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Abstract. If W is the simple random walk on the square lattice Z2, then W
induces a random walk WG on any spanning subgraph G ⊂ Z2 of the lattice

as follows: viewing W as a uniformly random infinite word on the alphabet

{x,−x,y,−y}, the walk WG starts at the origin and follows the directions

specified by W, only accepting steps of W along which the walk WG does not

exit G. For any fixed G ⊂ Z2, the walk WG is distributed as the simple random

walk on G, and hence WG is almost surely recurrent in the sense that WG visits

every site reachable from the origin in G infinitely often. This fact naturally

leads us to ask the following: doesW almost surely have the property thatWG is

recurrent for every G ⊂ Z2? We answer this question negatively, demonstrating

that exceptional subgraphs exist almost surely. In fact, we show more to be true:

exceptional subgraphs continue to exist almost surely for a countable collection

of independent simple random walks, but on the other hand, there are almost

surely no exceptional subgraphs for a branching random walk.

1. Introduction

Let us say that a walk on a graph G is recurrent if the walk visits every site in

the connected component of its starting point in G infinitely often, and transient

otherwise. It is a classical result of Pólya [17] that a simple random walk on the

square lattice Z2 is almost surely recurrent. In this paper, we shall be concerned

with how ‘robust’ this property is in the following sense: do the coin tosses that

determine a recurrent random walk on Z2 also determine a recurrent random walk

on every subgraph of Z2 simultaneously? We make this question precise below in a

few different ways.
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We view a simple random walk W on Z2 as a random infinite word on the four-

letter alphabet {x,−x,y,−y}, where x = (1, 0) and y = (0, 1), with each letter

of W being chosen independently and uniformly at random. For any (spanning)

subgraph G ⊂ Z2 of the lattice, the random walk W then induces a (random) walk

WG on G: starting at the origin, we consider the letters of W one at a time, and

for each letter of W, we take a step in the appropriate direction in G provided

the edge in question is present in G, and stand still otherwise. For any fixed

G ⊂ Z2, it is clear that WG is distributed as the simple random walk on G, and

since G is a subgraph of a recurrent graph, we conclude that WG is almost surely

recurrent. It follows immediately from Fubini’s theorem that, if we consider any

Borel probability measure on the space of subgraphs of Z2, then the random walk

W almost surely has the property that the induced walks WG are recurrent for

almost all G ⊂ Z2. We are then naturally led to the following question: does the

random walk W almost surely have the property that the induced walks WG are

recurrent for all G ⊂ Z2? Our first result answers this question negatively in the

following strong sense.

Theorem 1.1. If W is a simple random walk on Z2, then there almost surely exists

a (random) exceptional subgraph H ⊂ Z2 for which the induced walk WH

(1) visits each site reachable from the origin in H finitely many times, and

(2) fails to visit infinitely many sites reachable from the origin in H .

More generally, we can ask whether a countably infinite independent collection

of simple random walks almost surely has the property that, for every G ⊂ Z2,

at least one of the walks in this collection induces a recurrent walk on G. An

extension of the proof of Theorem 1.1 allows us to prove the following result, which

answers this question negatively as well.

Theorem 1.2. If {Wi}i∈N is a collection of independent simple random walks on

Z2, then there almost surely exists a (random) exceptional subgraph H ⊂ Z2 so

that, for every i ∈ N, the induced walk (Wi)H

(1) visits each site reachable from the origin in H finitely many times, and

(2) fails to visit infinitely many sites reachable from the origin in H .

What about an uncountable collection of simple random walks? To avoid

measurability issues around independence, we need to be careful about how we

phrase such a question. One natural formulation is in the language of branching
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random walks. A branching random walk on Zd starts with a single particle at

the origin. At each time step, each particle independently generates a number

of additional particles at its current location according to some fixed offspring

distribution, and we say that this offspring distribution is nontrivial if the number of

offspring is nonzero with positive probability. Independently of the other particles

and their history, all particles then take a step in a direction chosen uniformly at

random, which leads to a random family of dependent simple random walks. In

this language, one can then ask whether a branching random walk on Z2 almost

surely has the property that, for every G ⊂ Z2, at least one of the branches of the

branching random walk induces a recurrent walk on G. Our final result answers

this question positively, and furthermore, shows that the same is true in dimensions

greater than two as well.

Theorem 1.3. Fix d ∈ N and let (Wi)i∈S be a family of random walks generated

by a branching random walk on Zd with a nontrivial offspring distribution. Then,

almost surely, for every (spanning) subgraph G ⊂ Zd, there is some j ∈ S for which

the induced walk (Wj)G is recurrent.

Our work here fits into the broader context of attempting to understand the

robustness of objects such as random walks and Brownian paths, in terms of

their quasi-everywhere properties or their dynamical sensitivity; see [10, 12, 5] for

example.

Let us mention two results in this general direction that are particularly close

to our results in spirit. The first relevant result is a theorem of Adelman, Burdzy

and Pemantle [1] on the projections of three-dimensional Brownian motion. The

projection of Brownian motion in R3 onto any fixed plane yields Brownian motion

in that plane which is neighbourhood recurrent; Adelman, Burdzy and Pemantle [1]

however show that there almost surely exists a (random) exceptional plane on

which the projection is not neighbourhood recurrent. The second result that is

pertinent is a theorem of Hoffman [11] demonstrating that recurrence of the simple

random walk on Z2 is dynamically sensitive; in other words, if the coin tosses of the

random walk are refreshed continuously with Poisson clocks generating a dynamic

random walk, then although dynamic random walk is almost surely recurrent at

any fixed time, there almost surely exists a (random) exceptional time at which

the dynamic random walk is not recurrent.
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Although the two results mentioned above bear some similarities in flavour to

our first two results, it is perhaps worth remarking that the methods of proof are

somewhat different: while the results in both [1] and [11] are based on second

moment computations, the proofs of Theorems 1.1 and 1.2, in contrast, proceed by

explicitly ‘embedding drift’. In terms of proofs, our constructive approach however

shares more in terms of analogy with the following two results. First, in [2], Amir,

Benjamini, Gurel-Gurevich and Kozma give a construction of a transient walk by

dynamically changing conductances of the underlying graph G = Z2 along the

walk in a way not too dissimilar to our construction. Second, in [4], Barlow and

Perkins construct a (deterministic) exceptional graph G ⊂ Z2, a certain binary tree

embedded in Z2, on which the random walk remains barely recurrent: along the

sequence mn = 12(22n+2−n) the simple random walk (Xt)t≥0 on G satisfies

lim inf
n→∞

|Xmn|(mn logmn)−1/2 ≥ 1/17,

almost surely.

This note is organised as follows. In Section 2, we first sketch a natural approach

that fails, but nonetheless motivates our construction, then we prove Theorem 1.1,

and we finally sketch how the same argument extends to prove Theorem 1.2.

Section 3 is devoted to the proof of Theorem 1.3. We conclude in Section 4 with a

discussion of some open problems.

2. Existence of exceptional subgraphs

In this section, we prove Theorems 1.1 and 1.2. Before we do so, let us sketch a

construction which, while failing to prove Theorem 1.1, serves as the motivation

for the construction in our proof.

Suppose that W is a simple random walk on Z2. Let us construct a (random)

subgraph P ⊂ Z2 which exhibits some drift. We shall ensure that P is an infinite

non-decreasing path (i.e., a north-east path) passing through the origin, and we

reveal P as follows. We shall read off the letters of W one at a time and follow the

induced walk WP on P , revealing more of P as and when WP needs to know if a

particular edge is present in P . At any finite time, it is clear that P (or rather,

what has been revealed of P so far) is a finite non-decreasing path through the

origin, and we are forced to reveal more of P at this time if and only if WP is at

one of the leaves of P and the next letter of W would cause WP to exit P in a

non-decreasing fashion. Our strategy for constructing P is then as follows: if WP
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is at the north-eastern leaf of P at some stage, and the next letter of W causes

WP to travel either north or east, we extend P so as to allow this, proceeding

analogously at the south-western leaf as well.

What can we say about the induced walk WP on the path P as constructed

above? It is not hard to see that if we identify P with Z by ‘unrolling’ it, then

WP is a random walk on Z with the following law: if [a, b] ⊂ Z is the range of the

walk at some time and the walk is at x ∈ [a, b] at this time, then the walk moves to

either x− 1 or x+ 1 both with probability 1/2, unless x ∈ {a, b}, in which case, the

walk moves to b+ 1 with probability 2/3 and to b− 1 with probability 1/3 at x = b,

and similarly to a− 1 with probability 2/3 and to a+ 1 with probability 1/3 at

x = a. In other words, for the path P constructed as described above, the induced

walk WP behaves like a random walk on Z with a tiny amount of drift; indeed,

the walk possesses some drift away from the origin when it is at the boundary

of its range, but behaves like the simple random walk in the interior of its range.

Unfortunately, this tiny amount of drift does not stop WP from being recurrent,

but this construction nevertheless demonstrates that it is possible to construct

(random) subgraphs of Z2 where the induced walk possesses some drift; below, we

prove Theorem 1.1 with a more careful construction that embeds more drift into

the induced walk.

We need two simple facts about the simple random walk on Z. First, we require

the following well-known fact.

Proposition 2.1. The probability that the simple random walk on the interval

{0, 1, . . . , n} started at 1 visits n before it visits 0 is 1/n. �

Next, we shall also make use of the following crude bound.

Proposition 2.2. The expected number of times the simple random walk on Z
started at 0 visits 0 in the first N steps is at most 10

√
N . �

Armed with these two facts, we are now ready to prove our main result.

Proof of Theorem 1.1. To prove the theorem, we will construct a (random) graph

H based on the random walk W where the induced walk WH exhibits a strong

drift away from the origin.

The graph H we construct will consist of the vertical lines Ln = {(x, y) ∈ Z2 :

x = 2n − 1} for all integers n ≥ 0, and a (random) collection of finite horizontal
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Figure 1. A slice of H between two consecutive vertical lines in H;

edges coloured black are present while edges coloured red are absent.

segments between any consecutive pair of vertical lines with the property that

exactly one such horizontal segment connects any consecutive pair of vertical lines;

here, by lines and segments, we mean the edges in the appropriate paths in Z2, as

shown in Figure 1.

Let us denote the location of the induced walk WH at a given time t ≥ 0 by

WH(t) = (XH(t), YH(t)), with the time t tracking steps along WH (as opposed to

W). As before, we shall read off the letters of W one at a time, and we shall reveal

H by following the induced walk WH and revealing more of H as necessary.

Notice that the only vertical edges in H are (deterministically) those on a vertical

line Ln for some n ≥ 0, so at any time t ≥ 0, the induced walk WH accepts a

vertical step of W if and only if WH(t) ∈ Ln for some n ≥ 0.

We reveal the horizontal edges of H in stages: during stage n ≥ 0, we shall reveal

all the horizontal edges of H in between the lines Ln and Ln+1, with the stage

ending as soon as there is a horizontal path connecting these vertical lines in H.

Note in particular that during stage n, we have already revealed all the horizontal

edges in H between L0 and Ln, and none of the horizontal edges in H to the right

of Ln+1.

We begin by declaring every horizontal edge to the left of L0 as being absent

in H, and for n ≥ 0, having completed stage n− 1, we reveal H in the following

fashion. At some t ≥ 0 during stage n, there are two possibilities. If XH(t) < 2n−1,

then we have nothing to do when we read off the next letter of W since all the
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edges of H to the left of Ln have already been revealed. If XH(t) ≥ 2n − 1 on the

other hand, we reveal H in such a way so as to ensure that WH always accepts a

letter of W that would cause the induced walk to travel to the right. The stage

ends as soon as we have a single horizontal path connecting Ln and Ln+1, or in

other words, at the first time t ≥ 0 when we have XH(t) = 2n+1 − 1. At the end of

the stage, all horizontal edges between Ln and Ln+1 whose presence or absence in

H have not been revealed over the course of the stage, we declare as being absent

in H. In particular, the line Ln+1 is incident to precisely one horizontal edge to its

left in H and it has been revealed by the end of the stage.

The above construction clearly ensures that H has the structure we promised.

More is true, however; as we shall shortly see, our construction endows the induced

walk WH with a strong drift to the right.

For n ≥ 0, let τn be the first time t at which we have XH(t) = 2n − 1, and let

En denote the event that the walk (WH(t))t≥τn hits the line Ln−1 before hitting

the line Ln+1; in other words, En is the event that there exists a time t ∈ [τn, τn+1)

at which XH(t) = 2n−1 − 1. With these definitions in place, we have the following

claim.

Claim 2.3. There exists an absolute constant c ∈ (0, 1) such that P(En) ≤ cn for

all n ≥ 0.

Proof. Let α be the y-coordinate of the unique horizontal path joining the vertical

lines Ln−1 and Ln, and let T be the first time after τn at which the walk WH

hits either the line Ln−1 or the line Ln+1. Note that the time between τn and T

naturally decomposes into excursions, where an excursion is a maximal interval of

time during which the walk WH remains at some fixed y-coordinate.

Let us now describe the walk WH in terms of its excursions. First, note that

our construction of H ensures that the y-coordinates of successive excursions of

WH are determined by a simple random walk on Z started at α. Also, we can

describe an excursion at some y-coordinate β as follows. If β 6= α, then during an

excursion at β, successive x-coordinates of WH are determined by a simple random

walk on the interval {2n− 1, 2n, . . . , 2n+1− 1} started at 2n− 1, with the excursion

ending either, with probability 1, when the x-coordinate of the walk is 2n+1 − 1,

or, with probability 2/3, when the x-coordinate of the walk is 2n − 1. If β = α on

the other hand, then successive x-coordinates of WH are determined by a simple

random walk on the interval {2n−1 − 1, 2n−1, . . . , 2n+1 − 1} started at 2n − 1, with
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the excursion ending either, with probability 1, when the x-coordinate of the walk

is either 2n−1 − 1 or 2n+1 − 1, or, with probability 1/2, when the x-coordinate of

the walk is 2n − 1. Crucially, note that by the strong Markov property of the walk

WH , each excursion depends on past excursions only through the endpoint of the

last excursion preceding it.

Let us say that an excursion is positively successful if it ends on account of the

walk WH reaching the line Ln+1, and negatively successful if it ends on account of

the walk WH reaching the line Ln−1. In this language, we see that En is precisely

the event that we witness a negatively successful excursion before a positively

successful one.

We would like to show that in the first 3n excursions, there is a positively

successful excursion, but no negatively successful one. A minor technicality arises

from the fact that excursions are only defined until the first successful one occurs.

To circumvent this issue, consider a modified process coupled with WH which,

after a successful excursion with y-coordinate β, teleports to the line Ln, taking

y-coordinate β + 1 with probability 1/2, and β − 1 otherwise, before again moving

according to WH . Let F1 to be the event that at least one of the first 3n excursions

in this modified process is positively successful, and let F2 be the event that none

of the first 3n excursions in the modified process are negatively successful. Since

WH and our modified process behave identically until the first successful excursion,

if F1 and F2 both occur, then En cannot occur. Therefore, it suffices to show that

both F1 and F2 are overwhelmingly likely.

First, we deal with the event F1. It is easy to see from Proposition 2.1 that an

excursion is positively successful with probability at least (1/100)2−n. Using the

strong Markov property, we conclude that

P(F c
1 ) ≤

(
1− 2−n/100

)3n ≤ cn1 ,

where c1 ∈ (0, 1) is an absolute constant.

Next, we handle the event F2. Notice that we may only witness a negatively

successful excursion at y-coordinate α; with this in mind, let Z be the number of

excursions in the first 3n excursions at y-coordinate α. Since the y-coordinates of

successive excursions are determined by a simple random walk on Z started at α,

we conclude from Proposition 2.2 that

P(Z ≥ (7/4)n) ≤ 10
√

3n

(7/4)n
≤ cn2 ,
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where c2 ∈ (0, 1) is an absolute constant. As before, we know from Proposition 2.1

that an excursion at y-coordinate α is negatively successful with probability at

most 100 · 2−n, so we may again use the strong Markov property to conclude that

P(F c
2 ) ≤ P(Z ≥ (7/4)n) + P(F c

2 |Z < (7/4)n)

≤ cn2 +
(
1− (1− 100 · 2−n)(7/4)

n)
≤ cn2 + cn3 ,

where c3 ∈ (0, 1) is an absolute constant.

The result follows from the estimates above since P(En) ≤ P(F c
1 ) + P(F c

2 ). �

It follows from the above claim, by the Borel–Cantelli lemma, that the walk

WH almost surely visits the line Ln only finitely many times for each n ≥ 0, thus

proving the result. �

The proof of Theorem 1.2 follows from a simple modification of the proof of

Theorem 1.1; therefore, we only provide a sketch highlighting the main differences.

Proof of Theorem 1.2. As in the argument above, we begin with the vertical lines

L1, L2, . . . , where Ln has x-coordinate 2n − 1. Suppose that we have defined the

exceptional graph H up to Li by using the walksW1, . . . ,Wi. To define the portion

of H between Li and Li+1, we run Wi+1 on the already defined portion of H until

it first hits Li. At that point, we run the algorithm used in the proof above on all

of the i + 1 walks W1, . . . ,Wi+1 (so that they can move freely to the right of Li
but not up or down in that region) in, say, numerical order, stopping each walk

when it first hits Li+1. We continue this process, introducing one new walk at

each step. The analysis goes through essentially as before: if En,i is the event

that, after hitting Ln, the walk Wi hits Ln−1 before Ln+1, then as in Claim 2.3, we

have P(En,i) ≤ ncn for all n ≥ i for some absolute constant c ∈ (0, 1). Notice that

we rely on independence here: we use the fact that the walk Wi, conditioned on

its trajectory up to hitting Ln and on the exceptional graph built up to Ln, still

proceeds as a simple random walk. The result again follows from the Borel–Cantelli

lemma. �

3. Non-existence of exceptional subgraphs

We now consider branching random walks on Zd in all dimensions d ≥ 2. Recall

that we start with a single particle at the origin, and that at each time step, every
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particle independently generates a number of additional particles at its current

location according to some fixed nontrivial distribution, where at least one new

particle is generated with positive probability; independently of the other particles

and their history, all particles then take a step in a direction chosen uniformly

at random. The result is a random family (Wi)i∈S of dependent simple random

walks, where the branches Wi with i ∈ S each correspond to a walk on Zd obtained

by starting with the original particle at the origin and then following either the

particle presently under consideration or one of its children at each time.

We will use the following Chernoff-type bound; see [15] for a proof.

Proposition 3.1. For n ∈ N, p ∈ (0, 1) and ε > 0, we have

P(Bin(n, p) ≤ np(1− ε)) ≤ exp

(
−ε

2np

2

)
. �

We are now ready to give the proof of our final result.

Proof of Theorem 1.3. Note that removing particles reduces the set of walks and

makes the problem of finding a recurrent walk harder. Hence, if at some point a

particle has more than one child, we may discard all but one of its children. We

may therefore assume that, for some ε > 0, each particle either has one child with

probability ε, or no children at all with probability 1− ε. It will be helpful to have

some notation: in what follows, we write BG(x, ρ) to denote the set of vertices at

graph distance at most ρ from x in a graph G, write B(x, ρ) for BZd(x, ρ), and

abbreviate B(0, ρ) by B(ρ).

In this proof, we will need to show that, with very high probability, certain

particles have exponentially many children at a given future time and ensure that

most of these children do not wander very far from the origin. To this end, we

need two results which we state and prove below.

First, we need the following estimate for the probability of a simple random

walk on Zd getting unexpectedly far from its starting point after taking some finite

number of steps.

Claim 3.2. Fix δ > 0 and let Sn be an n-step simple random walk on some subgraph

G ⊂ Zd starting from the origin. Then we have

P(Sn 6∈ BG(0, δn)) ≤ cdn
d exp

(
−δ

2n

2

)
,

where cd > 0 is a constant depending only on the dimension d.
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Proof. We make use of an old bound on the transition probabilities of a Markov

chain due to Varopoulos [19] and Carne [6], although we use it in a more recent

form due to Peyre [16]. To state this bound, we need a little set up. Given a graph

G and a pair of vertices of x and y of G in the same connected component, let

pt(x, y) denote the probability that a simple random walk on G starting at x is at

y after t steps, and write ρ(x, y) for the graph distance between x and y in G; in

this language, we have

pt(x, y) ≤ 2

√
deg(y)

deg(x)
exp

(
−ρ(x, y)2

2t

)
.

With the above bound in hand, we conclude that the probability that an n-step

simple random walk on some subgraph G ⊂ Zd starting at the origin ends up

outside the ball BG(0, δn) is at most

∑
y∈B(n)\BG(0,δn)

pn(0, y) ≤
∑

y∈B(n)

2
√

2d exp

(
−δ

2n2

2n

)
≤
√

8d(2n+ 1)d exp

(
−δ

2n

2

)
;

it is clear that the bound above is of the required form, proving the claim. �

Second, we need the following estimate for the rate of growth of a Galton–Watson

branching process.

Claim 3.3. Let (Nj)j≥0 be the number of descendants at time j of a Galton–Watson

branching process started with a single particle and with an offspring distribution

that takes the value 2 with probability ε and 1 with probability 1− ε. Then there

exists constants c, c′ > 0 such that

P
(
Nj ≥ (1 + c)j

)
≥ 1− e−c′j

for all j ≥ 1.

Proof. Conditioned on Nj−1, the random variable Nj is distributed as Bin(Nj−1, ε)+

Nj−1, independent of everything else in the past. For j ≥ 1, define Yj = Nj/Nj−1
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and note that Yj ∈ [1, 2] and E[Yj] = 1 + ε. From Proposition 3.1, we deduce that

P(Yj ≥ 1 + ε/2) =
∞∑
i=1

P(Bin(i, ε) ≥ iε/2 |Nj−1 = i)P(Nj−1 = i)

≥
∞∑
i=1

(
1− e−iε/8

)
P(Nj−1 = i)

≥
(
1− e−ε/8

)
.

Thus, setting p = (1 − e−ε/8), there exist independent random variables (Xj)j≥1
dominated by the Yj such that Xj takes the value 1 + ε/2 with probability p and

1 otherwise with probability 1− p. Since Nj = YjYj−1 · · ·Y1 ≥ XjXj−1 · · ·X1, by

Proposition 3.1, we have

P
(
Nj ≥ (1 + ε/2)jp/2

)
≥ P

(∣∣{i ∈ [j] : Xi > 1}
∣∣ ≥ jp

2

)
≥ P

(
Bin(j, p) ≥ jp

2

)
≥ 1− e−

jp
8 ,

as required. �

Before diving into the details of the proof, let us sketch our plan of attack. Our

argument will proceed in stages bookended by a rapidly-increasing sequence of

times (Ti)i∈N. At each time Ti, and for every possible finite subgraph G ⊂ Zd

contained in the box [−Ti, Ti]d, we arbitrarily choose a representative particle pG.

We then show that, with very high probability, for each such representative particle

pG and every possible extension of the corresponding graph G onto [−Ti+1, Ti+1]
d,

some descendant of pG visits every vertex of G with distance at most i (in G) to

the origin, and ends up exactly at or one step away from the origin at time Ti+1.

We shall show that the failure probabilities decay rapidly enough so that we may

finish by applying the Borel–Cantelli lemma. To avoid clutter, we will not worry

about making sure all the appropriate values are integers.

Let T0 = 0, and for the singleton graph containing just the origin, we choose the

initial particle at the origin. Let δ be sufficiently small such that 2−4dδ(1+c)(1−4δ) > 1

and cδ−c′(1−5δ) < 0, where c, c′ are the absolute constants promised by Claim 3.3.

Suppose now that we have run the branching walk over the course of ` − 1

stages until time n = T`−1. For each of the at most 2d(2n+1)d possible finite
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subgraphs G ⊂ Zd contained in the box [−n, n]d, we now arbitrarily choose a

representative particle pG at some location in [−n, n]d. Note that these particles

need not be distinct, and that a single particle may be at different locations in

different subgraphs. We now describe how we construct the `th stage of the

branching walk.

Let N > n/δ be a suitably large integer. We specify what conditions N needs to

satisfy in what follows, and shall then take T` = N . We shall further divide the `th

stage, which consists of the interval of time [n+ 1, N ], into three smaller blocks of

time as follows.

In the first block, we run the branching walk for δN more steps (after time n)

so that for each G ⊂ Zd contained in the box [−n, n]d, the representative particle

pG has a set of descendants PG after these δN steps. By Claim 3.3, any fixed

representative particle pG has at least (1 + c)δN descendants with probability at

least 1− e−c′δN . If even one of the representative particles has not branched this

much, we declare that this step has failed. Note that we are free to discard particles,

so we may assume (as long as this step has not failed) that each representative

particle pG has a set PG of exactly (1+c)δN descendants. Note that all the particles

under consideration are at a graph distance of at most n + δN < 2δN from the

origin in all the graphs under consideration.

In the second block, we run the branching walk for another N − 5δN steps.

For each G ⊂ Zd contained in the box [−n, n]d, we now count the number of

descendants of each q ∈ PG. We assume that every such q ∈ PG has at least

(1 + c)N−5δN descendants, and if this ever fails to hold, we again declare that the

step has failed. By Claim 3.3, the probability of failure for any particular particle

q as above is at most exp(−c′(N − 5δN)).

Now, fix H ⊂ Zd contained in the box [−N,N ]d, and suppose that it induces a

graph H ′ on [−n, n]d. We say that a particle q ∈ PH′ is H-good if at least half of its

descendants are no further than 3δN from the origin in H after the n+N − 4δN

steps taken so far. Let us estimate the probability λH that any given particle

q ∈ PH′ is H-good. Fix q ∈ PH′ and denote the position of q at time n + δN by

Lq. By Claim 3.2, the probability that a given descendant of q is within distance

δN of Lq in H, and hence within distance 3δN of the origin, is at least

1− cdNd exp

(
−δ

2N

2

)
.
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Let Y be the proportion of descendants of q which are within 3δN of the origin.

By the linearity of expectation,

E[Y ] ≥ 1− cdNd exp

(
−δ

2N

2

)
.

If q is not good, then Y ≤ 1/2, and since Y ≤ 1, we find that λH+ 1
2
(1−λH) ≥ E[Y ].

Hence,

λH ≥ 1− 2cdN
d exp

(
−δ

2N

2

)
and, by choosing N sufficiently large, we may certainly assume that λH ≥ 2/3. We

now also declare the step to have failed if, for some H as above, at most 1
3
(1 + c)δN

elements of PH′ are H-good, and deduce from Proposition 3.1 that the probability

of failing in this fashion for any fixed H is at most

P
(

Bin
(
(1 + c)δN , λ

)
≤ 1

3
(1 + c)δN

)
≤ P

(
Bin
(
(1 + c)δN , λ

)
≤ 1

2
(1 + c)δNλ

)
≤ exp

(
−1

8
(1 + c)δNλ

)
≤ exp

(
− 1

16
(1 + c)δN

)
.

Hence, if we have not already failed, then for any H as above, counting the

descendants of H-good particles that don’t stray too far from the origin, we have

at least 1
6
(1 + c)N−4δN such descendants at graph distance at most 3δN from the

origin in H after n+N − 4δN steps; we call these descendants H-counters.

In the third and final block of the stage, our goal is to visit all vertices at distance

at most `− 1 from the origin in every H ⊂ Zd contained in the box [−N,N ]d. For

any fixed H as above, there are at most (2`− 1)d such vertices close to the origin.

We enumerate these vertices and pick a path of length at most `− 1 from the origin

to each such vertex in H; putting these together, we get a walk WH of length at

most (2`− 2)(2`− 1)d in H which starts at the origin, ends at the origin, and visits

every vertex at most distance `− 1 from the origin; furthermore, by choosing N

sufficiently large, we may assume that (2`− 2)(2`− 1)d ≤ δN − n.

For each H-counter v, let Av be the event that, in the next 4δN − n steps, v

visits every vertex at most distance ` − 1 from the origin. If no Av occurs, for

any H as above, we again declare the stage to have failed. Conditional on the

positions of the H-counters at the start of this block, the events Av are independent

of one another. Now, fix these ‘starting positions’ of the 1
6
(1 + c)N−4δN H-counters.
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For each H-counter v, there is a path of length at most 3δN from its starting

position to the origin. Let Bv be the event that v strictly follows this path, then

the walk WH and then never leaves BH(0, 1). Clearly Bv implies Av, and so

P[Av] ≥ P[Bv] ≥ (2d)−4δN . Hence, conditional on the starting positions of the

H-counters, the probability that no Av occurs is at most

(1− (2d)−4δN)
1
6
(1+c)N−4δN

≤ exp

(
−1

6
(2d)−4δN(1 + c)N−4δN

)
.

Since the bound above is independent of the starting positions of the H-counters,

it also holds without conditioning for any fixed H as above.

In summary, we declare the `th stage to have failed if one of the following

happens.

(1) In the first block, there is some G contained in [−n, n]d whose representative

particle pG does not branch sufficiently. This happens with probability at

most

2d(2n+1)d exp(−c′δN). (1)

(2) In the second block, there is some G contained in [−n, n]d for which some

q ∈ PG does not branch sufficiently. This happens with probability at most

2d(2n+1)d(1 + c)δN exp(−c′(N − 5δN)). (2)

(3) In the second block, there is some H contained in [−N,N ]d for which too

few particles in the corresponding set PH′ are H-good. This happens with

probability at most

2d(2N+1)d exp

(
− 1

16
(1 + c)δN

)
. (3)

(4) In the third block, there is some H contained in [−N,N ]d for which no

H-counter visits every vertex at graph distance most `− 1 from the origin

during steps n+N − 4δN through N in H. This happens with probability

at most

2d(2N+1)d exp

(
−1

6
(2d)−4δN(1 + c)N−4δN

)
. (4)

We now finish the proof as follows. By the union bound, we conclude that the

probability of the `th stage being declared a failure is at most the sum of the

estimates in (1), (2), (3) and (4); by the choice of δ, for fixed n, this sum tends to

0 as N →∞. We choose N large enough to both ensure that the bounds above

hold and to make the probability of the `th stage being declared a failure at most
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2−`, and as mentioned earlier, we set T` = N . In the case of success, for each

H ⊂ Zd contained in the box [−T`, T`]d, we pick an arbitrary particle that walked

the chosen path above and take that particle to be pH , whereas in the case of

failure, we choose representative particles arbitrarily. The Borel–Cantelli lemma

now implies that almost surely, there are only finitely many stages that fail, so

for every subgraph, there is a particle that visits every reachable vertex infinitely

often. �

4. Conclusion

We have shown that a countable collection of independent simple random walks

in two dimensions can almost surely be made transient by dropping to a suitable

random two-dimensional subgraph; on the other hand, in any number of dimensions,

a branching random walk is almost surely recurrent on every subgraph, in the sense

that some branch is recurrent on each subgraph. Natural intermediate questions

arise from considering the dynamic random walk W(t)
d mentioned earlier. This

object was introduced by Benjamini, Häggström, Peres and Steif [5], who showed

that in three or four dimensions (i.e., when d ∈ {3, 4}), there is almost surely some

time T such thatW(T )
d is recurrent; while, in five or more dimensions, almost surely

the walk is transitive at all times. In two dimensions, Hoffman [11] showed that

there is almost surely a time T such that the walk is W(T )
2 transitive; see also [3].

In the light of these facts, the following question seems of interest.

Problem 4.1. Let d ∈ {2, 3, 4}, and let W(t)
d be a dynamic random walk on Zd. Is

there almost surely a (random) subgraph H ⊂ Zd on which W(t)
d is transitive for

every time t ≥ 0?

It seems plausible that the answer is positive in four dimensions and negative in

two dimensions; we are not prepared to offer a guess in three dimensions, however.

Another interesting question concerns paths. It is clear that for any path P in

Zd through the origin, a random walk on P is almost surely recurrent. In Section 2,

we noted that when one attempts to build a (random) path in two dimensions

that greedily forces the random walk north and east, the resulting induced walk is

almost surely recurrent; the induced walk exhibits some drift (compared to a fixed

path) but only at the end points, and this is not enough to make it transient. This

suggests the following question.
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Problem 4.2. Let W be a simple random walk on Zd. Is it almost surely the case

that WP is recurrent for every path P ⊂ Zd through the origin?

In a similar vein, as pointed out to us by one of the referees, one could also ask

what happens if we replace the underlying graph Z2 by a strongly-recurrent graph

in the sense of [13], such as, for example, the the Sierpinski carpet.

In the cases where we can force a simple random walk to be transient, what can

we say about its escape velocity? In dimensions d ≥ 3, it was shown in [8, 9] that

a simple random walk on Zd escapes at a rate of about
√
n/ logcd+o(1) n. What can

be said in our context?

Problem 4.3. Fix d ≥ 2. What is the supremum of α such that for a random

walk W on Zd, we can almost surely choose a subgraph H ⊂ Zd such that the walk

escapes to infinity at rate at least nα?

As a first step towards this problem, it would already be interesting to know if

we can get a random walk to escape with linear velocity in high dimensions.

Finally, a fundamental problem in this context, and one of our original motivations

for treating the problem considered here, comes from the theory of universal traversal

sequences. Call an infinite word Z on the alphabet {x,−x,y,−y} a universal

traversal sequence for Z2 if ZG is recurrent for every G ⊂ Z2. The following basic

question raised by Spink [18] remains wide open.

Problem 4.4. Does there exist a universal traversal sequence for Z2?

David and Tiba [7] recently found deterministic constructions of traversal se-

quences handling a reasonably large class of (but not all) subgraphs of Z2. However,

in general, the most efficient methods that we know of to construct universal traver-

sal sequences all involve choosing a long enough traversal sequence at random; our

main result rules out this standard construction on the square lattice. Either answer

to the above existence question, positive or negative, would be very interesting.
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Note added in proof

After this manuscript was completed and circulated, it was brought to our

attention that the existence of exceptional subgraphs for a single simple random walk

has independently been established by Balister, Bollobás, Leader and Walters [14].
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