

2
a+2-T

2
a+2- · · · -T

p−1
a−1 -upa−1-v

p
a

is a directed path from u1a to vpa, say Ma. For 1 ≤ a ≤ c let R′a be the subpath of Ra from u1a to vpa.
The paths M1, . . . ,Mp are pairwise disjoint, and

V (M1) ∪ · · · ∪ V (Mp) ⊆ V (R′1) ∪ · · · ∪ V (R′p).

Moreover, the sum of the lengths of M1, . . . ,Mp is less than that of R′1, . . . , R
′
p, since u11, v

1
1 are

not consecutive vertices of R1. Hence if we take the linkage L and replace each subpath R′a by
Ma for 1 ≤ a ≤ p, we obtain another linkage for the same problem instance using fewer vertices,
contradicting that L is minimum. Thus the assumption immediately before (1) must have been false.
This proves 3.3.

We deduce:

3.4 Let k, c, z, (G, s1, t1, . . . , sk, tk), (C1, . . . , Cc), and L = (P1, . . . , Pk) be as in 3.3. Then there is
an enumeration (v1, . . . , vn) of V (L) \ {s1, . . . , sk, t1, . . . , tk}, such that for 0 ≤ h ≤ n, if B denotes
{s1, . . . , sk} ∪ {vi : 1 ≤ i ≤ h} and A = V (L) \B, then

• for 1 ≤ a ≤ c, B ∩ Ca is Ca-acceptable;

• the (B,A)-wiggle number of each member of L is at most c(c− 1)(z + 1) + 1.

Proof. Since {s1, . . . , sk} is acceptable, repeated application of 3.3 implies that there is an enu-
meration (v1, . . . , vn) of V (L) \ {s1, . . . , sk, t1, . . . , tk}, such that for 0 ≤ h ≤ n, if B denotes
{s1, . . . , sk} ∪ {vi : 1 ≤ i ≤ h} and A = V (L) \B, then

• for 1 ≤ a ≤ c, B ∩ Ca is Ca-acceptable;

• for all distinct a, b with 1 ≤ a, b ≤ c, and for 1 ≤ i ≤ k, the (B ∩Cb, A ∩Ca)-wiggle number of
Pi is at most z.

We claim that this enumeration satisfies the theorem. For let h,B,A be as in the theorem, let
1 ≤ i ≤ k, and let t be the (B,A)-wiggle number of Pi. Consequently there are t − 1 edges of
Pi, say a1b1, . . . , at−1bt−1, such that aj ∈ A and bj ∈ B for 1 ≤ j ≤ t − 1. For each such j, let
pj , qj ∈ {1, . . . , c} such that aj ∈ Cpj and bj ∈ Cqj . Since aj ∈ A and bj ∈ B, and ajbj is a directed
edge of Pi, it follows (since B is Cpj -acceptable) that pj 6= qj . There are only c(c − 1) possibilities
for the pair (pj , qj), and for each one of them, say (p, q), there are at most z + 1 values of j with
(pj , qj) = (p, q), since the (B∩Cq, A∩Cp)-wiggle number of Pi is at most z. Hence there are at most
c(c− 1)(z + 1) values of j in total, and so t ≤ c(c− 1)(z + 1) + 1, and this enumeration satisfies the
theorem. This proves 3.4.
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4 Enlarging on history

In this section we define the sets Dh and D discussed at the end of section 2, and use 3.4 to prove
they have the properties we need. Let G be a digraph, and (C1, . . . , Cc) a clique-partition of G, and
let s be some positive integer. If X is a sequence of vertices of G we define V (X) to be the set of
terms of X. Let A be a set of sequences of vertices of G. We define A+ to be the set of v ∈ V (G)
such that for some X ∈ A, there exists a ∈ {1, . . . , c} such that {v} ∪ V (X) ⊆ Ca and either

• v ∈ V (X), or

• v /∈ V (X) and X has length s and v is adjacent from the last s− 1 vertices of X.

(Thus, the order of the terms in X ∈ A does not matter, except it matters which term is first.)
Similarly, we defineA− to be the set of vertices v such that for some X ∈ A, there exists a ∈ {1, . . . , c}
such that {v} ∪ V (X) ⊆ Ca and either

• v ∈ V (X), or

• v /∈ V (X) and X has length s and v is adjacent to the first s− 1 vertices of X.

Now let r, s, t ≥ 0 be integers. A subset D of V (G) is said to be (r, s, t)-restricted if there are
sets A,B of sequences of vertices of G, satisfying the following:

• every member of A and every member of B has length at most s;

• |A|, |B| ≤ r;

• |B+ ∩ A−| ≤ t; and

• B+ \ A− ⊆ D, and D ⊆ B+.

Thus, for any constants r, s, t there are only polynomially many (r, s, t)-restricted subsets D of V (G).
For suitable r, s, t the set of all (r, s, t)-restricted subsets will be the set D that we need.

We observe:

4.1 Let L be a minimum linkage for (G, s1, t1, . . . , sk, tk), let ` ≥ 3, let C be a clique, let Q′ be a
subpath of some member of L, let Q be a subpath of Q′, with |C ∩V (Q)| ≥ `, and let v ∈ C \V (L) be
adjacent from the last ` vertices of Q in C. Then v is adjacent from the last ` vertices of Q′ in C.

Proof. Let the vertices of Q′ in C in order be y1, . . . , ym say, and let the last ` vertices of Q
in C be x1, . . . , x` in order. Thus m ≥ `, since x1, . . . , x` is a subsequence of y1, . . . , ym. Let
j ∈ {m− `+ 1, . . . ,m}. We claim that yj is adjacent to v. For suppose not; then yj is different from
all of x1, . . . , x`, and since x1, . . . , x` are ` consecutive terms of the sequence y1, . . . , ym, and there
are at most ` − 1 terms of this sequence after yj , it follows that x1, . . . , x` all come before yj . In
particular, x1 equals some yg where g ≤ j − `. Now v is adjacent from x1 = yg, and not adjacent
from yj . Since v, yj ∈ C, it follows that v is adjacent to yj ; but then replacing the subpath of Pi

between yg, yj by the path with three vertices yg-v-yj contradicts that L is a minimum linkage, since
` ≥ 3. This proves 4.1.
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If P is a path of G, and C ⊆ V (G) and s is an integer, by the first up-to-s vertices of P in C we
mean the sequence which consists of the first s vertices of P in C, if there are s such vertices, and
otherwise the sequence consisting of all vertices of P in C, in either case in their order in P . We
define the last up-to-s similarly.

Next we define the sets Dh. Let (G, s1, t1, . . . , sk, tk) be a problem instance, where G admits a
clique-partition (C1, . . . , Cc), and let L be a linkage for this problem instance. Let s = k2 + k + 3.
Let (v1, . . . , vn) be an enumeration of V (L)\{s1, . . . , sk, t1, . . . , tk}, and for 0 ≤ h ≤ n, let Bh denote
{s1, . . . , sk}∪{vi : 1 ≤ i ≤ h} and Ah = V (L)\Bh. For 0 ≤ h ≤ n, let Jh be the set of edges of G that
belong to a member of L and have one end in Ah and the other in Bh. The union of the members
of L is a digraph consisting of k disjoint paths, and if we delete Jh from this digraph, we obtain a
digraph which is also a disjoint union of paths, each with vertex set included in one of Ah, Bh. Let
Qh be the set of these paths which are included in Bh, and Rh the set included in Ah. Let Ah be
the set of all sequences X such that for some R ∈ Rh and some a ∈ {1, . . . , c}, X is the first up-to-s
vertices of R in Ca. Similarly, let Bh be the set of all sequences X such that for some Q ∈ Qh and
a ∈ {1, . . . , c}, X is the last up-to-s vertices of Q in Ca. We define Dh = (B+h \ A

−
h ) ∪Bh.

We claim:

4.2 Let (G, s1, t1, . . . , sk, tk), (C1, . . . , Cc), L, (v1, . . . , vn), and Ah, Bh (0 ≤ h ≤ n) be as above, and
let w ≥ 0. Suppose that

• L is a minimum linkage for (G, s1, t1, . . . , sk, tk);

• for 1 ≤ a ≤ c, Bh ∩ Ca is Ca-acceptable; and

• the (Ah, Bh)-wiggle number of each member of L is at most w.

Let r = ckw, s = k2 + k + 3, t = 2cskw + c(2w + 1)k2(k2 + k + 1), and for 0 ≤ h ≤ n let Dh be as
above. Then

(a) Bh ⊆ Dh and Ah ∩Dh = ∅ for 0 ≤ h ≤ n;

(b) Dh ⊆ Dh+1 for 0 ≤ h < n; and

(c) Dh is (r, s, t)-restricted for 0 ≤ h ≤ n.

Proof. Let 0 ≤ h ≤ n. Since the (Ah, Bh)-wiggle number of each member of L is at most w, there
are at most 2w− 1 edges of each member of L in Jh, and the sets Qh,Rh defined in the definition of
Dh both have at most kw members. Thus the sets Ah,Bh both have cardinality at most ckw = r.

(1) |B+h ∩ A
−
h | ≤ t.

There are at most kw choices for Q ∈ Qh, and for each there are at most c choices for the se-
quence of the last up-to-s vertices of Ca in Q, one for each a ∈ {1, . . . , c}; and each such sequence
has at most s terms. Thus there are at most cskw vertices which belong to the sequence of the last
up-to-s members in some Ca of some path Q ∈ Qh. Similarly there are at most cskw vertices that
belong to the first up-to-s members of some Ca in some R ∈ Rh, a total of at most 2cskw. For every
other vertex v ∈ B+h ∩ A

−
h , choose a ∈ {1, . . . , c} such that v ∈ Ca; then
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(∗) there exists Q ∈ Qh such that |Ca ∩ V (Q)| ≥ s, and v is not among the last s − 1 vertices
of Ca in Q, and is adjacent from each of the last s − 1; and there exists R ∈ Rh such that
|Ca ∩ V (R)| ≥ s, and v is not among the first s − 1 vertices of Ca in R, and v is adjacent to
each of the first s− 1.

Let us fix a ∈ {1, . . . , c}, and count the number of vertices v ∈ Ca satisfying (∗). Such vertices v
might belong to Ah or to Bh or to neither, and we count the three types separately. First, suppose
that v ∈ Ah. Thus v belongs to some member Pi of L; and there are only k choices for i. For each
Q ∈ Qh containing at least s vertices in Ca, let X be the set of the last s− 1 such vertices of Ca in
Q; there are at most k2 + k + 1 vertices in Ca ∩ V (Pi) ∩ Ah that are adjacent from every vertex in
X, since Bh is Ca-acceptable. Since there are only kw choices of Q, it follows that there are at most
wk(k2 + k + 1) vertices v ∈ Ca ∩ V (Pi) ∩Ah satisfying (∗); and summing over 1 ≤ i ≤ k, we deduce
there are at most wk2(k2 + k + 1) vertices v ∈ Ca ∩ Ah satisfying (∗). Similarly there are at most
that many in Ca ∩Bh.

Finally, we must count the number of v ∈ Ca \ V (L) satisfy (∗). By 4.1, if v ∈ Ca \ V (L) and is
adjacent from the last s− 1 vertices of Ca ∩Bh in some subpath of Pi, then v is also adjacent from
the last s− 1 vertices of Ca ∩Bh in Pi. We deduce that if v ∈ Ca \V (L), and v satisfies (∗), then for
some i, j ∈ {1, . . . , k}, v is adjacent from the last s− 1 vertices of Pi in Bh ∩Ca, and adjacent to the
first s−1 vertices of Pj in Ah∩Ca (similarly). For any choice of i, j there are at most k2 +k+1 such
vertices v, because Bh is Ca-acceptable. (This is where we use paths of length two in the definition
of a planar matching.) Consequently there are at most k2(k2 + k + 1) such vertices v ∈ Ca \ V (L)
total.

Altogether, we have shown that there are at most 2wk2(k2 + k + 1) + k2(k2 + k + 1) vertices
v ∈ Ca satisfying (∗), and summing over a ∈ {1, . . . , c} and adding back the 2cskw from the start of
the argument, the claim follows. This proves (1).

(2) Ah ⊆ A−h and Bh ⊆ B+h .

Let v ∈ Ah; then v belongs to V (L), and hence to some member of L, and therefore to some
member of Rh, say R. Choose a ∈ {1, . . . , c} with v ∈ Ca, and let X ∈ Ah be the sequence of the
first up-to-s vertices of R in Ca. If v ∈ V (X) then v ∈ A−h as required, so we may assume not;
and so there are more than s vertices of R in Ca, and X has exactly s terms. Let the vertices of
X be x1, . . . , xs in order. Then x1, . . . , xs, v ∈ Ca, and xi is not adjacent to v for 1 ≤ i < s, since
R is a minimal path of G (because the members of L are minimal paths). Thus v is adjacent to
x1, . . . , xs−1, and hence v ∈ A−h as required. Similarly Bh ⊆ B+h . This proves (2).

(3) Bh ⊆ Dh, Ah ∩Dh = ∅ and Dh ⊆ B+h .

We recall that Dh = (B+h \ A
−
h ) ∪ Bh. Consequently Bh ⊆ Dh, and from (2), Dh ⊆ B+h . Since

Ah ∩Bh = ∅ and Ah ⊆ A−h by (2), it follows that Ah ∩Dh = ∅. This proves (3).

Assertion (a) of the theorem follows from (3), and (c) from (1) and (3). We still need to show
(b). Let 0 ≤ h < n; we must show that Dh ⊆ Dh+1. Let v ∈ Dh; we will show that v ∈ Dh+1. If
v ∈ Bh then v ∈ Bh+1 ⊆ Dh+1 as required, so we assume that v /∈ Bh. Certainly v /∈ Ah by (3)
since v ∈ Dh; so v /∈ V (L). Since v ∈ Dh, it follows that v ∈ B+h \ A

−
h , and in particular there exist
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Q ∈ Qh and a ∈ {1, . . . , c} such that v ∈ Ca, and |Ca ∩ V (Q)| ≥ s, and v is adjacent from the last
s − 1 vertices of Ca in Q. Let Q be a subpath of Pi ∈ L, and let Q′ be the maximal subpath of Pi

including Q such that all its vertices are in Bh+1. By 4.1, v is adjacent from the last s− 1 vertices
of Ca in Q′; and so v ∈ B+h+1. It remains to show that v /∈ A−h+1; so, suppose it is. Then by the same
argument with Ah exchanged with Bh+1, and Ah+1 exchanged with Bh (and h, h + 1 exchanged) it
follows that v ∈ A−h , a contradiction. This proves assertion (b) of the theorem, and so completes the
proof of 4.2.

5 The auxiliary digraph

Let k, c ≥ 1 and let r, s, t, w be as in 4.2. Let (G, s1, t1, . . . , sk, tk) be a problem instance, where G
admits a clique-partition (C1, . . . , Cc). Let D be the set of all (r, s, t)-restricted subsets of V (G). A
coloured edge means a pair (e, i) where e ∈ E(G) and 1 ≤ i ≤ k, and we will abuse this terminology
a little, speaking of coloured edges as though they are edges (for instance, we speak of the head of
a coloured edge (e, i) meaning the head of e, and so on). We call i the colour of the coloured edge.
Let E be the set of all sets Y of coloured edges of cardinality at most 2w − 1, such that

• no two members of Y have the same head or the same tail, and

• every two members of Y that share an end have the same colour;

• no coloured edge in Y has head in {s1, . . . , sk} or tail in {t1, . . . , tk}; and

• for 1 ≤ i ≤ k, every coloured edge with tail si has colour i, and every coloured edge with head
ti has colour i.

The auxiliary digraph H will have vertex set all pairs (Y,D) where Y ∈ E and D ∈ D and every
coloured edge in Y has exactly one end in D.

Now we define its adjacency. Let (Y,D), (Y ′, D′) ∈ V (H) be distinct. We say that (Y,D) is
adjacent to (Y ′, D′) in H if D ⊆ D′, and there are exactly two coloured edges that belong to
(Y \ Y ′) ∪ (Y ′ \ Y ), and they form a two-edge path with middle vertex in D′ \D.

That defines H. Now let S0 be the set of all vertices (Y,D) of H such that |Y | = k and every
coloured edge in Y has tail in {s1, . . . , sk}, and let T0 be the set of all (Y,D) such that |Y | = k and
every coloured edge in Y has head in {t1, . . . , tk}. We claim:

5.1 Let k, c ≥ 1, and let r, s, t, w be as in 4.2. Let (G, s1, t1, . . . , sk, tk) be a problem instance, where
G admits a clique-partition (C1, . . . , Cc), and let D, E and H,S0, T0 be as above. Then there is a path
in H from a vertex in S0 to a vertex in T0 if and only if there is a linkage for (G, s1, t1, . . . , sk, tk).

Proof. We observe first (the proof is clear and we omit it):

(1) If there is a directed path in H from (Y,D) to (Y ′, D′) then D ⊆ D′.

Suppose that there is a path in H from S0 to T0, with vertices (Y1, D1), . . . , (Yn, Dn) say, in order.
Let Y = Y1 ∪ · · · ∪ Yn; thus Y is a set of coloured edges. We need to show that Y includes the edge
set of a linkage for (G, s1, t1, . . . , sk, tk).
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(2) If (e, i) ∈ Y and 1 ≤ h ≤ n, and exactly one end of e is in Dh, then (e, i) ∈ Yh.

For let (e, i) ∈ Yh′ where 1 ≤ h′ ≤ n; and choose h′ with |h − h′| minimum. Let e have ends
u, v, and suppose that h 6= h′. Now exactly one end of e belongs to Dh′ , and exactly one to Dh, and
one of Dh, Dh′ is a subset of the other by (1); and so it is the same end v say of e that lies in both
Dh, Dh′ , and u belongs to neither of them. If h′ < h let h′′ = h′ + 1, and if h′ > h let h′′ = h′ − 1.
Since one of Dh, Dh′ is a subset of Dh′′ (by (1)) it follows that v ∈ Dh′ ; and since Dh′′ is a subset of
one of Dh, Dh′ (by (1) again) it follows that u /∈ Dh′′ . But this contradicts the minimality of |h′−h|.
Consequently h = h′, and the claim holds. This proves (2).

(3) If (e, i), (e′, i′) ∈ Y share an end then i = i′, and these edges form a two-edge path.

Choose h with 1 ≤ h ≤ n such that (e, i) ∈ Yh, and choose h′ similarly for (e′, i′); and in addi-
tion choose h, h′ with |h− h′| minimum. If h = h′, then (e, i), (e′, i′) are both in Yh, and since they
share an end, it follows that i = i′ and the edges form a two-edge path, from the definition of E .
Thus we may assume that h < h′. Now Dh ⊆ Dh′ by (1), and since one end of e belongs to Dh, it
follows that at least one end of e is in Dh′ ; and since (e, i) /∈ Yh′ , (2) implies that both ends of e are
in Dh′ . Similarly, neither end of e′ is in Dh; and so the common end of e, e′ belongs to Dh′ \Dh. Let
e have ends u, v, and let e′ have ends v, w, where u ∈ Dh, v ∈ Dh′ \Dh, and w /∈ Dh′ . Now u ∈ Dh+1

since Dh ⊆ Dh+1; and since (e, i) /∈ Yh+1, (2) implies that v ∈ Dh+1. Consequently (e′, i′) ∈ Yi+1

by (2), and hence h′ = h + 1 from the minimality of |h − h′|. But now the claim follows from the
definition of adjacency in H. This proves (3).

(4) Every vertex of G incident with exactly one coloured edge in Y belongs to {s1, . . . , sk, t1, . . . , tk}.

For suppose that v ∈ V (G) \ {s1, . . . , sk, t1, . . . , tk} is incident with exactly one coloured edge
(e, i) ∈ Y . Let the other end of e be u. There are three cases, depending whether u ∈ {s1, . . . , sk},
u ∈ {t1, . . . , tk}, or neither. Suppose first that u ∈ {s1, . . . , sk}. Then (e, i) ∈ Y1; and (e, i) /∈ Yn
since v /∈ {t1, . . . , tk}. Choose h < n maximum such that (e, i) ∈ Yh. From the maximality of h,
(e, i) /∈ Yh+1, and so by (2) u, v ∈ Dh+1. From the definition of adjacency in H, there is another edge
(f, i) ∈ Y forming a two-edge path with (e, i), such that the common end of e, f is not in Dh. But
u ∈ {s1, . . . , sk} ⊆ Dh, and v is not incident with any other edge in Y , a contradiction. The argument
is analogous if u ∈ {t1, . . . , tk} and we omit it. Finally suppose that u /∈ {s1, . . . , sk, t1, . . . , tk}. Thus
(e, i) /∈ Y1, Yn; choose h < h′ < h′′ with h′′ − h minimum such that (e, i) /∈ Yh ∪ Yh′′ and (e, i) ∈ Yh′ .
From the minimality of h′′ − h it follows that (e, i) ∈ Yh+1; and from the definition of adjacency in
H, there is an edge (f, i) of Y that makes a two-edge path with (e, i), such that the common end
of e, f is in Dh+1 \Dh. Since v is not incident with any other edge in Y , this common end is u, so
u ∈ Dh+1 \Dh. But similarly, u ∈ Dh′′ \Dh′′−1, and this is impossible since Dh+1 ⊆ Dh′′−1 by (1).
This proves (4).

From (3), no three edges in Y share an end (because this end would be the head of two of them
or the tail of two, contrary to (3)). Thus the digraph formed by Y is the disjoint union of directed
paths and directed cycles, and we call these “components” of Y . The edges in each component all
have the same colour, by (3). Each path component has first vertex in {s1, . . . , sk} and last vertex
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in {t1, . . . , tk}, by (4). Moreover, for 1 ≤ i ≤ k, some edge in Y1 ⊆ Y has tail si and colour i (from
the definition of S0); and since no edge in Y has head si, it follows that si is the first vertex of a
path component Pi of Y in which all edges have colour i. The last vertex of this component is in
{t1, . . . , tk}, and is therefore ti since the last edge has colour i. Consequently (P1, . . . , Pk) is a linkage
for (G, s1, t1, . . . , sk, tk). This proves the “only if” part of the theorem.

Now we turn to the “if” part. We assume there is a linkage for (G, s1, t1, . . . , sk, tk), and must
prove there is a path in G from S0 to T0. Let L = (P1, . . . , Pk) be a minimum linkage. Let v1, . . . , vn
be as in 3.4. For 0 ≤ h ≤ n, let Bh = {s1, . . . , sk}∪ {vi : 1 ≤ i ≤ h} and Ah = V (L) \Bh; and let Dh

be as defined immediately before 4.2. Let Jh be the set of edges of P1 ∪ · · · ∪ Pk with one end in Ah

and the other in Bh, and let Yh = {(e, i) : e ∈ Jh ∩ E(Pi)}. We claim that

• (Yh, Dh) ∈ V (H) for 0 ≤ h ≤ n;

• for 0 ≤ h < n, (Yh, Dh) is adjacent in H to (Yh+1, Dh+1); and

• (Y0, D0) ∈ S0, and (Yn, Dn) ∈ T0.

To see the first claim, note that Dh is (r, s, t)-restricted by 4.2; and Yh ∈ E since L is a linkage. Also
the third claim follows. For the second, let 0 ≤ h < n. By 4.2, Dh ⊆ Dh+1. Let (e, i) be a coloured
edge that belongs to exactly one of Yh, Yh+1. It follows that e ∈ E(Pi), and hence has both ends in
V (L); and since e belongs to exactly one of Jh, Jh+1, some end v of e belongs to Dh+1 \Dh. Thus
v ∈ Dh+1∩V (L) = Bh+1, and v ∈ V (L)\Dh = Ah, by 4.2. Hence v = vh+1 since Bh+1 = Bh∪{vh+1}.
Now v /∈ {s1, . . . , sk, t1, . . . , tk}, and so there is a two-edge subpath Q of Pi with middle vertex v.
Since Bh+1 = Bh ∪ {v}, it follows that the other edge of Q also belongs to exactly one of Jh, Jh+1;
and no other edges have this property, since we have shown that every edge in exactly one of Jh, Jh+1

is incident with v = vh+1, and no other edges in P1∪· · ·∪Pk are incident with v. This completes the
proof of the second bullet above, and so proves the “if” half of the theorem, and hence completes
the proof of 5.1.

Let us figure out the running time. Checking whether the path in H exists can be done in time
O(|V (H)|2) (for instance by breadth-first search), which is also the time needed to construct H; so
we just need to estimate |V (H)|. We recall that z = c(c(k2 + k + 1) + k + 2), w = c(c− 1)(z + 1) + 1,
r = ckw, s = k2 + k + 3, and t = 2cskw + c(2w + 1)k2(k2 + k + 1); and let n = |V (G)|. Now H has
at most |D| · |E| vertices, and |D| ≤ n2rs2t, and |E| ≤ (n2k)2w−1. Hence |V (H)|2 = O(n4rs+8w), and
this exponent is about 4(ck)5 for large c, k.

Finally, we remark that every p-vertex path from S0 to T0 in H gives a linkage in G using at most
p− 1 + 2k vertices; and every minimum linkage in G with p− 1 + 2k vertices gives a p-vertex path
in H. Thus if we check for the shortest path in H from S0 to T0, we can determine the minimum
number of vertices in a linkage for (G, s1, t1, . . . , sk, tk), as mentioned in the introduction.
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