On a problem of Erdős and Moser

Béla Bollobás * Alex Scott [†]

Abstract

A set A of vertices in an r-uniform hypergraph \mathcal{H} is covered in \mathcal{H} if there is some vertex $u \notin A$ such that every edge of the form $\{u\} \cup B, B \in A^{(r-1)}$ is in \mathcal{H} . Erdős and Moser (1970) determined the minimum number of edges in a graph on n vertices such that every k-set is covered. We extend this result to r-uniform hypergraphs on sufficiently many vertices, and determine the extremal hypergraphs. We also address the problem for directed graphs.

1 Introduction

Let \mathcal{H} be an *r*-uniform hypergraph with vertex set X. We say that a set $A \subset X$ is *covered in* \mathcal{H} if there is $u \notin A$ such that, for every $B \in A^{(r-1)}$ we have $B \cup \{u\} \in \mathcal{H}$; we say that u covers A (in \mathcal{H}). Let f(n, k, r) be the minimum number of edges in an *r*-uniform hypergraph \mathcal{H} with vertex set $[n] = \{1, \ldots, n\}$ such that every k-set in [n] is covered in \mathcal{H} .

The problem of determining f(n, k, r) for graphs (r = 2) was raised by Erdős and Moser in [3]. Subsequently, they proved in [4] that, for r = 2 and all n > k,

$$f(n,k,2) = (k-1)(n-1) - \binom{k-1}{2} + \left\lceil \frac{n-k+1}{2} \right\rceil,$$

^{*}Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB, UK; *and* Department of Mathematical Sciences, University of Memphis, Memphis TN38152, USA; *and* London Institute for Mathematical Sciences, 35a South St, Mayfair, London W1K 2XF, UK; email: bb12@cam.ac.uk. Research supported in part by NSF grant ITR 0225610; and by MULTIPLEX no. 317532.

[†]Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; email: scott@maths.ox.ac.uk.

with a unique extremal graph. Our aim in this paper is to generalise this to larger values r: for fixed k, r and sufficiently large n, we will determine the value of f(n, k, r) and find the extremal graphs.

We begin with a construction giving an upper bound on f(n, k, r). Let D(n, r) be the minimum number $|\mathcal{H}|$ of edges in an *r*-uniform hypergraph \mathcal{H} with vertex set [n] such that every (r-1)-set is contained in some element of \mathcal{H} . It is clear that $D(n, r) \geq {n \choose r-1}/{r \choose r-1}$. In fact, this bound is close to optimal: for fixed r, we have

$$D(n,r) = (1+o(1))\binom{n}{r-1} / \binom{r}{r-1} \sim n^{r-1}/r!.$$

This follows as a (very) special case of an important result of Rödl [10]. There is also a simple construction (pointed out to us by Noga Alon): for $c \in [n]$, consider the set $\{A \in [n]^{(r)} : \sum_{a \in A} a \equiv c \pmod{n}\}$. This covers all (r-1)-sets except those B for which $c - \sum_{b \in B} \in B \pmod{n}$. There are only $O(n^{r-2})$ of these, so we can cover them one at a time.

Now for $n > k \ge r - 1$, let $\mathcal{G}(n, k, r)$ be the family of *r*-uniform hypergraphs \mathcal{G} on vertex set [n] that can be constructed as follows:

- add all edges that meet any of the vertices $\{1, \ldots, k r + 1\};$
- on vertices $\{k-r+2, \ldots, n\}$, we add a collection of D(n-k+r-1, r) edges such that every (r-1)-set in $\{k-r+2, \ldots, n\}$ is contained in at least one of these edges.

Let us check that for $\mathcal{H} \in \mathcal{G}(n, k, r)$, every k-set B of vertices is covered in \mathcal{H} : if $[k - r + 1] \not\subseteq B$ then any element i of $[k - r + 1] \setminus B$ covers B. Otherwise, $B \supseteq [k - r + 1]$, so $B \setminus [k - r + 1]$ has size r - 1 and is therefore contained in some edge C added in the second step of the construction: the unique element u of $C \setminus B$ then covers B. We note that our construction generalizes that of Erdős and Moser: for r = 2, $\mathcal{G}(n, k, r)$ consists of a unique graph up to isomorphism.

Let g(n, k, r) be the number of edges in each element of $\mathcal{G}(n, k, r)$, so

$$g(n,k,r) = \binom{n}{r} - \binom{n-k+r-1}{r} + D(n-k+r-1,r)$$
(1)
= $(k-r+1+1/r+o(1))\frac{n^{r-1}}{(r-1)!}.$

Furthermore, if there exists a Steiner system with parameters (n - k + r - 1, r, r - 1) (in other words, a perfect covering of (r - 1)-sets by r-sets) then

$$g(n,k,r) = \binom{n}{r} - \binom{n-k+r-1}{r} + \binom{n-k+r-1}{r-1}/r.$$
 (2)

By a recent major result of Keevash [5], such designs exist for infinitely many values of n - k + r + 1, and so (2) holds for infinitely many values of n.

The main result of this paper is to show that, for fixed k, r and all sufficiently large n, the construction above is optimal (and that all hypergraphs of minimal size can be constructed in this way).

Theorem 1. For every k, r there is an integer $n_0(k, r)$ such that for all $n > n_0$,

$$f(n,k,r) = g(n,k,r).$$

Furthermore, if \mathcal{H} is an r-uniform hypergraph with n vertices and f(n, k, r)edges in which every k-set of vertices is covered, then \mathcal{H} is isomorphic to some element of $\mathcal{G}(n, k, r)$.

We note that Theorem 1 implies that, for $n > n_0(k, r)$,

$$f(n,k,r) \ge \binom{n}{r} - \binom{n-k+r-1}{r} + \binom{n-k+r-1}{r-1}/r,$$

with equality for infinitely many values of n.

We will prove Theorem 1 in the next section; further discussion, and results for directed graphs, can be found in the final section. We use standard notation throughout: in particular, $[n] = \{1, \ldots, n\}, X^{(r)} = \{A \subset X : |A| = r\}$ and, for a hypergraph \mathcal{H} , we write $|\mathcal{H}|$ for the number of edges in \mathcal{H} .

2 Covering hypergraphs

The upper bound in Theorem 1 follows immediately from the construction given in the introduction. We will prove the lower bound by an induction on r, for which we will need two lemmas: the first lemma shows that, for fixed k, r and large n, an extremal hypergraph must have k - r + 1 vertices with degree close to the maximum possible; the second will allow us to show that if an extremal hypergraph has k - r + 1 vertices of almost maximum possible degree then it must in fact belong to $\mathcal{G}(n, k, r)$. We will state and prove both lemmas, and then complete the proof of Theorem 1 at the end of the section.

Recall that if \mathcal{H} is an *r*-uniform hypergraph then the shadow $\partial \mathcal{H}$ of \mathcal{H} is the (r-1)-uniform hypergraph consisting of all (r-1)-sets that are contained in some edge of \mathcal{H} . We will need a version of the Kruskal-Katona Theorem ([7], [6]; see also [2], p. 30). It will be convenient to use it in the simplified form due to Lovász [9]: for $x \in [r, \infty)$, if \mathcal{H} is an *r*-uniform hypergraph with $\binom{x}{r}$ edges, then $\partial \mathcal{H}$ has at least $\binom{x}{r-1}$ edges.

We can now state the first lemma. This will be used in our inductive argument, so if r > 2 we will be able to assume that Theorem 1 holds for r-1.

Lemma 2. Let $k \ge r \ge 2$ be fixed, and if r > 2 suppose that Theorem 1 holds with r-1 in place of r (we do not assume anything if r = 2). Let $\epsilon > 0$ and let n be sufficiently large (depending on k, r, ϵ). Let \mathcal{H} be an r-uniform hypergraph with n vertices and f(n, k, r) edges, and suppose that every k-set of vertices is covered in \mathcal{H} . Then \mathcal{H} has k - r + 1 vertices of degree at least $(1 - \epsilon) \binom{n-1}{r-1}$.

Proof. Let V and E be the vertex and edge sets of \mathcal{H} respectively, and write m = |E| = f(n, k, r). Note that $m \leq g(n, k, r)$, which by (1) is at most $(k - r + 1 + 1/r + o(1))n^{r-1}/(r-1)! = O(n^{r-1})$. Let $d_1 \geq d_2 \geq \cdots \geq d_n$ be the degree sequence of \mathcal{H} , and suppose that $d_{k-r+1} < (1-\epsilon)\binom{n-1}{r-1}$. Define η by $(1-\eta)^{r-1} = 1-\epsilon$.

Let v be a vertex of minimal degree in \mathcal{H} , and let \mathcal{H}_v be the neighbourhood hypergraph of v, that is the (r-1)-uniform hypergraph with vertex set $V \setminus v$, and edge set $\{e \setminus v : v \in e \text{ and } e \in E\}$. Since every k-set is covered in \mathcal{H} , it follows that if $r \geq 3$ then every (k-1)-set is covered in \mathcal{H}_v (for any (k-1)-set $A \subset V \setminus v$, the set $A \cup \{v\}$ is covered in \mathcal{H} by some u; then u covers A in \mathcal{H}_v). Thus \mathcal{H}_v has at least f(n-1, k-1, r-1) edges. It follows by assumption that f(n-1, k-1, r-1) = g(n-1, k-1, r-1) for sufficiently large n, and so \mathcal{H} has minimal degree

$$\delta(\mathcal{H}) \ge g(n-1, k-1, r-1)$$

$$\sim (k-r+1+1/(r-1)+o(1))\frac{n^{r-2}}{(r-2)!}.$$
 (3)

If r = 2, we have directly that $\delta(\mathcal{H}) \geq k$ or else any k-set containing v and all its neighbours is not covered in \mathcal{H} . So (3) holds for all $r \geq 2$.

For i = 1, ..., n, define a real number $x_i \in [r - 1, \infty)$ by

$$d_i = \begin{pmatrix} x_i \\ r-1 \end{pmatrix},\tag{4}$$

so $x_1 \geq \cdots \geq x_n$. By the Kruskal-Katona Theorem, a vertex v that covers $\binom{x}{r}$ r-sets must have degree at least $\binom{x}{r-1}$ (since \mathcal{H}_v must contain all (r-1)sets in the shadow of the r-sets covered by v). So the *i*th vertex in \mathcal{H} covers at most $\binom{x_i}{r}$ r-sets.

Each r-set R in V is covered at least k - r + 1 times in \mathcal{H} , or else we could choose a k-set S containing R and all vertices that cover R, and then S would not be covered in \mathcal{H} . Counting all pairs (R, u) such that R is an r-set and u covers R, we see that

$$\sum_{i=1}^{n} \binom{x_i}{r} \ge (k-r+1)\binom{n}{r}.$$
(5)

We have $x_1 \leq n-1$ and, as $d_{k-r+1} < (1-\epsilon)\binom{n-1}{r-1}$, we have from (4) and the definition of η that

$$x_{k-r+1} \le (1 - \eta + o(1))n.$$

Let $t = \lceil \log n \rceil^{r-1}$. Then, as $\sum_{i=1}^{n} d_i = rm$, we have $d_t \leq rm/t = O(n^{r-1}/t)$ and so

$$x_t = O(n/t^{1/(r-1)}) = O(n/\log n).$$

Furthermore, for every i we have

$$\binom{x_i}{r} = \frac{x_i - r + 1}{r} \binom{x_i}{r-1} = \frac{x_i - r + 1}{r} d_i.$$

Since the sequence $(x_i)_{i=1}^n$ is decreasing, it follows that

$$\begin{split} \sum_{i=1}^{n} \binom{x_i}{r} &= \sum_{i=1}^{n} \frac{x_i - r + 1}{r} d_i \\ &\leq \frac{x_1 - r + 1}{r} \sum_{i=1}^{k-r} d_i + \frac{x_{k-r+1} - r + 1}{r} \sum_{i=k-r+1}^{t-1} d_i + \frac{x_t - r + 1}{r} \sum_{i=t}^{n} d_i \\ &\leq \frac{n - r}{r} \sum_{i=1}^{k-r} d_i + \frac{(1 - \eta + o(1))n}{r} \sum_{i=k-r+1}^{t-1} d_i + O(nm/\log n) \end{split}$$

Now $m = O(n^{r-1})$, so the last term is $o(n^r)$. Suppose $\sum_{i=1}^{k-r} d_i = \alpha \binom{n-1}{r-1}$ and $\sum_{i=k-r+1}^{t-1} d = \beta \binom{n-1}{r-1}$. Then by (5) and the bound on $\sum_{i=1}^{n} \binom{x_i}{r}$ above we must have

$$\begin{aligned} (k-r+1)\binom{n}{r} &\leq \frac{n-r}{r} \alpha \binom{n-1}{r-1} + \frac{(1-\eta+o(1))n}{r} \beta \binom{n-1}{r-1} + o(n^r) \\ &= \alpha \binom{n-1}{r} + (1-\eta+o(1))\beta \binom{n-1}{r} + o(n^r) \\ &= (\alpha+(1-\eta)\beta+o(1))\binom{n}{r}, \end{aligned}$$

and so $\alpha + (1 - \eta)\beta \ge k - r + 1 + o(1)$. However, $\alpha \le k - r$ (as $d_1 \le \binom{n-1}{r-1}$) and so $\beta \ge 1/(1 - \eta) + o(1)$, giving

$$\alpha + \beta \ge k - r + \frac{1}{1 - \eta} + o(1) \ge k - r + 1 + \eta,$$

for large enough n. So

$$\sum_{i=1}^{t-1} d_i \ge (k-r+1+\eta) \binom{n-1}{r-1}.$$
(6)

On the other hand, by (3),

$$\sum_{i=t}^{n} d_i \ge (1+o(1))n\delta(\mathcal{H})$$

$$\ge (k-r+1+1/(r-1)+o(1))\frac{n^{r-1}}{(r-2)!}$$

$$= ((r-1)(k-r+1)+1)\frac{n^{r-1}}{(r-1)!}+o(n^{r-1}).$$
 (7)

Since $\sum_{i=1}^{n} d_i = mr$, (6) and (7) imply that

$$m \ge (k - r + 1 + 1/r + \eta/r + o(1)) \binom{n-1}{r-1},$$

which gives a contradiction for large enough n. We conclude that we must have $d_{k-r+1} \ge (1-\epsilon)\binom{n-1}{r-1}$ if n is sufficiently large, which implies the result immediately.

Our second lemma will allow us to clean up the structure of a hypergraph that is close to extremal.

Lemma 3. For every $r \geq 2$ and $\lambda > 0$ there is $\epsilon > 0$ such that the following holds for all sufficiently large n. Let \mathcal{F} and \mathcal{H} be two hypergraphs with vertex set [n] such that

- \mathcal{F} is (r-1)-uniform and $|\mathcal{F}| < \epsilon n^{r-1}$;
- *H* is r-uniform;
- every $A \in [n]^{(r)}$ that contains an element of \mathcal{F} is covered in \mathcal{H} .

Then there is an r-uniform hypergraph \mathcal{H}' with vertex set [n] such that

- $|\mathcal{H}'| + \lambda |\mathcal{F}| < |\mathcal{H}|;$
- $\partial \mathcal{H}' \supset \partial \mathcal{H}$.

Proof. The proof hinges on the fact that the presence of \mathcal{F} forces \mathcal{H} to cover many *r*-sets, and this in turn means that that \mathcal{H} is not efficiently structured to have a large shadow (as some (r-1) sets are contained in multiple elements of \mathcal{H}). We will obtain \mathcal{H}' from \mathcal{H} by deleting some edges, and possibly adding a smaller number of new edges to make sure that the shadow does not shrink.

We choose a large positive integer $M = M(r, \lambda) > 0$ and then a small constant $\epsilon = \epsilon(M, r, \lambda) > 0$. Let $m = |\mathcal{F}|$. Let us say that an ordered (r+1)-tuple $(x_1, \ldots, x_{r-1}, w, u)$ is good if $\{x_1, \ldots, x_{r-1}\} \in \mathcal{F}$ and u covers $\{x_1, \ldots, x_{r-1}, w\}$ in \mathcal{H} . Since there are (r-1)! ways of ordering an element of \mathcal{F} , and n-r+1 choices for an additional vertex w (with at least one choice of u for each of these), there are (r-1)!(n-r+1)m sequences $(x_1, \ldots, x_{r-1}, w)$ that extend to a good (r+1)-tuple of form $(x_1, \ldots, x_{r-1}, w, u)$.

Fix a partition $X_1 \cup \cdots \cup X_{r+1}$ of [n], and let \mathcal{B}_0 be the set of good (r+1)tuples (a_1, \ldots, a_{r+1}) such that $a_i \in X_i$ for each i. Let \mathcal{A}_0 be the set of r-tuples (a_1, \ldots, a_r) such that $(a_1, \ldots, a_{r+1}) \in \mathcal{B}_0$ for some $a_{r+1} \in X_{r+1}$; and let \mathcal{F}_0 be the the set of (r-1)-tuples (a_1, \ldots, a_{r-1}) such that $(a_1, \ldots, a_r) \in \mathcal{A}_0$ for some $a_r \in X_r$. We will also describe this as follows: we consider \mathcal{B}_0 as a subset of the cartesian product $X_1 \times \cdots \times X_{r+1}$, and then \mathcal{F}_0 and \mathcal{A}_0 are the projections of \mathcal{B}_0 on to the first r-1 coordinates and the first r coordinates respectively. We choose X_1, \ldots, X_{r+1} so that $|\mathcal{A}_0|$ is as large as possible: by considering a random partition, we see that

$$|\mathcal{A}_0| \ge (r-1)!(n-r+1)m/(r+1)^{r+1}.$$
 (8)

For each $F = (a_1, \ldots, a_{r-1}) \in \mathcal{F}_0$, let $\alpha(F)$ be the number of distinct elements $u \in X_{r+1}$ such that $(a_1, \ldots, a_{r-1}, w, u) \in \mathcal{B}_0$ for some $w \in X_r$. Note that $\alpha(F) \geq 1$ for all $F \in \mathcal{F}_0$.

Suppose first that

$$\sum_{F \in \mathcal{F}_0} \max\{\alpha(F) - 1, 0\} > \lambda m.$$
(9)

In this case we construct our set system \mathcal{H}' as follows. For each $F = (a_1, \ldots, a_{r-1}) \in \mathcal{F}_0$ with $\alpha(F) > 1$, we choose $\alpha(F)$ elements of \mathcal{B}_0 that have F as an initial segment and contain distinct elements of X_{r+1} , say

$$(a_1,\ldots,a_{r-1},w_1,u_1),\ldots,(a_1,\ldots,a_{r-1},w_{\alpha(F)},u_{\alpha(F)})$$

(so the u_i are distinct, but the w_i may contain repetitions). We now delete from \mathcal{H} the edges

$$\{a_1,\ldots,a_{r-1},u_1\},\ldots,\{a_1,\ldots,a_{r-1},u_{\alpha(F)-1}\};$$

these belong to \mathcal{H} as $(a_1, \ldots, a_r, w_i, u_i)$ is a good (r+1)-tuple for each i and so u_i covers $\{a_1, \ldots, a_r, w_i\}$. Repeating for each $F \in \mathcal{F}_0$ with $\alpha(F) > 1$, it follows from (9) that we delete a total of more than λm edges from \mathcal{H} . Let \mathcal{H}' be the resulting hypergraph. Clearly $|\mathcal{H}'| + \lambda |\mathcal{F}| < |\mathcal{H}|$, so it is enough to show that $\partial \mathcal{H}' = \partial \mathcal{H}$. Suppose that $I \in \partial \mathcal{H}$ (so |I| = r - 1). If $I \notin \partial \mathcal{H}'$ then there must be an edge of form $A = \{a_1, \ldots, a_{r-1}, u_i\}$ that contains I and that we deleted from \mathcal{H} . If $I = A \setminus a_j$ for some j, then $I \subset (A \setminus a_j) \cup \{w_i, u_i\}$, which belongs to \mathcal{H} as u_i covers $\{a_1, \ldots, a_r, w_i\}$ and it was not one of the edges we deleted; otherwise $I = \{a_1, \ldots, a_{r-1}\}$, and is contained in $\{a_1, \ldots, a_{r-1}, u_{\alpha(F)}\}$, which we did not delete from \mathcal{H} . We conclude that $\partial \mathcal{H}' = \partial \mathcal{H}$.

We may therefore assume that (9) does not hold. It follows that there are at most $\lambda m/M$ elements $F = (a_1, \ldots, a_{r-1}) \in \mathcal{F}_0$ with $\alpha(F) \geq M +$ 1. Let $\mathcal{F}_1 = \{F \in \mathcal{F}_0 : \alpha(F) \leq M\}$, and let \mathcal{A}_1 be the set of elements $(a_1, \ldots, a_{r-1}, w) \in \mathcal{A}_0$ such that $(a_1, \ldots, a_{r-1}) \in \mathcal{F}_1$. Since each $F \in \mathcal{F}_0$ extends to at most n - r + 1 elements of \mathcal{A}_0 , it follows from (8) that for all sufficiently large n

$$|\mathcal{A}_1| \ge (r-1)!(n-r+1)m/(r+1)^{r+1} - (n-r+1)(\lambda m/M) \ge mn/M,$$

provided M is large enough.

For each $F = (a_1, \ldots, a_{r-1}) \in \mathcal{F}_1$, define

$$\beta(F) = \max_{u \in X_{r+1}} |\{w \in X_r : (a_1, \dots, a_{r-1}, w, u) \in \mathcal{B}_0\}|,$$

and choose $u_F \in X_{r+1}$ such that there are $\beta(F)$ elements $w \in X_r$ such that $(a_1, \ldots, a_{r-1}, w, u_F) \in \mathcal{B}_0$. Each $F \in \mathcal{F}_1$ extends to at most $\alpha(F)\beta(F)$ elements of \mathcal{B}_0 , and so F extends to at most $\alpha(F)\beta(F)$ elements of \mathcal{A}_1 . Therefore

$$|\mathcal{A}_1| \le \sum_{F \in \mathcal{F}_1} \alpha(F)\beta(F) \le M \sum_{F \in \mathcal{F}_1} \beta(F),$$

and so $\sum_{F \in \mathcal{F}_1} \beta(F) \ge mn/M^2$. Let $\mathcal{F}_2 = \{F \in \mathcal{F}_1 : \beta(F) \ge n/2M^2\}$. So for each $F = (a_1, \dots, a_{r-1}) \in \mathcal{F}_2$ we have chosen $u_F \in X_{r+1}$ such that there are at least $n/2M^2$ elements of \mathcal{B}_0 of form $(a_1, \ldots, a_{r-1}, w, u_F)$ with $w \in X_r$. By counting the number of ways of extending elements from \mathcal{F}_1 to \mathcal{A}_1 , we see that

$$|\mathcal{A}_1| \le (n-r+1)|\mathcal{F}_2| + (n/2M^2)|\mathcal{F}_1 \setminus \mathcal{F}_2| \le n|\mathcal{F}_2| + mn/2M^2.$$

Since $|\mathcal{A}_1| \ge mn/M$, this implies that $|\mathcal{F}_2| \ge m/2M^2$.

Now \mathcal{F}_2 is a subset of $X_1 \times \cdots \times X_{r-1}$. For $i = 1, \ldots, r-1$, let \mathcal{P}_i be the projection of \mathcal{F}_2 onto the coordinates other than i, so $\mathcal{P}_i \subset \prod_{j \in [r-1] \setminus i} X_j$. It follows from the Loomis-Whitney Inequality [8] (see also [1]) that

$$\prod_{i=1}^{r-1} |\mathcal{P}_i| \ge |\mathcal{F}_2|^{r-2},$$

and so in particular there is some i such that

$$|\mathcal{P}_i| \ge |\mathcal{F}_2|^{(r-2)/(r-1)} \ge (m/2M^2)^{(r-2)/(r-1)} > 5M^2\lambda m/n,$$

as $m \leq \epsilon n^{r-1}$ by assumption and we may also assume $\epsilon < 1/(10\lambda M^4)^r$.

Without loss of generality, we may assume that i = r - 1. Let $\mathcal{P} = \mathcal{P}_{r-1}$. For each element of $P = (a_1, \ldots, a_{r-2}) \in \mathcal{P}$, choose an element $F \in \mathcal{F}_2$ that projects to P. Let \mathcal{F}_3 be the collection of $|\mathcal{P}|$ elements of \mathcal{F}_2 that are chosen. Thus the elements of \mathcal{F}_3 have pairwise distinct projections on to the first r-2 coordinates.

We are finally ready to construct our modification of \mathcal{H} . For $F = (a_1, \ldots, a_{r-1}) \in \mathcal{F}_3$, let $W_F = \{w \in X_r : (a_1, \ldots, a_{r-1}, w, u_F) \in \mathcal{B}_0\}$, say $W_F = \{w_1, \ldots, w_t\}$. Since $F \in \mathcal{F}_3 \subset \mathcal{F}_2$, we have $t \ge n/2M^2$; if t is odd, we reduce it by one (and do not use the final element of W_F). Now delete from \mathcal{H} the edges

$$\{a_1, \dots, a_{r-2}, w_1, u_F\}, \dots, \{a_1, \dots, a_{r-2}, w_t, u_F\}$$
(10)

and add (if not already present) new edges

$$\{a_1,\ldots,a_{r-2},w_1,w_2\},\{a_1,\ldots,a_{r-2},w_3,w_4\},\ldots,\{a_1,\ldots,a_{r-2},w_{t-1},w_t\}.$$

Thus we decrease the number of edges by at least $t/2 \ge n/5M^2$. Repeating for every $F \in \mathcal{F}_3$, we decrease the number of edges by at least $|\mathcal{F}_3|(n/5M^2) >$ $(5M^2\lambda m/n)(n/5M^2) = \lambda m$ (note that we delete disjoint sets of edges for distinct $F, F' \in \mathcal{F}_3$, as F and F' extend distinct elements of \mathcal{P} and so have distinct projections on to the first r-2 coordinates). Let \mathcal{H}' be the resulting hypergraph.

All that remains is to check that $\partial H \subset \partial H'$. Given $I \in \partial H \setminus \partial H'$, we know that I must be contained in one of the edges we deleted. So suppose without loss of generality that $I \subset \{a_1, \ldots, a_{r-2}, w_1, u_F\}$ in (10). Since u_F covers $\{a_1, \ldots, a_{r-1}, w_1\}$ in \mathcal{H} we cannot have $u_F \in I$, as then $I \cup \{a_{r-1}\}$ is an edge of both \mathcal{H} and \mathcal{H}' . But then $I \subset \{a_1, \ldots, a_{r-2}, w_1, w_2\} \in \mathcal{H}'$. This gives a contradiction and proves the lemma. \Box

We can now complete the proof of our main theorem.

Proof of Theorem 1. We prove the theorem by induction on r. The case r = 2 is immediate from the Erdős-Moser theorem, so we may assume that $r \geq 3$ and we have proved smaller cases.

We first note that, since Theorem 1 holds for r-1, it follows that Lemma 2 holds for r. Let \mathcal{H} be a hypergraph with n vertices and f(n, k, r) edges in which every k-set is covered. Let v_1, \ldots, v_n be the vertices of \mathcal{H} in decreasing order of degree, let $V = \{v_1, \ldots, v_n\}$, and let $A = \{v_1, \ldots, v_{k-r+1}\}$. Let \mathcal{H}_1 be the restriction of \mathcal{H} to $V \setminus A$.

Let $\mathcal{G} \subset V^{(r)}$ be the collection of all *r*-sets of vertices that meet A but are not present in \mathcal{H} , and suppose \mathcal{G} is nonempty. It follows from Lemma 2 that, for any $\epsilon > 0$, if n is sufficiently large then $|\mathcal{G}| < \epsilon n^{r-1}$.

We split \mathcal{G} into sets $\mathcal{G}_0, \ldots, \mathcal{G}_{r-1}$, where $\mathcal{G}_i = \{G \in \mathcal{G} : |G \setminus A| = i\}$. Let \mathcal{G}_i be the largest of these sets, and let $\mathcal{G}_i^* = \{G \setminus A : G \in G_i\}$. Let $\phi : (V \setminus A)^{(i)} \to (V \setminus A)^{(r-1)}$ be an injection such that $\phi(S) \supset S$ for every S (the existence of such a mapping follows easily from Hall's Theorem) and let $\mathcal{F} = \{\phi(S) : S \in \mathcal{G}_i^*\}$. Note that $|\mathcal{G}_i| \ge |\mathcal{G}|/r$ and for each $B \in \mathcal{G}_i^*$ there are at most k^r sets $G \in \mathcal{G}_i$ with $G \setminus A = B$. Thus \mathcal{F} is a collection of (r-1)-sets in $V \setminus A$, such that $|\mathcal{F}| \ge |\mathcal{G}|/k^r r$ and every set in \mathcal{F} contains $G \setminus A$ for some $G \in \mathcal{G}$.

Now for any $F \in \mathcal{F}$, we can pick $G \in \mathcal{G}$ such that $G \setminus A \subset F$ and choose $v \in A \cap G$. For any $w \in V \setminus (F \cup A)$, the set $(A \setminus v) \cup F \cup \{w\}$ has size k and so must be covered in \mathcal{H} by some u. We do not have u = v, as G is not an edge of \mathcal{H} . Thus $u \notin A$: it follows that $F \cup \{w\}$ is covered by u in \mathcal{H}_1 .

We can now apply Lemma 3 to the hypergraphs \mathcal{F} and \mathcal{H}_1 (both on vertex set $V \setminus A$) with $\lambda = k^r r$ to deduce that there is some \mathcal{H}'_1 such that $|\mathcal{H}'_1| + k^r r |\mathcal{F}| < |\mathcal{H}_1|$ and $\partial \mathcal{H}'_1 \supset \partial \mathcal{H}_1$. Let \mathcal{H}' be the hypergraph with vertex set V obtained from \mathcal{H}'_1 by adding all r-sets incident with A. Then $|\mathcal{H}'| < |\mathcal{H}|$, as $k^r r |\mathcal{F}| \ge |\mathcal{G}|$.

Finally, we claim that every k-set in V is covered in \mathcal{H}' . Let $B \in V^{(k)}$. If $A \setminus B$ is nonempty, then any vertex of $A \setminus B$ covers B in \mathcal{H}' . Otherwise, $A \subset B$: let $C = B \setminus A$, so C is an (r-1)-set. There must be some $u \notin B$ that covers B in \mathcal{H} , and so $\{u\} \cup C \in \mathcal{H}$. Then we also have $\{u\} \cup C \in \mathcal{H}_1$, and so $C \in \partial \mathcal{H}_1$. By construction, we also have $C \in \partial \mathcal{H}'_1$, so there is some r-set $D \in \mathcal{H}'_1$ that contains C. Let u' be the single element of $D \setminus C$: then u' covers B in \mathcal{H}' , as $D \in \mathcal{H}'$, and every other r-set contained in $\{u'\} \cup B$ meets A and so belongs to \mathcal{H}' . This gives a contradiction, as $|\mathcal{H}'| < |\mathcal{H}|$, and every k-set is covered in \mathcal{H}' .

We conclude that every edge incident with A must be present in \mathcal{H} . But now consider any (r-1)-set $B \subset V \setminus A$: arguing as above, the set $A \cup B$ must be covered by some u in \mathcal{H} , and so $B \cup \{u\} \in \mathcal{H}_1$. It follows that $\partial \mathcal{H}_1 = (V \setminus A)^{(r-1)}$, and so $|\mathcal{H}_1| \geq D(n - |A|, r) = D(n - k + r - 1, r)$. Thus $f(n, k, r) = |\mathcal{H}| \geq g(n, k, r)$. Furthermore, since \mathcal{H} contains all r-sets meeting A, and a collection of D(n - k + r - 1, r) r-sets in $V \setminus A$ containing all (r-1)-sets in $V \setminus A$ in their shadow, we see that $\mathcal{H} \in \mathcal{G}(n, k, r)$. \Box

3 Further directions

There are a number of interesting related problems. In their original paper [3], Erdős and Moser raised the question of covering oriented graphs. A digraph with at least k + 1 vertices has property S_k (named after Schütte) if for every k-set B of vertices there is a vertex u such that B is contained in the outneighbourhood of u. Erdős and Moser [3] asked the following.

Problem 4. What is the minimum number F(n,k) of edges in a graph G of order n that has an orientation with property S_k ?

Erdős and Moser [4] noted that, for fixed k and large enough n, $f(k-1)n \leq F(n,k) \leq f(k)n$, where f(k) is the minimum number of vertices in an oriented graph with property S_k ; it is known that $f(k) = 2^{(1+o(1))k}$.

For $k \geq 2$, let $\delta(k)$ be the smallest positive integer δ such that some oriented graph with property S_k has a vertex with indegree δ . We shall show that the asymptotic behaviour of F(n, k) depends primarily on $\delta(k)$.

Lemma 5. For every $k \ge 2$ there is are integers c = c(k) and $n_0 = n_0(k)$ such that $F(n,k) = \delta(k)n + c$ for all $n \ge n_0$.

Proof. Note first that if G is an oriented graph with t vertices that has property S_k and v is any vertex of G then we can generate another oriented graph with property S_k by adding a new vertex v' with no outedges, and the same inneighbourhood as v. If G has a vertex with indegree $\delta(k)$ then applying this construction repeatedly to a vertex of minimal indegree gives, for all $n \geq t$ and some $c_1 = c_1(G)$, oriented graphs with n vertices, $\delta(k)n + c_1$ edges and property S_k .

Any oriented graph G with property S_k must have at least $\delta(k)|V(G)|$ edges, and so we must have $\delta(k)n \leq F(k,n) \leq \delta(k)n + c_1$ for all sufficiently large n. Let $c \geq 0$ be minimal such that there are infinitely many graphs Gwith $\delta(k)|V(G)| + c$ edges and property S_k : if |V(G)| is large enough and G has $\delta(k)|V(G)| + c$ edges then it has minimal degree at most $\delta(k)$, so we can apply the construction to generate a sequence of oriented graphs with $\delta(k)n + c$ edges and property S_k for all sufficiently large n. If n is large enough, these are extremal. \Box

The covering problem is also natural for the more general class of digraphs (so we allow edges in both directions). In this case, we can solve the problem completely. Let $\mathcal{A}(n,k)$ be the family of digraphs on vertex set [n] that can be constructed as follows:

- Add all k(k+1) directed edges that join any two elements from [k+1]
- For each i > k + 1, add edges from exactly k elements of [k + 1] to i.

If $G \in \mathcal{A}(n, k)$ then every vertex of G has indegree exactly k. Let us check that every k-set B is covered in G. If an element $i \in [k+1]$ does not cover Bthen either $i \in B$, or $i \notin B$ and some vertex of B is not an outneighbour of i. There are $|B \cap [k+1]|$ elements of the first type and at most $|B \setminus [k+1]|$ elements of the second type (as each element of $B \setminus [k+1]$ has edges from all but one element of [k+1]); so there is at least one element of [k+1] left over to cover B.

Lemma 6. Let $k \ge 2$, and let D be a digraph of order n that has property S_k . Then D has at least kn edges, and if D has exactly kn edges then D is isomorphic to some element of $\mathcal{A}(n,k)$.

Proof. Every vertex has indegree at least k, or else any k-set that contains a vertex of minimal indegree and all its inneighbours is not covered. Thus D has at least kn edges.

If D has exactly kn edges then every vertex has indegree exactly k. Given a vertex v, let $\Gamma^{-}(v)$ be the set of inneighbours of v. For any $w \in \Gamma^{-}(v)$, the only vertex that can cover $\{v\} \cup \Gamma^{-}(v) \setminus w$ is w (as it is the only inneighbour of v outside the set). It follows that $\Gamma^{-}(v)$ induces a complete directed graph. Now pick any $u \in \Gamma^{-}(v)$: we have $|\Gamma^{-}(u) \cap \Gamma^{-}(v)| = |\Gamma^{-}(v) \setminus u| = k - 1$. Let $A = \Gamma^{-}(u) \cup \Gamma^{-}(v)$, so |A| = k + 1 and every pair of elements from A is joined in both directions except possibly u, u', where u' is the unique element of $\Gamma^{-}(u) \setminus \Gamma^{-}(v)$. Since $k \geq 2$, we have $|A| \geq 3$ and so we can pick $w \neq u, u'$ in A: then $\Gamma^{-}(w) = A \setminus w$ induces a complete directed graph, and so u, u'are also joined in both directions. Thus A is complete and, as |A| = k + 1, no further edges can enter A.

Finally, for any $x \notin A$ and any $a, b \in A$, consider the k-set $\{x\} \cup A \setminus \{a, b\}$: this can only be covered by a or b, and so one of a and b must send an edge to x. Since this holds for every pair of elements in A, it follows that k elements of A must direct edges to x. We conclude that $D \in \mathcal{A}(n, k)$. \Box

Erdős and Moser [4] also considered a generalization of the graph problem, where every vertex must be covered by many other vertices. Let h(n, k, r, s) be the minimum number of edges in an r-uniform hypergraph \mathcal{H} with vertex set [n] such that every k-set in [n] is covered by at least s distinct vertices in \mathcal{H} (so h(n, k, r, 1) = f(n, k, r)). Erdős and Moser [4] considered the case r = 2 and noted that, for $n > n_0(k, s)$,

$$h(n,k,2,s) = f(n,k+s-1,2);$$
(11)

they further noted that this equality does not hold for every n, k, s (so the assumption that $n > n_0$ is necessary). It seems likely that our methods should be useful for this problem, although we note that (11) does not hold when 2 is replaced by r if k is close to r: for instance with k = r = 3 and s = 3 the graph $\mathcal{G}(n, k + s - 1, r) = \mathcal{G}(n, 5, 3)$ has 3 vertices of large degree, but is not extremal as the edge containing these three vertices can be removed.

In a similar vein, we can consider a multicolour version of the problem: let b(n, k, r, c) be the minimum number of edges in a graph on n vertices, in which the edges are partitioned into c classes such that every k-set is covered by the edges in each class. How does b(n, k, r, c) behave for fixed k, r, c and large n?

Acknowledgement. The authors would like to thank Noga Alon for his helpful comments, and the referee for a careful reading.

References

- B. Bollobás and A. Thomason, Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc. 27 (1995), 417–424.
- [2] B. Bollobás, Combinatorics, Cambridge University Press (1986).
- [3] P. Erdős and L. Moser, A problem on tournaments, Canad. Math. Bull. 7 (1964), 351–356.
- [4] P. Erdős and L. Moser, An extremal problem in graph theory, J. Aust. Math. Soc. 11 (1970), 42–47.
- [5] P. Keevash, The existence of designs, *preprint*, arXiv:1401.3665.
- [6] G.O.H. Katona, A theorem of finite sets, in Theory of Graphs, P. Erdős, and G.O.H. Katona (eds), Akadémiai Kiadó and Academic Press (1968), 187–207.

- [7] J.B. Kruskal, The number of simplices in a complex, in Mathematical Optimization Techniques, R. Bellman (ed), University of California Press (1963), 251–278.
- [8] L.H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961–962.
- [9] L. Lovász, Combinatorial Problems and Exercises, 13.31, North-Holland, Amsterdam (1979).
- [10] V. Rödl, On a Packing and Covering Problem, European Journal of Combinatorics 6 (1985), 69–78.