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Abstract

Erdős and Hajnal conjectured that for every graph H there is a
constant ε = ε(H) > 0 such that every graph G that does not have
H as an induced subgraph contains a clique or a stable set of order
Ω(|V (G)|ε).

The conjecture would be false if we set ε = 1; however, in an
asymptotic setting, we obtain this strengthened form of Erdős and
Hajnal’s conjecture for almost every graph H, and in particular for a
large class of graphs H defined by variants of the colouring number.
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1 Introduction

A homogeneous set in a graph G is a clique or stable set. We study the size
of a largest homogeneous set in G, denoted by h(G). We are interested in
determining how forbidding a fixed graph H as an induced subgraph affects
this parameter. In contrast to most earlier work on this topic, we focus on
typical rather than extreme behaviour.

Determining general lower bounds on h(G) is a central focus of Ramsey
theory. Let h(n) := min{h(G) : |V (G)| = n}. The (diagonal) Ramsey
number R(k) may be defined as the least n such that h(n) ≥ k. Thus
the upper bound R(k) ≤ 22k−2 due to Erdős and Szekeres [14] implies that
h(G) ≥ 1

2
log |V (G)| for all G and so h(n) ≥ 1

2
log n for any n. (All logarithms

are to base 2, unless specified otherwise.) Also, the classical probabilistic
argument of Erdős [12] giving a lower bound on R(k) shows that h(G) ≤
2 log |V (G)| for almost every1 graph G; and it follows that h(n) ≤ 2 log n for
large n. See Conlon [10] for recent work in this area.

Erdős and Hajnal showed that if any fixed graph H is not an induced
subgraph of G, then h(G) is significantly larger than for a typical graph with
|V (G)| vertices. In fact, they showed a super-logarithmic lower bound: for
every graph H there exists ε′ = ε′(H) > 0 such that if G does not contain H
as an induced subgraph, then h(G) ≥ exp(ε′

√
log |V (G)|). The celebrated

Erdős-Hajnal conjecture asserts that in fact a much stronger bound holds.

Conjecture 1.1 (Erdős and Hajnal [13]). For every graph H, there exists
ε = ε(H) > 0 such that, if G does not contain H as an induced subgraph
then h(G) ≥ |V (G)|ε.

Conjecture 1.1 motivates the following definition: a graph H is said to have
the Erdős-Hajnal property if there exists a constant ε = ε(H) > 0 such that
h(G) ≥ |V (G)|ε for each graph G that does not contain H as an induced
subgraph. Rephrased, the Erdős-Hajnal conjecture asserts that every graph
has the Erdős-Hajnal property.

Conjecture 1.1 remains open, even when H is a cycle or path on five
vertices. Resolving it may require a mixture of probabilistic and structural
arguments. Most efforts so far have been on structural decompositions, but
in this paper we focus on random graphs that do not contain H as an induced

1that is, if pn is the proportion of graphs on vertex set [n] := {1, . . . , n} for which this
holds, then pn → 1 as n→∞
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subgraph. Our goal is to show that, for almost all H, almost every such graph
G contains a homogeneous set of size Ω(|V (G)|). Thus, having forbidden a
typical H as an induced subgraph, a typical G has h(G) within a constant
multiplicative factor of the trivial upper bound. We will make this more
precise below.

Given a graph H, let Forb(H) denote the class of all graphs that do not
contain H as an induced subgraph. Also, given a class P of graphs, let Pn
denote the set of graphs in P on the vertex set [n]. The asymptotic behaviour
of |Forb(H)n| is governed by the colouring number τ(H) of H, which also
plays a major part in this paper. It is defined as the least integer t such that
for any non-negative integers a and b with a+ b = t the vertices of H can be
partitioned into a cliques and b stable sets. Prömel and Steger [28] showed
that for each graph H (with at least one edge)

|Forb(H)n| = 2(1− 1
τ(H)−1

+o(1))(n2). (1)

(An extension of this result to all hereditary graph classes was obtained
independently by Alexeev [1] and by Bollobás and Thomason [7]. For recent
work in this area see [4, 2, 5].)

Recently, an asymptotic version of Conjecture 1.1 was established by
Loebl, Reed, Scott, Thomason and Thomassé [22], involving the quantity
|Forb(H)n| estimated in (1). We say that a graph H has the asymptotic
Erdős-Hajnal property if there exists a constant ε = ε(H) > 0 such that

|{G ∈ Forb(H)n : h(G) ≥ nε}|
|Forb(H)n|

→ 1 as n→∞.

Using Szemerédi’s Regularity Lemma [30] and a result of Chudnovsky and
Safra [8] (which we discuss below), they proved the following theorem.

Theorem 1.2 (Loebl et al. [22]). Every graph has the asymptotic Erdős-
Hajnal property.

For the special cases of the cycles C4 and C5 (on four and five vertices
respectively), a stronger asymptotic property holds. We say that a graph
H has the asymptotic linear Erdős-Hajnal property if there exists a constant
b = b(H) > 0 such that

|{G ∈ Forb(H)n : h(G) ≥ bn}|
|Forb(H)n|

→ 1 as n→∞.
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It follows easily from known results that C4 and C5 have the asymptotic
linear Erdős-Hajnal property, while the path P3 (on three vertices) does not
— see Subsection 1.2 below. It was thus natural for Loebl et al. [22] to
propose the problem of characterising those H having the asymptotic linear
Erdős-Hajnal property. They indicated that P3 and P4 might be the only
exceptional cases. We are able to give a partial solution to this problem by
establishing the asymptotic linear Erdős-Hajnal property in the case when
the forbidden induced subgraph is a typical (i.e. random) graph.

Theorem 1.3. Almost every graph H has the asymptotic linear Erdős-Hajnal
property.

In other words, ph → 1 as h → ∞, where ph is the proportion of graphs H
on [h] with the asymptotic linear Erdős-Hajnal property. This is our main
theorem. In the subsections below, we first describe the plan of the proof
and then give further background material.

1.1 Plan of the proof

The statement of Theorem 1.3 implicitly involves ‘almost every’ twice, but
the proof separates them. We define a class H of graphs, and show that (a)
almost every graph is in H, and (b) every graph in H has the asymptotic
linear Erdős-Hajnal property.

In more detail, in Section 2 we introduce a variant τ1(H) of the colouring
number τ(H) of a graph H, which satisfies τ1(H) ≤ τ(H). We define H
to be the class of graphs H such that τ1(H) < τ(H). We shall observe at
the end of that section that H contains C4 and C5 but neither P3 nor P4.
Theorem 1.3 follows immediately from the next two lemmas. From Section 3
onwards, the rest of the paper falls into two quite separate parts where we
prove these two key lemmas.

The first lemma tells us that we can restrict our attention to H.

Lemma 1.4. Almost every graph is in H.

The second lemma says that, for each H such that τ1(H) < τ(H), almost all
graphs in Forb(H) have a linear-sized homogeneous set.

Lemma 1.5. Every graph in H has the asymptotic linear Erdős-Hajnal prop-
erty.

4



In Section 2, as well as defining the colouring numbers τ and τ1 discussed
above, we also define another colouring number τ2, which is simpler than τ1.
Lemma 1.4 is proved in Section 3, which starts with a lemma that allows us
to work with τ2 rather than τ1. Then we adapt methods used recently to
obtain precise upper bounds on the chromatic number χ(Gn

p ) of the random
graph Gn

p with vertex set [n] and edge probability p to obtain an upper bound
on τ2(G

n
1/2). This, combined with recent precise lower bounds on χ(Gn

p ), and

thus on τ(Gn
1/2), yields Lemma 1.4.

The proof of Lemma 1.5 is given in Section 4. It is a modification of the
proof of Theorem 1.2 by Loebl et al. That proof depends on a decomposition
result (Lemma 3 in [22]) of which we give an analogue for our purposes,
namely Lemma 4.6 below. We note that the proof of our decomposition
result, in contrast to that of the analogous result in [22], does not rely on the
bull result of Chudnovsky and Safra (discussed below).

1.2 Further background and related work

Erdős and Hajnal observed in [13] that Conjecture 1.1 holds for H the path
P4 on four vertices. They also proved that the class of graphs H for which
the conjecture holds is closed under disjoint union and complementation.
Alon, Pach and Solymosi [3] demonstrated that the Erdős-Hajnal property
is moreover closed under substitution. More precisely, if H1 and H2 have the
Erdős-Hajnal property, then any graph obtained by replacing an arbitrary
vertex v of H1 with a copy of H2 (preserving adjacencies, by including all
edges between the copy of H2 and every neighbour of v in H1) also has the
property. Chudnovsky and Safra [8] showed that the bull (the five-vertex
graph which consists of a triangle with pendant vertices added to two ver-
tices) has the Erdős-Hajnal property, with ε = 1/4.

Now let us sketch the easy lower bound part of the inequality (1) of
Prömel and Steger [28] — we shall return to this inequality later. Let a and
b be non-negative integers such that a + b = τ(H) − 1 and H cannot be
partitioned into a cliques and b stable sets. Then in any graph G that can
be partitioned into a cliques and b stable sets there cannot be an induced
subgraph that is isomorphic to H. By considering a fixed partition of [n]
into τ(H) − 1 parts, each of which has size within 1 of n/(τ(H) − 1), and
counting all graphs where the edges between these parts are freely chosen
(while a parts induce cliques and b parts induce stable sets), we see that the
number of graphs in Forb(H)n is at least as given in (1).
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We next describe the strong asymptotic structural results of Prömel and
Steger [26, 27] for Forb(C4) and Forb(C5). They showed that the class of
split graphs forms almost all of Forb(C4) (G is a split graph if the vertices
of G can be partitioned into a clique and a stable set). This immediately
implies that C4 has the asymptotic linear Erdős-Hajnal property. They also
showed that the class of generalised split graphs forms almost all of Forb(C5)
(G is a generalised split graph if the vertices of G or its complement G can
be partitioned into two parts U and W , one of which is a single clique and
the other of which is the disjoint union of cliques). Since almost all of the
generalised split graphs admit a partition into U and W such that each part
has about half of the vertices (cf. [27]), it follows that C5 has the asymptotic
linear Erdős-Hajnal property.

On the other hand, we note that Forb(P3) is the class of all graphs which
are the disjoint union of cliques. Note that graphs of order n formed as
a disjoint union of cliques are equivalent to set partitions of [n]. Aleksan-
drovskii (cf. Yakubovich [31]) showed that all of the blocks of a uniformly
chosen set partition of [n] have length at most (1+o(1)) lnn with probability
tending to 1 as n → ∞. Thus there is a sub-class Q ⊆ Forb(P3) such that
|Qn|/|Forb(P3)

n| → 1 as n→∞ and h(G) = Θ(n/ log n) for all G ∈ Qn. In
other words, P3 does not have the asymptotic linear Erdős-Hajnal property.

Extensions to Erdős and Hajnal’s super-logarithmic lower bound on h
for Forb(H) have been obtained by Prömel and Rödl [25] and Fox and Su-
dakov [16, 17]. Very recently, Conlon, Fox and Sudakov [11] considered a form
of the Erdős-Hajnal conjecture for k-uniform hypergraphs. Chudnovsky and
Zwols [9] showed that every graph of order n which does not contain the
path P5 or the complement P6 of the path P6 as an induced subgraph has a
homogeneous set of size n1/6.

To close this section, let us note that the truth of Conjecture 1.1 would
imply that graphs G with h(G) near h(|V (G)|) must be reasonably random.
For if the conjecture is true, then for any δ > 0 every graph G which contains
an induced subgraph F with |V (G)|δ vertices and no induced copy of H has
a homogeneous set of size |V (G)|εδ, which is much larger than h(|V (G)|) (for
large enough n). Thus, if h(G) is near h(|V (G)|), then no such F can exist.
Considering a random choice for the vertex set of F allows us to deduce that
the number of copies of H in G must be close to that in a typical graph on
|V (G)| vertices and the copies of H must be spread throughout G in a fairly
typical fashion.
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2 Colouring numbers

In this section, we define the colouring numbers τ , τ1 and τ2 mentioned
earlier, and make some simple observations concerning them.

Let F be a family of t ≥ 1 graph classes Ai, i ∈ {1, . . . , t}, where it
is assumed that each Ai contains K1. Given a graph H, the F-colouring
number τF(H) of H is the least integer k such that the following holds: for
each t-tuple (n1, . . . , nt) of non-negative integers with

∑
i ni = k, there is a

partition of V (H) into k sets V j
i for i ∈ {1, . . . , t} and j ∈ {1, . . . , ni} such

that each induced subgraph H[V j
i ] is isomorphic to a graph in Ai. Observe

that τF(H) ≤ |V (H)| since each Ai contains K1.
A comment on notation: We often permit ourselves an abuse of termi-

nology by saying that a vertex subset V ′ ⊆ V (H) is in Ai and write V ′ ∈ Ai
when we mean that H[V ′] is isomorphic to a graph in Ai.

We define eight classes of graphs. We assume that each class contains the
null graph and K1. In the following, we use the standard notation G for the
complement of the graph G. Also, the notation G ∪H indicates the disjoint
union of graphs G and H.

A0: the class of edgeless graphs.

A1: the class of complements of the graphs in A0, i.e. complete graphs.

B1: the class of graphs Ka ∪Kb for any a, b ≥ 0.

B2: the class of complements of the graphs in B1, i.e. complete bipartite
graphs.

B3: the class of graphs Ka ∪Kb for any a, b ≥ 0.

B4: the class of complements of the graphs in B3.

B5: the class of graphs such that by deleting at most one vertex we obtain
a complete graph.

B6: the class of complements of the graphs in B5, i.e. graphs such that by
deleting at most one vertex we obtain an edgeless graph.

Clearly, the (A0)-colouring number is the usual chromatic number and the
(A1)-colouring number is the clique cover number. The classes A0, A1, B1,
. . . , B6 are illustrated in Figure 1.
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Kk Kk

Ka Kb Ka Kb Ka Kb Ka Kb

Kk Kk

Figure 1: A depiction of the eight classes for colouring numbers.

For our purposes, we are interested in three families composed from the
classes above:

• F0 = (A0,A1),

• F1 = (B1,B2,B3,B4,B5,B6), and

• F2 = (B1,B2,B3,B4).

We consider the three associated F -colouring numbers. For convenience, we
denote τFi(H) by τi(H). Note that τ0(H) is just the colouring number τ(H)
of H as defined by Prömel and Steger [28, 29].

Let us make two simple observations about τi(H) for i ∈ {0, 1, 2}. First,
each Fi is closed under taking complements, so for each graph H, τi(H) =
τi(H). Second, since each class Ai and Bj is closed under forming induced
subgraphs, if H ′ is an induced subgraph of H, then τi(H

′) ≤ τi(H).
Clearly, τ2(H) ≤ τ1(H) for any H. SinceA0 is a subclass of each of B2, B4,

B6, while A1 is a subclass of each of B1, B3, B5, we also have τ1(H) ≤ τ(H)
for any H.

Now let us discuss the class H. Recall that we defined H to be all graphs
H such that τ1(H) < τ(H). Clearly, H ∈ H if and only if H ∈ H. Also,
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K1 /∈ H. Consider a graph H with k ≥ 2 vertices. It is easily checked
that if H is an induced subgraph of the path P4, then τ(H) = 2; otherwise,
τ(H) ≥ 3. If k = 2 then τ1(H) = 1, while if k ∈ {3, 4} then τ1(H) = 2. We
see that K2 and K2 are in H, but of course Lemma 1.5 is trivial for these two
graphs. Other graphs in H have τ(H) ≥ 3. We will assume that τ(H) ≥ 3
when we prove Lemma 1.5 in Section 4.

We mentioned earlier that C4 and C5 were known to have the asymp-
totic linear Erdős-Hajnal property. From the above we see that C4 satisfies
τ1(H) = 2 < 3 = τ(H) so C4 ∈ H; and it is not hard to check that the same
result holds for C5.

3 Colouring numbers of random graphs

In this section we consider colouring numbers of the random graph Gn
1/2,

and prove Lemma 1.4. (We now use n rather than h for the number of
vertices.) Recall that Gn

1/2 is sampled uniformly from the graphs on [n]; and

that a property holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to 1 as n→∞. We may rephrase Lemma 1.4 as saying
that τ1(G

n
1/2) < τ(Gn

1/2) a.a.s. We first give a lemma which will allow us to
work with τ2 rather than with τ1.

3.1 Working with τ2 rather than with τ1

Lemma 3.1. Let H be a graph such that τ2(H) +α(H) +ω(H) ≤ τ(H) + 1.
Then τ1(H) < τ(H).

Proof. Let t = τ(H)−1. Let n1, . . . , n6 be non-negative integers with
∑

i ni =
t. We must show that H has a colouring consisting of t colour sets, with ni
colour sets in Bi for each i ∈ {1, . . . , 6}.

Let m0 = n2 + n4 + n6 and m1 = n1 + n3 + n5. Suppose first that
n5 ≥ ω(H). Now H has a colouring with m0 stable sets and m1 + 1 cliques
(since m0 +m1 +1 = τ(H)). Choose one of these cliques, with say j vertices,
and redistribute these vertices amongst the m1 other cliques, at most one to
any clique (which we can do since j ≤ ω(H) ≤ m1). This yields a colouring
consisting of t colour sets, m0 of which are stable sets, m1 − j of which are
cliques, and j of which are colour sets in B5. Since cliques are in each of B1,
B3, B5 and stable sets are in each of B2, B4, B6, these colour sets may be
re-designated to show that this colouring is as desired.
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Similarly, if n6 ≥ α(H), then H has a colouring with m0 + 1 stable sets
and m1 cliques: choose one of these stable sets and redistribute the vertices
amongst the other stable sets, at most one to any stable set; this yields a
colouring as required.

It remains to consider the case when n5 < ω(H) and n6 < α(H). Then
H has a colouring with ni colour sets in Bi for each i ∈ {1, . . . , 4} and no
other colour sets, since n1 + · · ·+n4 ≥ t− (α(H)− 1)− (ω(H)− 1) ≥ τ2(H).
Adding n5 + n6 empty sets yields a colouring as required.

It will now suffice to prove that

τ2(G
n
1/2) + α(Gn

1/2) + ω(Gn
1/2) ≤ τ(Gn

1/2) a.a.s., (2)

for then the above lemma immediately gives Lemma 1.4. It is well known
that both α(Gn

1/2) and ω(Gn
1/2) are less than 2 log n a.a.s. (and indeed we noted

this when discussing Ramsey numbers in Section 1). Let

β(n) = 2 log n− 2 log log n. (3)

Results of [15, 24], extending work in [6, 23], show that

n

β(n)− 2 + o(1)
≤ χ(Gn

1/2) ≤
n

β(n)− 3 + o(1)
a.a.s. (4)

We shall use the lower bound here, together with the fact that τ(H) ≥ χ(H)
for each graph H. Our main task is to show that τ2(G

n
1/2) is a.a.s. much

smaller than χ(Gn
1/2). We shall follow the approach used in [15] to prove the

upper bound in (4), in order to show that

τ2(G
n
1/2) ≤

n

β(n)− 1 + o(1)
a.a.s. (5)

Since

n

β(n)− 2 + o(1)
− n

β(n)− 1 + o(1)
=

(
1

4
+ o(1)

)
n

(log n)2
,

we obtain (2) from the inequalities (4) and (5), together with the upper
bounds on α(Gn

1/2) and ω(Gn
1/2).

We actually prove a stronger version of (5), where we insist that each
colour set is ‘balanced’. Let B̃1 be the class of graphs Ka∪Kb for any a, b ≥ 0
with |a − b| ≤ 1; and we similarly define B̃2, B̃3 and B̃4. Let τ̃2(H) denote
the corresponding colouring number. Of course, always τ2(H) ≤ τ̃2(H) for
each graph H.
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Lemma 3.2.

τ̃2(G
n
1/2) ≤

n

β(n)− 1 + o(1)
.

Our remaining task in this section is to prove this lemma. The method
involves estimating first and second moments, so that we may employ Jan-
son’s inequality to show that there are induced subgraphs as required with
very small failure probability: this will allow the use of a natural greedy
algorithm to find colourings as required.

3.2 An expectation calculation

For i ∈ {1, . . . , 4}, let βi(G) be the maximum size of a set W ⊆ V (G) such
that W is in Bi (that is, the induced subgraph G[W ] ∈ Bi); and, given a

positive integer k, let β
(k)
i (G) be the number of k-sets W ⊆ V (G) such that

W is in Bi. We define β̃i(G) and β̃
(k)
i (G) similarly, referring to B̃i. Recall

that β(n) was defined in (3). Let

α(n) = β(n) + 2 log e− 1 (6)

and note that α(n) is the same as α0,1/2(n) in the notation in [15]. Let
0 < δ < 1 be fixed and let

γ(n) = γδ(n) = bα(n) + 1− δc. (7)

Let Bni denote the set of graphs in Bi on [n]. Let B̃ni denote the set of
graphs in B̃i on [n]. Note that

|B̃ni | =


1
2

(
n
bn/2c

)
if i ∈ {1, 2} and n ≥ 2 even;(

n
bn/2c

)
if i ∈ {1, 2} and n ≥ 3 odd;(

n
bn/2c

)
if i ∈ {3, 4} and n ≥ 4 even;

2
(

n
bn/2c

)
if i ∈ {3, 4} and n ≥ 3 odd.

(8)

In any case, |B̃ni | = 2(1+o(1))n for each i ∈ {1, . . . , 4}.

Lemma 3.3. Fix i ∈ {1, . . . , 4}. For k = γ(n),

E[β̃
(k)
i (Gn

1/2)] ≥ n1+δ+o(1).
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Proof. For k = k(n) = Θ(log n), we have

E[β̃
(k)
i (Gn

1/2)] =

(
n

k

)
|B̃ki |2

−(k2)

∼
(ne
k

)k
(2πk)−1/2|B̃ki |(2−(k−1)/2)k

=
(ne
k
|B̃ki |1/k 2−(k−1)/2

)k
no(1).

Let (xn) be a bounded sequence of real numbers such that k = k(n) =
α(n) + xn is integer-valued. Then

log k = 1 + log log n+ log

(
1− log log n+O(1)

log n

)
= 1 + log log n+ o(1)

and so, using |B̃ki | = 2(1+o(1))k as n→∞,

log
(ne
k
|B̃ki |1/k 2−(k−1)/2

)
= log n+ log e− 1− log log n+

1

k
log |B̃ki | −

k − 1

2
+ o(1)

= 1− xn
2

+ o(1) ≥ 1 + δ

2
+ o(1)

if xn ≤ 1− δ; and then, since k = (2 + o(1)) log n,

E[β̃
(k)
i (Gn

1/2)] ≥ n1+δ+o(1).

The lemma now follows on taking k as γ(n).

3.3 Using Janson’s inequality

Let (xn) be a bounded sequence of real numbers such that for

k = β(n) + xn = 2 log n− 2 log log n+ xn ∈ N

we have E(β̃
(k)
i (Gn

1/2)) → ∞ as n → ∞. Consider an i ∈ {1, . . . , 4}. In this
section, we prove that with extremely small failure probability there is a k-
subset of [n] which is in B̃i. For this, we use Janson’s Inequality (see [19, 20]
or Theorems 2.14, 2.18 in [21]):

P(β̃
(k)
i (Gn

1/2) = 0) ≤ exp

(
−

E2(β̃
(k)
i (Gn

1/2))

E(β̃
(k)
i (Gn

1/2)) + ∆

)
, (9)
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where

∆ =
∑
A,B

P(A,B ∈ B̃i)

and the sum is over k-subsets A and B of [n] with |A ∩B| ∈ {2, . . . , k − 1}.
Let p(k, `) be the probability that two k-subsets of [n] that overlap on exactly
` vertices are both in B̃i. Then

∆ =

(
n

k

) k−1∑
`=2

(
k

`

)(
n− k
k − `

)
p(k, `).

Now let A and B be two k-subsets of [n] that overlap on exactly ` vertices,
i.e. |A ∩ B| = `. Then, letting X denote the graph induced on A ∩ B and
letting G run over the graphs on A ∩B,

p(k, `) = P(A,B ∈ B̃i)

=
∑
G

P(A ∈ B̃i|X = G)P(X = G)P(B ∈ B̃i|X = G)

≤ max
G

P(A ∈ B̃i|X = G) · P(B ∈ B̃i).

We need two upper bounds on the first factor here. First, note that for each

G, P(G`
1/2 = G) = 2−(`2), and so

max
G

P(A ∈ B̃i|X = G) ≤ 2(`2) P(A ∈ B̃i).

We now derive a second bound. Note first that P(A ∈ B̃i|X = G) = 0 unless
G ∈ B`i . Each graph G on A∩B in B`1 has a unique corresponding unordered
partition into two cliques, and so we may extend G to a graph on A in B̃k1 in
at most 2k−` ways; and B`2 behaves similarly. If a graph G on A ∩ B in B`3
has an edge, then it has a unique corresponding partition into a clique and a
stable set; and if it has no edges, then it has `+ 1 ≤ k such partitions. Thus
each graph in G on A ∩ B in B`3 can be extended to a graph on A in B̃k3 in
at most k2k−` ways; and B`4 behaves similarly. Thus

max
G

P(A ∈ B̃i|X = G) ≤ k2k−`2−(k2)+(`2).
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We break the sum for ∆ into two parts. Let `0 be an integer with `0 ∼
k −
√

log n. Then ∆ ≤ ∆1 + ∆2, where

∆1 = E(β̃
(k)
i (Gn

1/2)) ·
`0∑
`=2

(
k

`

)(
n− k
k − `

)
2(`2) P(A ∈ B̃i) and

∆2 = E(β̃
(k)
i (Gn

1/2)) ·
k−1∑

`=`0+1

(
k

`

)(
n− k
k − `

)
k2k−`2−(k2)+(`2).

First consider ∆1. For every ` ≤ k,(
k

`

)(
n− k
k − `

)
≤ k`

k`

(n− k)`

(
n

k

)
.

Hence

∆1 ≤ E2(β̃
(k)
i (Gn

1/2))

`0∑
`=2

(
k2

n− k

)`
2(`2). (10)

If we set s` = (k2/(n−k))`2(`2), then s`+1/s` = 2`k2/(n−k). So the sequence
(s`) is decreasing and then inreasing. Therefore,

max
`∈{2,...,`0}

{s`} = max{s2, s`0}.

Now s2 = 2k4/(n− k)2 and

s`0 ≤
(

k2

n− k
2`0/2

)`0
≤
(

2−(1/2+o(1))
√
logn
)`0

= o(s2).

Thus the inequality (10) now becomes for n large enough

∆1 ≤
2k5

(n− k)2
E2(β̃

(k)
i (Gn

1/2)) = O

(
(log n)5

n2

)
E2(β̃

(k)
i (Gn

1/2)).

Now consider ∆2. We have(
k

`

)(
n− k
k − `

)
≤ kk−`

(k − `)!
nk−`

(k − `)!
≤ 4

(
kn

2

)k−`

14



since (k − `)! ≥ 2k−`−1. Thus

∆2 ≤ 4k E(β̃
(k)
i (Gn

1/2))
k−1∑
`=`0

(kn)k−`2−(k2)+(`2).

Now let t` = (kn)k−`2−(k2)+(`2) for ` ∈ {`0, . . . , k − 1}. Note that log(t`) =
(k−`) log(kn)−

(
k
2

)
+
(
`
2

)
, which is convex in `. Thus log(t`) has its maximum

value at ` = `0 or ` = k − 1; and hence the same must hold for t`. But
log(t`0) = −(1 + o(1))(log n)3/2 so t`0 = o(1/n). Also

(
k
2

)
−
(
k−1
2

)
= k − 1,

and so tk−1 = kn2−k+1 = O((log n)3/n). Hence

∆2 = o((log n)5/n) · E(β̃
(k)
i (Gn

1/2)) = o(1) · E(β̃
(k)
i (Gn

1/2)).

It follows that

E(β̃
(k)
i (Gn

1/2)) + ∆ = E(β̃
(k)
i (Gn

1/2)) + ∆1 + ∆2 ≤ max{2E(β̃
(k)
i (Gn

1/2)), 3∆1}

for n sufficiently large. Now, by (9) and the upper bound on ∆1, we obtain
the following lemma. (Recall that γ(n) is defined in (7).)

Lemma 3.4. Let i ∈ {1, . . . , 4} be fixed. For k = γ(n),

P(β̃
(k)
i (Gn

1/2) = 0) ≤ max

{
exp

(
−1

2
E
(
β̃
(k)
i (Gn

1/2)
))

, exp

(
−Ω

(
n2

(log n)5

))}
.

3.4 A greedy colouring algorithm

Lemma 3.5. It holds a.a.s. that for each i ∈ {1, 2, 3, 4} and for all V ′ ⊆ [n]
with |V ′| ≥ n/(log n)3, we have β̃i(G

n
1/2[V

′]) ≥ γ(|V ′|).

Proof. Note that Lemma 3.3 implies that for any V ′ ⊆ [n] with |V ′| ≥
n/(log n)3, we have

E
(
β̃
(γ(|V ′|))
i (Gn

1/2[V
′])
)
≥ |V ′|1+δ+o(1).

So, applying Lemma 3.4, we deduce that

P
(
β̃i(G

n
1/2[V

′]) < γ(|V ′|)
)
≤ exp

(
−|V ′|1+δ+o(1)

)
≤ exp

(
−
(

n

(log n)3

)1+δ+o(1)
)
.
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Since there are at most 2n choices for V ′, the probability that there exists
a set V ′ ⊆ [n] with |V ′| ≥ n/(log n)3 and β̃i(G

n
1/2[V

′]) < γ(|V ′|) is at most

2n exp
(
−(n/(log n)3)1+δ+o(1)

)
= o(1).

We consider the following algorithm for colouring Gn
1/2. Let V ′ = [n].

While |V ′| ≥ n/(log n)3, we choose and remove a colour set S from Gn
1/2[V

′]

of size γ(|V ′|), with S in B̃i for any desired i ∈ {1, 2, 3, 4}. At the end,
we obtain a collection of colour sets in B̃i, i ∈ {1, 2, 3, 4}, each of them
corresponding to a colour in the colouring of Gn

1/2. Lemma 3.5 implies that
a.a.s. we will be able to perform this algorithm and be left with at most
n/(log n)3 uncoloured vertices. We may assign a new different colour to each
of these remaining vertices. Thus, if the above algorithm stops after f(n)
steps, then τ̃2(G

n
1/2) ≤ f(n) + n/(log n)3.

Recall that γ(n) = bβ(n) + 2 log e − δc. Clearly, γ(s) is non-decreasing
and

γ

(⌈
n

(log n)3

⌉)
= γ(n)

(
1 +O

(
log log n

log n

))
.

Thus, for all integers s ∈ {dn/(log n)3e, . . . , n},

γ(s) = γ(n)

(
1 +O

(
log log n

log n

))
, (11)

and furthermore

f(n) =
n

γ(n)

(
1 +O

(
log log n

log n

))
. (12)

Assume that there are nt vertices available when we have removed t colour
sets from [n]. Thus the set picked during the (t+ 1)st iteration will have size
γ(nt). Since the colouring algorithm stops as soon as there are fewer than
n/(log n)3 vertices available, the following inequality holds:

f(n)−2∑
t=0

γ(nt) ≤ n

(
1− 1

(log n)3

)
≤ n. (13)

Note that for all t ≥ 0, nt ∈ {dn/(log n)3e, . . . , n} and nt = n−
∑t−1

j=0 γ(nj).
Therefore,

log nt = log

(
n−

t−1∑
j=0

γ(nj)

)
= log n+ log

(
1−

∑t−1
j=0 γ(nj)

n

)
.
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We have2

f(n)−2∑
t=0

log

(
1−

∑t−1
j=0 γ(nj)

n

)
=

1

ln 2

f(n)−2∑
t=0

n

γ(nt)
ln

(
1−

∑t−1
j=0 γ(nj)

n

)
γ(nt)

n

(11)
=

n(1 + o(1))

γ(n) ln 2

f(n)−2∑
t=0

ln

(
1−

∑t−1
j=0 γ(nj)

n

)
γ(nt)

n

=
n(1 + o(1))

γ(n) ln 2

∫ 1

0

ln(1− x)dx = −n(1 + o(1))

γ(n) ln 2
(12)
= −(f(n)− 1)(log e+ o(1)).

Also, log log nt ≤ log log n and

log log nt ≥ log log

(
n

(log n)3

)
= log log n−O

(
log log n

log n

)
.

So

f(n)−2∑
t=0

γ(nt) ≥
f(n)−2∑
t=0

(2 log nt − 2 log log nt + 2 log e− δ − 1)

= (f(n)− 1)(β(n)− δ − 1 + o(1))

and with (13) we obtain

f(n)− 1 ≤ n

β(n)− δ − 1 + o(1)
.

This now completes the proof of Lemma 3.2 and hence of Lemma 1.4.

4 Every graph in H has the asymptotic linear

Erdős-Hajnal property

In this section, we prove Lemma 1.5. This will complete the proof of The-
orem 1.3. The proof follows the method used by Loebl et al. [22] for their
Theorem 1.2. The only major difference is around their Lemma 5, but for
completeness we include the full proof.

2Note that
∫

ln(1− x)dx = −(1− x) ln(1− x) + 1− x.
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Fix H ∈ H with k vertices. As discussed at the end of Section 2, we may
assume that τ(H) ≥ 3. Let t = τ(H) − 1, so that t ≥ 2 and τ1(H) ≤ t
(by the definition of H). We choose b = b(H) > 0 small enough to satisfy
certain inequalities given below. Let Qn = {G ∈ Forb(H)n : h(G) ≥ bn}
and Rn = Forb(H)n \ Qn. We need to show that |Rn|/|Forb(H)n| → 0 as
n → ∞. The first step is an easy lower bound on Qn. We may argue as we
did in Subsection 1.2 to prove the lower bound in (1), to show that, as long
as b ≤ 1/t, we have

|Qn| ≥ 2(1−1/t+o(1))(n2). (14)

To show that |Rn| = o(|Qn|), we need to combine this lower bound with
an upper bound on the number of graphs in Rn. This upper bound is ob-
tained by a combination of a standard application of Szemerédi’s Regularity
Lemma and some extremal graph theory. We begin by introducing the nec-
essary terminology.

Given a graph G, a pair of non-empty subsets U and W of V (G) is said
to be η-uniform if |d(U,W )− d(U ′,W ′)| < η whenever U ′ ⊆ U , |U ′| > η|U |,
and W ′ ⊆ W , |W ′| > η|W | (where d(U,W ) stands for the density of the
bipartite graph between U and W ). A coloured partition π is a colouring of
the edges of the complete graph Km with colours red, blue, green and grey,
where m is the order of π, denoted by |π|. Given a graph G and constants
0 < λ, η < 1, we say that a partition of the vertex set V (G) of G into |π|
classes V1, . . . , V|π| satisfies π with respect to λ and η if |V1| ≤ |V2| ≤ · · · ≤
|V|π|| ≤ |V1| + 1 and the pair (Vi, Vj) is not η-regular only if ij is grey, and
otherwise 0 ≤ d(Vi, Vj) ≤ λ, λ < d(Vi, Vj) < 1 − λ or 1 − λ ≤ d(Vi, Vj) ≤ 1
according to whether ij is red, green or blue. We say that G satisfies π with
respect to λ and η if there is a partition of V (G) satisfying π with respect to
λ and η. Here we shall be concerned only with which edges of π are green.

Szemerédi’s Regularity Lemma asserts that, given λ, η and some integer `,
there exists an integer L = L(`, η) such that any graph G with at least `
vertices satisfies some coloured partition π with respect to λ and η, where
` ≤ |π| < L and where π has at most η

(|π|
2

)
grey edges.

Our next results will lead to a proof of the upper bound on |Forb(H)n|
in equation (1), and will form the basis for our proof of Lemma 1.5. Turán’s
theorem tells us that, if the proportion of the edges of a given coloured
partition π which are green exceeds (1− 1/t), then π contains a green clique
of order t+1, and indeed π contains a green complete (t+1)-partite graph with
each part of a given size. In this case, an application of an embedding lemma
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(as is standard in many similar applications of the Szemerédi Regularity
Lemma) tells us that, for some a, b with a + b = t + 1, each graph G which
satisfies π contains every small graph that can be partitioned into a cliques
and b stable sets. Combining these two results, we obtain the following.

Proposition 4.1 ([7, Theorem 3.1]). Let t, k ∈ N, let ν > 0 and let 0 < λ < 1
be given. Then there exist positive constants `0 and η0 with the following
property. Let π be a coloured partition with |π| ≥ `0, having at most η0

(|π|
2

)
grey edges and at least (1−1/t+ν)

(|π|
2

)
green edges. Then there are integers a

and b with a+b = t+1, such that, if G is a graph with at least |π| vertices that
satisfies π with respect to λ and η0, then G contains as an induced subgraph
every graph with at most k vertices that can be partitioned into a cliques and
b stable sets.

Observe that any ` ≥ `0 and 0 < η ≤ η0 could serve instead of `0 and η0.
This proposition allows us to obtain an upper bound on the size of Rn

using the following lemma. For any coloured partition π, let ng = ng(π)
be the proportion of the edges which are green. Note that we can choose
c = c(λ) > 0 which goes to zero with λ such that if n1 and n2 are large
enough, then there are at most 2cn1n2 ways of choosing the edges of a bipartite
graph with one side of size n1, the other of size n2 and either (i) fewer than
λn1n2 edges or (ii) more than (1− λ)n1n2 edges.

Lemma 4.2. For each coloured partition π with at most η
(|π|

2

)
grey edges,

for every sufficiently large n, and for every partition P of [n] (with |π| parts),
the total number of graphs on [n] for which P satisfies π with respect to λ
and η is at most

2(ng+η+c(λ)+1/|π|)(n2).

Proof. Denote the given partition P of [n] by classes V1, . . . , V|π| with |V1| ≤
|V2| ≤ · · · ≤ |V|π|| ≤ |V1| + 1. If the pair Vi, Vj corresponds to a green edge
or a grey edge, then there are at most 2|Vi||Vj | ways to join Vi to Vj. But
for red and blue edges there are at most 2c|Vi||Vj | ways if n is large enough.
Furthermore, there are at most

(
n
2

)
/|π| edges within the partition classes. So

we see that the total number of graphs such that the partition P satisfies π
is bounded as above.

We may now easily obtain the upper bound on |Forb(H)n| in equation (1),
which matches the earlier lower bound (14) on |Qn| (though this is not yet
strong enough to be useful to us).
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Corollary 4.3.

|Forb(H)n| ≤ 2(1−1/t+o(1))(n2).

Proof. Let G ∈ Forb(H)n, where n is suitably large. By Szemerédi’s Regu-
larity Lemma, G satisfies some coloured partition π with respect to λ and η,
where ` ≤ |π| < L. By Proposition 4.1 we may assume that ng < 1− 1/t+ ν
(since otherwise G 6∈ Forb(H)). But the number of coloured partitions does
not depend on n, and for each one we may use Lemma 4.2 to see that

|Forb(H)n| ≤ 2(1−1/t+ν+η+c+1/`+o(1))(n2),

and the result follows (on choosing η, ν and λ suitably small and ` suitably
large).

In order to continue with our project to prove Lemma 1.5, we pick λ and
ν to certify certain inequalities given below. We choose η0 and `0 satisfying
Proposition 4.1 with respect to k, t, λ, and ν. We choose ` ≥ `0 and η ≤ η0
which satisfy some inequalities given below. We choose L satisfying the
Szemerédi Regularity Lemma for this choice of λ, η and `. Thus, if G ∈
Forb(H)n for some n ≥ ` then G satisfies some π with respect to λ and
η where ` ≤ |π| < L and π has at most η

(|π|
2

)
grey edges. We let b =

1/(5L·R(k)) (recalling that R(k) is a Ramsey number). This then determines
Qn and Rn, which were defined in terms of b.

The key to our proof is to strengthen the upper bound of the above
corollary, by exploiting the fact that we are counting only graphs in Rn. An
easy computation using our earlier lower bound (14) on |Qn| and Lemma 4.2
yields that the number of graphs satisfying partitions with ng < 1 − 1/t −
η − 2c − 1/` is o(|Qn|). Thus, in proving our strengthening, we need only
consider graphs for which ng exceeds 1− 1/t− η− 2c− 1/`. Key to doing so
are the following two lemmas, the proofs of which are postponed to the end
of the section.

Lemma 4.4. Suppose that π contains s edge-disjoint cliques of order t all
of whose edges are green. Then, for β = 2/(9(2k+ 1)2|π|2) and large enough
n, the number of graphs in Rn for which a given partition satisfies π with
respect to λ and η is at most

2(ng+η+c+1/|π|−sβ)(n2).
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Lemma 4.5. If ng ≥ 1− 1/(t− 1) + 1/(2t2), then π contains at least |π|2/t4
edge-disjoint cliques of order t all of whose edges are green.

With these two lemmas, it is straightforward to prove Lemma 1.5. We
choose λ so that c is less than 1/(1000t4k2). We choose ν = 1/(1000t4k2).
We choose ` ≥ max{`0, 1000t4k2} and η ≤ min{η0, 1/(1000t4k2)}.

Now, we have that η+ c+ 1/|π| ≤ 3/(1000t4k2). So, if π is a partition for

which ng < 1−1/(t− 1)+1/(2t2), then there are at most 2(1−1/(t−1)+2/3t2)(n2)

graphs G ∈ Rn for which a given partition satisfies π with respect to λ
and η. On the other hand, for any partition π with ng ≥ 1 − 1/(t− 1) +
1/(2t2), we know by Proposition 4.1 that ng ≤ 1− 1/t+ ν. Hence, combining
Lemmas 4.4 and 4.5, we see that at most

2(1−1/t−1/(9(2k+1)2t4)+3/(1000t4k2))(n2)

graphs in Rn satisfy π with respect to λ and η. In either case, there are

at most 2(1−1/t−1/(500t4k2))(n2) graphs in Rn for which a particular partition
satisfies π. But the number of choices for π is independent of n, and the

number of partitions of the vertex set is at most nL which is o(2(n2)). So, for

large n, the number of elements of Rn is at most 2(1−1/t−1/(600t4k2))(n2), and
hence |Rn| = o(|Qn|). This completes the proof of Lemma 1.5.

We turn now to the proofs of Lemmas 4.4 and 4.5. The proof of Lemma 4.5
is straightforward and is also found in [22].

Proof of Lemma 4.5. We repeatedly rip out the edges of a green clique of
size t in π until no such cliques remain. Turán’s theorem tells us that when
we stop at most (1 − 1/(t − 1))

(|π|
2

)
green edges can remain. But by the

assumption, π has at least (1 − 1/(t − 1) + 1/(2t2))
(|π|

2

)
green edges. So we

must have ripped out at least
(|π|

2

)
/(2t2) edges and hence at least

(|π|
2

)
/t4

cliques.

The result in [22] (Lemma 5) which is analogous to Lemma 4.4, rather
than counting the graphs in Rn satisfying the partition, counts the members
of Forb(H)n which contain no homogeneous set of size nε (for some fixed
ε = ε(H) > 0) satisfying the partition. In order to strengthen this result to
obtain Lemma 4.4, we need the following new technical lemma.

For k ≥ 1, we define the split 2k-clique to be K2k together with an
additional vertex of degree k and the split 2k-stable set to be K2k together
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K2k K2k

Figure 2: A split 2k-clique and a split 2k-stable set.

with an additional vertex of degree k, see Figure 2. (A split 2k-clique is the
complement of a split 2k-stable set.) Let B(k) be the collection of graphs

Kk ∪Kk, Kk ∪Kk, Kk ∪Kk, Kk ∪Kk

together with the split 2k-clique and the split 2k-stable set.

Lemma 4.6. Fix a positive integer k. Let c = 1/(2R(k)) and let G be a
graph of order n, where n ≥ max{R(k2 + k), 2(R(k) + k2 + k)}. Then G
contains either a homogeneous set of size at least cn or an induced subgraph
isomorphic to a member of B(k).

Proof. Since n ≥ R(k2 +k), G contains a homogeneous set C of order k2 +k.
We assume C is a clique; the complementary case is symmetric. We may
assume that G does not contain a split 2k-clique, as otherwise we are done.

Let VS = {v 6∈ C : degC(v) < k} and VL = {v 6∈ C : degC(v) > |C| − k},
where degC(v) is the number of edges between v and C. (Here VS is for
small degrees and VL is for large degrees.) Since G has no split 2k-clique,
V (C) ∪ VS ∪ VL is a partition of V (G).

Suppose that |VS| ≥ R(k). Then VS contains a homogeneous set A of
order k. There are at most k(k − 1) edges between A and C, so there is a
set B of k vertices in C with no edges between A and B. But now A ∪ B
induces either Kk ∪ Kk or Kk ∪ Kk, and we are done. So we may assume
that |VS| < R(k).

Now, |VL| > n − |C| − R(k) ≥ n/2. Suppose that each vertex in VL has
at most R(k)− 1 non-edges to VL. Then we may greedily pick a clique in VL
of size at least |VL|/R(k) ≥ cn, and we are done. So we may assume that
this is not the case.

Now some vertex v ∈ VL has no edges to a subset D0 (not containing v)
of VL of size R(k). Within D0 there is a homogeneous set D1 of size k. Since
each vertex in D1 is adjacent to all but at most k − 1 vertices of C, there
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is a subset D2 of V (C) with |D2| ≥ |C| − k(k − 1) = 2k such that all edges
between D1 and D2 are in G. Now D2 is clique. If D1 is a stable set, then
we have the complement of Kk ∪Kk, and we are done. So we may assume
that D1 is a clique. But now D3 = D1∪D2 forms a clique, and v has at least
|D1| = k non-edges to D3 and at least |D2| − (k − 1) ≥ k edges to D3. Thus
we have a split 2k-clique, which contradicts our initial assumption, and we
are done.

We end this section with the promised proof of Lemma 4.4.

Proof of Lemma 4.4. Denote the edge-disjoint green cliques by C(1), . . . , C(s).
For each C(z), let mC(z) be the sum of |Vi||Vj| over the unordered pairs of par-
tition classes Vi and Vj in C(z). We claim that for each of the s cliques, having

fixed the edges within the partition classes, there are at most 2mC(z)−β(n2) ways
to pick the edges for G within the green edges of the clique. Assuming the
claim is true, the total number of choices corresponding to green edges of π
within the cliques is at most

s∏
z=1

2mC(z)−β(n2) = 2
∑s
z=1mC(z)−sβ(n2)

which, combined with the argument for Lemma 4.2, gives the required result.
It remains to prove the claim. To have G ∈ Rn, we must also have that

h(G[Vi]) < bn for each i. With a view to applying Lemma 4.6 and recalling
c = 1/(2R(k)), observe that bn ≤ (c/2)bn/|π|c ≤ (c/2)|Vi| and so h(G[Vi]) <
(c/2)|Vi|. But now in G[Vi] we can find at least |Vi|/(2(2k + 1)) vertex-
disjoint copies of graphs in B(k). For, if G′ denotes the graph remaining
after deleting j < |Vi|/(2(2k + 1)) copies of graphs in B(k) from G[Vi], then
|V (G′)| ≥ |Vi|−j(2k+1) ≥ |Vi|/2 and so h(G′) < c|V (G′)|; hence G′ contains
a graph in B(k) by Lemma 4.6, assuming n is sufficiently large.

Let p be a prime in{⌈
n

3(2k + 1)|π|

⌉
, . . . ,

1

2(2k + 1)

⌊
n

|π|

⌋}
Such a p is guaranteed to exist if n is sufficiently large, by the prime number
theorem, see for example Section 22.19 in [18]. As we have just seen, for any
graph G in Rn, we can find within each G[Vi] p vertex-disjoint copies Bi,j,
j ∈ {1, . . . , p}, of graphs in B(k).
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Consider the green clique C(z) and suppose without loss of generality for
simplicity that its vertices correspond to the classes V1, . . . , Vt. For r, s ∈
{1, . . . , p}, consider the t-tuple

(B1,r, B2,r+s, B3,r+2s, . . . , Bt,r+(t−1)s)

where the second subscripts are taken modulo p. For each t-tuple, there is at
least one way to join the classes to obtain a copy of H, since τ1(H) ≤ t. Also,
as p is prime, no pair of t-tuples coincide in more than one coordinate, and
so no edge between classes is spanned by more than one t-tuple. As there are
p2 t-tuples, it follows that the number of ways of choosing the edges between

pairs fromV1, . . . , Vt is at most 2mC(z)−p2 ≤ 2mC(z)−β(n2). This establishes the
claim, and thus completes the proof of the lemma.

5 Concluding remarks

We have seen that almost all graphs have the asymptotic linear Erdős-Hajnal
property. We noted that the three-vertex path P3 does not have this property,
and indeed Loebl et al. [22] suggested that P3 and P4 might be the only graphs
which do not have the property. Let us spell this out.

Question 1. Does P4 have the asymptotic linear Erdős-Hajnal property?

Question 2. Does every connected graph (with at least two vertices) other
than P3 and P4 have the asymptotic linear Erdős-Hajnal property?

Acknowledgments. We wish to thank the referees for their careful reading
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[25] H. J. Prömel and V. Rödl. Non-Ramsey graphs are c log n-universal. J.
Combin. Theory Ser. A, 88(2):379–384, 1999.
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