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Abstract

Erdős and Hajnal conjectured that, for every graph H, there exists
a constant ε(H) > 0 such that every H-free graph G (that is, not
containing H as an induced subgraph) must contain a clique or an
independent set of size at least |G|ε(H).

We prove that there exists ε(H) such that almost every H-free
graph G has this property, meaning that, amongst the H-free graphs
with n vertices, the proportion having the property tends to one as
n→∞.

1 Introduction

Szemerédi’s Regularity Lemma is a powerful tool with applications in many
fields. This paper discusses one of its applications in extremal graph theory.

A class of graphs P is said to have the Erdős-Hajnal property if there
is a positive constant ε = ε(P) such that every graph G ∈ P contains a
homogeneous set of size at least |G|ε, where a homogeneous set is either
a clique or an independent set. Let Forb(H) be the class of graphs not
containing the graph H as an induced subgraph. Erdős and Hajnal [7]
conjectured that Forb(H) has the Erdős-Hajnal property.
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Given a class of graphs P, we write Pn for the members of P having
vertex set {1, . . . , n}. In particular, we will focus on PH = Forb(H), which
we will sometimes simply write as P. Our intention in this note is to prove
the following theorem.

Theorem 1. For any graph H, there is a sub-class QH ⊂ PH which has
the Erdős-Hajnal property, with |QnH |/|PnH | → 1 as n→∞.

The Erdős-Hajnal conjecture itself remains open except in a few cases.
Erdős and Hajnal themselves proved that the conjecture holds for those
graphs H obtainable recursively from K1 by disjoint union and complemen-
tation. They also proved it for the path of length three. Alon, Pach and
Solymosi [3] showed that the class of graphs for which the conjecture holds is
closed under replacement; this means if H,F1, . . . , Fk satisfy the conjecture
and V (H) = {v1, . . . , vk}, then so does the graph H(F1, . . . , Fk), obtained
from disjoint copies of F1, . . . , Fk by joining every vertex in Fi to every ver-
tex in Fj precisely if vivj ∈ E(H) (for instance, if H satisfies the conjecture
then so does any graph obtained by blowing up the vertices of H into cliques
or independent sets). By a very different method, Chudnovsky and Safra [6]
proved the conjecture for the bull, the self-complementary graph of order 5
comprising a triangle and two pendant edges.

The size of PnH for arbitrary H has received a lot of attention. Letting
χ(H) denote the chromatic number of H, we see that any graph G which
can be partitioned into χ(H)− 1 stable sets obviously contains no induced
copies of H. Considering a fixed partition of n vertices into χ(H)− 1 parts
each of which has size within 1 of n

χ(H)−1 , and counting all the graphs where
the only edges go between partition elements we see that there are at least

2
(1− 1

χ(H)−1
+o(1))(n2) graphs in PnH . In the same vein, if G cannot be parti-

tioned into a cliques and b stable sets, then a similar argument shows that

|PnH | ≥ 2(1−
1
a+b

+o(1))(n2)

Prömel and Steger [9] showed that this lower bound is not too far from
the truth.

Definition 2. The colouring number τ(H) of a graph H is the smallest
integer k ≥ 1 such that, for every integer 0 ≤ ` ≤ k, the vertices of H can
be partitioned into ` cliques and k − ` independent sets.

Prömel and Steger [9] proved:

PnH = 2
(1− 1

τ(H)−1
+o(1))(n2).
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Let P (a, b) be the class of graphs whose vertices can be partitioned into
a cliques and b independent sets. Another way of writing the Prömel-Steger

theorem is that, if P = Forb(H) then |Pn| = 2(1−1/t+o(1))(
n
2), where

t = max{a+ b : P (a, b) ⊆ P for some a, b} .

The theorem in this form was extended to all hereditary properties P by
Alexeev [1] and by Bollobás and Thomason [5]1.

For H = C4 and H = C5, Prömel and Steger [8, 10] proved a much
sharper result by finding a very well-structured class Q with Q ⊂ P =
Forb(H) and |Qn|/|Pn| → 1 as n → ∞. Note that our aim in Theorem 1
is to do just this where the class Q has the Erdős-Hajnal property. In the
case H = C4 they showed that Q = P (1, 1) works. Clearly the class P (1, 1)
has the Erdős-Hajnal property, and indeed if G ∈ P (1, 1) then G can be
partitioned into two homogeneous sets, one of which must have size linear
in |G|. For H = C5 they showed that the class Q of generalized split graphs
works. A graph G is a generalized split graph either if its vertices can be
partitioned into two classes U and W with G[U ] being a disjoint union of
cliques and G[W ] being a single clique, or else the complement G of G
has this property. Here again the class Q has the Erdős-Hajnal property,
although since Q is dominated by graphs in which the cliques in G[U ] have
size around log |G|, we do not get a partition of G into two pieces each of
which contains a homogeneous set of size linear in their order. Nevertheless,
almost every generalized split graph does have a linear size homogenous set
since in a typical generalized split graph, both W and U will have about
half the vertices (see [10]).

It would be of interest to determine for which graphs H the following
property holds:

(*) almost every graph in PH has a homogeneous set of linear size.

We will not attack this problem here. We do however make a few re-
marks. First we note that a graph has no induced path on three vertices
precisely if it is a disjoint union of cliques. So, as discussed above, for
H = P3, we have that for almost every graph G without H as an induced
subgraph, the largest homogeneous set in G has size Θ(|V (G)|/ log |V (G)|).

1A class P of graphs that is closed under induced subgraphs is called hereditary. Clearly
Forb(H) is hereditary, as is Forb(H), the class of graphs none of whose induced subgraphs
is in the class H. Every hereditary property P is of the form P = Forb(H) for some H
(just take H to be those graphs not in P).
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We do not know of any graph other than P3 (and possibly P4) which do not
satisfy (*). These two graphs are exceptional, in that they satisfy τ = 2. We
wonder if (*) holds for all other graphs. To this end we note that McDiarmid
and Reed claim that for almost every graph H, almost every graph in PH
contains a homogeneous set of linear size. Finally we note that our approach
to proving that a graph H satisfies (*) is to show that almost every graph in
PH has a partition into τ(H)− 1 linear sized pieces, one of which contains
a homogeneous set which has size linear in its order.

Clearly, if H is a graph for which we can take Q to be the union of the
P (a, b) ⊂ PH with a + b = t, then Theorem 1 and (*) hold for H. Very
recently, Balogh and Butterfield [4] have characterized the graphs H for
which this is possible: they call such H “critical”. The remarks above show
that C4 is critical but C5 is not. Curiously it turns out that, for ` ≥ 6, C`
is not critical if ` is even, but C` is critical if ` is odd.

Given that Theorem 1 is weaker than the Erdős-Hajnal conjecture and
that it is known in special cases, we aim to give a proof that is short. In
particular, we make no effort to optimize ε(H). The results mentioned above
all begin with applications of Szemerédi’s Regularity Lemma, together with
the Erdős-Stone theorem and Ramsey’s theorem and perhaps the Erdős-
Simonovits stability theorem. (The exception to this is Alexeev [1], who
uses only an extension of the Sauer-Shelah lemma.) We shall not use this
machinery apart from one of the basic consequences of Szemerédi’s Lemma
common to all the cited papers. Our proof is based on an observation about
partitioning H into τ(H)− 1 sets (Lemma 3). Surprisingly, in order to use
the lemma, we need the fact from [6] that the Erdős-Hajnal conjecture is
true for the bull.

Because it rests on Lemma 3, our proof of Theorem 1 does not imme-
diately extend to all hereditary properties P. Alon, Balogh, Bollobás and
Morris [2] have recently described, for any hereditary property P, a property
Q with Q ⊂ P and |Qn|/|Pn| → 1 as n→∞. The graphs in Q have a par-
tition into t sets each of which is “somewhat homogenous”, in a well-defined
way. However, it is not evident whether the Erdős-Hajnal property can be
derived from this description.

2 Proof of Theorem 1

The proof combines the following simple lemma with some, by now standard,
regularity lemma machinery.
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Lemma 3. Let t ≥ 1. Then there is a finite set Ft of graphs, such that
Forb(F ) has the Erdős-Hajnal property for all F ∈ F , and the vertices of
any graph H with τ(H) = t+ 1 can be partitioned into t sets each inducing
a graph in Ft.

Proof. Let H be any graph with τ(H) = t. By the definition of τ(H), the
vertices of H can be partitioned into t+ 1 independent sets I1, . . . , It+1 and
also into t+ 1 sets C1, . . . , Ct+1 inducing cliques. For any independent set I
of H, |Ci∩ I| ≤ 1 holds for all 1 ≤ i ≤ t+ 1, and so |I| ≤ t+ 1. In particular
this is true for |Ij | for all j, and so |H| ≤ (t+ 1)2. Symmetrically no clique
of G has more than t+ 1 elements.

If |H| < (t + 1)2 we may assume that It+1 = {v1, . . . , vs} where s ≤ t.
Then put Vj = Ij ∪ {vj} for 1 ≤ j ≤ s and put Vj = Ij for s < j ≤ t.

If |H| = (t + 1)2, since τ(H) = t + 1 there is a partition of the vertices
of H into t independent sets J1, . . . , Jt and a set D inducing a clique. Since
|Jj | ≤ t+ 1 for all j and |D| ≤ t+ 1, it follows that all these sets have size
exactly t + 1, so write D = {w1, . . . , wt+1}. Then put Vj = Jj ∪ {wj} for
1 ≤ j < t and let Vt = Jt ∪ {wt, wt+1}.

In each case, we obtain a partition V (H) = V1 ∪ · · · ∪ Vt; let Fj be the
subgraph induced by Vj . For j < t the graph Fj consists of a star together
with isolated vertices. Note that the star K1,s equals K2(K1,Ks) (here we
are using the replacement notation from the introduction) and K1,s together
with i isolated vertices equals K2(K1,s,Ki), so each graph Fj , j < t satisfies
the Erdős-Hajnal property. Let Ft = F together with i isolated vertices,
where F is connected. Then F is obtained from the bull by replacing vertices
with (possibly empty) independent sets, and then Ft = K2(F,Ki). Thus Ft
also satisfies the Erdős-Hajnal property.

Finally, let Ft be the set of all graphs that can arise in the procedure
above.

In the case when |H| = (t + 1)2 we could instead have obtained Ft
by distributing It+1 amongst I1, . . . , It, but this would require the path of
length 4 to satisfy the Erdős-Hajnal property, which is currently unknown.
Note that graphs with τ(H) = t + 1 and |H| = (t + 1)2 do exist, at least
if t + 1 is a prime power. Take V (H) = F2

t+1. Each pair of vertices lies in
exactly one line, whose gradient is one of 0, 1, . . . , t,∞. The t + 1 parallel
lines of each gradient form a partition of the vertex set. For finite gradients
m ≤ t make m of these lines cliques and the other t+1−m lines independent
sets; for m =∞ make all the lines cliques.

We remarked earlier that Szemerédi’s Lemma is fundamental in the study
of the number of H-free graphs. In fact by making use of earlier work we
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can avoid many of the technicalities involved. Lemma 3.5 in the pioneering
work of Prömel and Steger [9] is entirely adequate for our purposes but
we borrow instead [5, Theorem 3.1], which is very similar. It is phrased in
terms of the density of bipartite graphs, which has the natural meaning, and
η-regularity, which has its usual meaning in relation to Szemerédi’s Lemma:
however, it is not necessary to know this meaning in order to follow the
proof of Theorem 1. A coloured partition π is a colouring of the edges of the
complete graph Km with colours red, blue, green and grey, where m is the
order of π, denoted |π|. Given a graph G and constants 0 < λ, η < 1 we say
that a partition of the vertices of G into |π| classes V1, . . . , V|π| satisfies π
with respect to λ and η if |V1| ≤ |V2| ≤ . . . ≤ |V|π|| ≤ |V1| + 1 and the pair
(Vi, Vj) is not η-regular only if ij is grey, and otherwise 0 ≤ d(Vi, Vj) ≤ λ,
λ < d(Vi, Vj) < 1 − λ or 1 − λ ≤ d(Vi, Vj) ≤ 1 according as ij is red, green
or blue. Here d(Vi, Vj) stands for the density of the bipartite graph between
Vi and Vj . We say that G satisfies π if there is a partition of G satisfying π.

Szemerédi’s Regularity Lemma [11] asserts that, given λ, η and some
integer `, there exists an integer L = L(`, η) such that any graph G satisfies
some coloured partition π with respect to λ and η, where ` ≤ |π| < L and
where π has at most η

(|π|
2

)
grey edges. The following proposition, roughly

speaking, states that if π has many green edges then G contains every small
member of P (a, b).

Proposition 4 ([5, Theorem 3.1]). Let t, h ∈ N and 0 < λ, ν < 1 be given.
Then there exist positive constants `0, η0, and n0 with the following property.
Let π be a coloured partition with |π| ≥ `0, having at most η0

(|π|
2

)
grey edges

and at least (1− 1/t+ ν)
(|π|
2

)
green edges. Then there are integers a and b

with a + b = t + 1, such that every graph of order at least n0 that satisfies
π with respect to λ and η0 contains every member of P (a, b) with at most h
vertices as an induced subgraph.

With our lemma and the regularity lemma in hand, we are in a position
to finish the proof of Theorem 1.

Proof of Theorem 1. Let P = Forb(H) and let t = τ(H)−1. Note that, as in
the proof of Lemma 3, |H| ≤ (t+1)2, so we may assume t ≥ 1. Furthermore,
if τ(H) = 2 then (as the Erdős-Hajnal property holds for K2, K2 ∪K1, P4

and C4) we are done, so we may assume t ≥ 2. By the definition of τ(H)
there exist a, b with a+b = t and P (a, b) ⊂ P. The graphs of order n formed
by adding edges between a cliques and b independent sets are all in P, and

hence |Pn| ≥ 2(1−1/t+o(1))(
n
2).
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Let Ft be the class given by Lemma 3. For each F in Ft let εF be such
that for every graph G, either G contains F as an induced subgraph or G
contains a homogenous set of size at least |G|εF . Let ε be the minimum of
the εF .

Let Q be the class of graphs G ∈ P containing a homogeneous set of size
|G|ε/2, so Q has the Erdős-Hajnal property. Let R = P −Q. We shall show
that |Rn|/|Pn| → 0 as n→∞; that is, |Qn|/|Pn| → 1 as required.

Our approach is straightforward. Szemerédi’s Regularity Lemma tells us
that for large enough n, every graph in Rn satisfies one of a certain class of
coloured partitions. We count the number of elements of Rn by summing
the number of elements satisfying each partition. Forthwith the details.

We set h = |H| and pick λ, ν to certify certain inequalities given below.
Choose η0, `0 and n0 satisfying Proposition 4 with respect to h, t, λ, and ν.
We choose ` ≥ `0 and η ≤ η0 which satisfy some inequalities given below.
We choose L satisfying the Szemerédi Regularity Lemma for this choice of
λ, η and `. Let G ∈ Pn for some n ≥ n0. Then G satisfies some π with
respect to λ, η where ` ≤ |π| < L and π has at most η

(|π|
2

)
grey edges.

We want to bound the number of graphs of Rn satisfying a particular
partition π with respect to a given λ and η. We actually bound the number
of partitions of graphs in Rn which satisfy π, which is larger. We do so by
summing over each partition of V , the number of graphs in Rn for which
this partition satisfies π with respect to λ, η. If Vi, Vj corresponds to a green
edge or a grey edge then there are at most 2|Vi||Vj | ways to join Vi to Vj .
But for red and blue edges there are at most 2c|Vi||Vj | where c→ 0 as λ→ 0.
Furthermore, there are at most

(
n
2

)
/|π| edges within the partition classes.

So letting ng be the proportion of green edges of the partition we see that
the total number of graphs G such that this partition satisfies π is at most

2
(ng+η+c+

1
|π| )(

n
2). (1)

Since we know that Pn has at least 2(1−
1
t
+o(1))(n2) elements, an easy com-

putation yields that for large n the number of graphs satisfying partitions
with ng < 1− 1

t − η − 2c− 1
` is o(|Pn|).

In counting these graph partitions satisfying π for which ng is larger,
we need to exploit the fact that we are only counting graphs in Rn. Since
H /∈ P (a, b), Proposition 4 therefore implies that we need only consider π
with at most (1− 1/t+ ν)

(|π|
2

)
green edges.

The proof of the following two lemmas is postponed to the end of the
proof.
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Lemma 5. If π contains s edge disjoint cliques of size t all of whose edges
are green then the total number of graphs in Rn for which a given partition

satisfies π is at most 2
(ng− s

16t2|π|2
+η+c+ 1

|π| )(
n
2).

Lemma 6. If ng exceeds 1− 1
t−1 + 1

2t2
and |π| is sufficiently large then there

are at least |π|2/4t4 edge disjoint cliques of size t in π all of whose edges are
green.

With these two lemmas in hand, it is straightforward to prove the the-
orem. We choose λ so that c is less than 1

1000t6
. We choose ν = 1

1000t6
. We

choose ` such that ` ≥ max(l0, 1000t6) and Lemma 5 applies, and we choose
η ≤ min(η0,

1
1000t6

).
Now, we have that η + c+ 1

|π| ≤
3

1000t6
. So, if π is a partition for which

ng < 1 − 1
t−1 + 1

2t2
then there are at most 2(1−

1
t−1

+ 2
3t2

)(n2) graphs G in Rn
for which a given partition satisfies π. On the other hand for any partition
π with ng ≥ 1 − 1

t−1 + 1
2t2

we know by Proposition 4 that ng ≤ 1− 1
t + ν.

Hence, combining Lemmas 6 and 5, we see that at most 2(1−
1
t
− 1

64t6
+ 4

1000t6
)(n2)

graphs in Rn satisfy π. So, in either case, there are at most 2(1−
1
t
− 1

100t6
)(n2)

graphs in Rn for which a particular partition satisfies π. But the number of
choices for π is independent of n, and the number of partitions of the vertex

set is Ln which is o(2(n2)). So for large n, the number of elements of Rn

is o(2(1−
1
t
)(n2)) and hence |Rn| = o(|Pn|). This completes the proof of the

lemma and the theorem.

It remains only to prove the two lemmas.
The second one is straightforward. We simply greedily rip out the edges

of a green clique of size t in π until no such cliques remain. Turan’s theorem
tells us that when we stop, only (1 − 1

t−1)
(|π|
2

)
green edges can remain.

But by assumption π has at least (1 − 1
t−1 + 1

2t2
)
(|π|
2

)
green edges. So we

must have ripped out at least (1 + o(1))
(|π|
2

)
/2t2 edges and hence at least

(1 + o(1))
(|π|
2

)
/t4 cliques which is at least

(|π|
2

)
/4t4 for large enough |π|.

With the proof of Lemma 6 completed, we turn to the proof of Lemma 5.

Proof of Lemma 5. For each green clique C, we let mC be the sum of |Vi||Vj |
over every two partition classes Vi and Vj in C. We claim that for each of
the s cliques, having fixed the edges within the partition classes, there are

at most 2
mC− n2

16t2|π|2 ways to pick the edges within the green edges of the
clique. Combining this with our earlier analysis leading to (1) then yields
the desired result.
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It remains to prove the claim. By Lemma 3, there is a partition V (H) =
V1∪· · ·∪Vt such that each Vi induces a subgraph Fi that belongs to Ft. Let G
be any graph inRn and let C be a green clique, say with vertices correspond-
ing to V1, . . . , Vt. Let p be a prime between n/4t|π| and n/3t|π| (which can be
found provided n is large enough). BecauseG contains no large homogeneous
set, and each Fi satisfies the Erdős-Hajnal property with constant εFi ≥ ε,

we can pick out p vertex-disjoint copies F
(1)
i , . . . , F

(p)
i of Fi in G[Vi] for each

i. For 1 ≤ r, s ≤ p, consider the t-tuple (F
(r)
1 , F

(r+s)
2 . . . , F

(r+(t−1)s)
t ), where

indices are taken modulo p. For each t-tuple, there is at least one way to join
the classes to obtain a copy of H; on the other hand, as p is prime, no pair
of t-tuples coincide in more than one coordinate, and so no edge between
classes is spanned by more than one t-tuple. As there are p2 t-tuples, it
follows that the number of ways of filling in the edges between V1, . . . , Vt is
at most 2mC−p

2 ≤ 2mc−n
2/16t2|π|2 . The desired result follows.

This completes the proof of the lemma and our theorem.
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