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Abstract. The class Max (r, 2)-CSP (or simply Max 2-CSP) consists of constraint satisfaction
problems with at most two r-valued variables per clause. For instances with n variables and
m binary clauses, we present an O(nr5+19m/100)-time algorithm which is the fastest polynomial-
space algorithm for many problems in the class, including Max Cut. The method also proves a
treewidth bound tw(G) ≤ (13/75 + o(1))m, which gives a faster Max 2-CSP algorithm that uses

exponential space: running in time O⋆(2(13/75+o(1))m), this is fastest for most problems in Max
2-CSP. Parametrizing in terms of n rather than m, for graphs of average degree d we show a simple

algorithm running time O⋆
(

2(1− 2
d+1 )n)

, the fastest polynomial-space algorithm known.
In combination with “Polynomial CSPs” introduced in a companion paper, these algorithms also

allow (with an additional polynomial-factor overhead in space and time) counting and sampling,
and the solution of problems like Max Bisection that escape the usual CSP framework.

Linear programming is key to the design as well as the analysis of the algorithms.

1. Introduction

A recent line of research has been to speed up exponential-time algorithms for sparse instances
of maximization problems such as Max 2-Sat and Max Cut. The typical method is to repeatedly
transform an instance to a smaller one or split it into several smaller ones (whence the exponential
running time) until trivial instances are reached; the reductions are then reversed to recover a
solution to the original instance. In [SS03] we introduced a new such method, distinguished by the
fact that reducing an instance of Max Cut, for example, results in a problem that may not belong
to Max Cut, but where the reductions are closed over a larger class Max 2-CSP, of constraint
satisfaction problems with at most two variables per clause. This allowed the reductions to be
simpler, fewer, and more powerful. The algorithm ran in time O⋆(2m/5) (time O⋆(rm/5) for r-
valued problems), making it the fastest for Max Cut, and tied (at the time) for Max 2-Sat.

In this paper we present a variety of results on faster exponential-time CSP algorithms and
on treewidth. Our approach uses linear programming in both the design and the analysis of the
algorithms.

1.1. Results. The running times for our algorithms depend on the space allowed, and are sum-
marized in Table 1. (The O⋆(·) notation, which ignores leading polynomial factors, is defined in
Section 2.1.)

For Max 2-CSP we give an O⋆(r19m/100)-time, linear-space algorithm. This is the fastest poly-
nomial-space algorithm known for Max Cut, Max Dicut, Max 2-Lin, less common problems such
as Max Ones 2-Sat, weighted versions of all these, and of course general Max 2-CSP; more efficient
algorithms are known for only a few problems, such as Maximum Independent Set and Max 2-Sat.
If exponential space is allowed, we give an algorithm running in space and time O⋆(r(13/75+o(1))m);
it is the fastest exponential-space algorithm known for most problems in Max 2-CSP (including
those listed above for the polynomial-space algorithm).

Key words and phrases. Max Cut; Max 2-Sat; Max 2-CSP; exact algorithms; linear-programming duality; measure
and conquer;
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edge parametrized (m)

problem time (exact) time (numerical) space reference

Max (r, 2)-CSP O⋆(r19m/100) O⋆(r0.19m) O⋆(rm/5.2631) linear Theorem 11

∆ ≤ 4 O⋆(r3m/16) O⋆(r0.1875m) O⋆(rm/5.3333)

∆ ≤ 3 O⋆(rm/6) O⋆(r0.1677m) O⋆(rm/6)

Max (r, 2)-CSP O⋆(r(13/75+o(1))m) O⋆(r0.1734m) O⋆(rm/5.7692) exponential Corollary 23

∆ ≤ 4 O⋆(r(1/6+o(1))m) O⋆(r0.1667m) O⋆(rm/5.9999)

∆ ≤ 3 O⋆(r(1/9+o(1))m) O⋆(r0.1112m) O⋆(rm/8.9999)

vertex parametrized (n)

Max (r, 2)-CSP O⋆
(

r(1− 2
d+1

)n)

polynomial Theorem 13

O⋆
(

r(d−2)n/4
)

polynomial [SS03, SS06c]

Table 1. Exact bounds and numerical bounds (in two forms) on the running times
of our Max (r, 2)-CSP algorithms. All of these are the best known. Throughout this
paper, m denotes the number of 2-clauses and n the number of variables; ∆ denotes
the maximum number of 2-clauses on any variable, and d the average number.

These bounds have connections with treewidth, and we prove that the treewidth of an m-edge
graph G satisfies tw(G) ≤ 3+19m/100 and tw(G) ≤ (13/75+o(1))m. (The second bound is clearly
better for large m.)

For both treewidth and algorithms we provide slightly better results for graphs of maximum
degree ∆(G) = 3 and ∆(G) = 4.

In combination with a “Polynomial CSP” approach presented in a companion paper [SS06a,
SS07], the algorithms here also enable (with an additional polynomial-factor overhead in space and
time) counting CSP solutions of each possible cost; sampling uniformly from optimal solutions;
sampling from all solutions according to the Gibbs measure or other distributions; and solving
problems that do not fall into the Max 2-CSP framework, like Max Bisection, Sparsest Cut, judicious
partitioning, Max Clique (without blowing up the input size), and multi-objective problems. We
refer to [SS06a, SS07] for further details.

Our emphasis is on running time parametrized in terms of the number of edges m, but we
also have some positive results for parametrization in terms of the number of edges n (obtained
largely independently of the methods in the rest of the paper). The main new result is a Max

2-CSP algorithm running in time O⋆
(

r(1− 2
d+1

)n)

(Theorem 13), where d is the average number of
appearances of each variable in 2-clauses. Coupled with an older algorithm of ours (see [SS03,

SS06c]) with running time O⋆
(

r(1− 2
d+2

)n)

, this is the best known polynomial-space algorithm.

1.2. Techniques. We focus throughout on the “constraint graph” supporting a CSP instance.
Our algorithms use several simple transformation rules, and a single splitting rule. The transfor-
mation rules replace an instance by an equivalent instance with fewer variables; our splitting rule
produces several instances, each with the same, smaller, constraint graph. In a simple recursive
CSP algorithm, then, the size of the CSP “recursion tree” is exponential in the number of splitting
reductions on the graph. The key step in the analysis of our earlier O⋆(rm/5) algorithm was to
show that the number of splitting reductions for an m-edge graph can be no more than m/5.

We use a linear programming (LP) analysis to derive an upper bound on how large the number
of splitting reductions can be. Each reduction affects the degree sequence of the graph in a simple
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way, and the fact that the number of vertices of each degree is originally non-negative and finally
0 is enough to derive the m/5 bound.

It is not possible to improve upon the m/5 bound on the number of splitting reductions, since
there are examples achieving the bound. However, we are able to obtain a smaller bound on the
reduction “depth” (described later), and the running time of a more sophisticated algorithm is
exponential in this depth. Analysis of the reduction depth must take into account the component
structure of the CSP’s constraint graph. The component structure is not naturally captured by the
LP analysis, which considers the (indivisible) degree sequence of the full graph (the usual argument
that in case of component division “we are done, by induction” cannot be applied) but a slight
modification of the argument resolves the difficulty.

We note that the LP was essential in the design of the new algorithm as well as its analysis.
The support of the LP’s primal solution indicates the particular reductions that contribute to the
worst case. With a “bad” reduction identified, we do two things in parallel: exclude the reduction
from the LP to see if an improved bound would result, and apply some actual thinking to see if
it is possible to avoid the bad reduction. Since thinking is difficult and time-consuming, it is nice
that the LP can be modified and re-run in a second to determine whether any gain would actually
result. Furthermore, the LP’s dual solution gives an (optimal) set of weights, for edges and for
vertices of each degree, for a “Lyapunov” or “potential function” proof of the depth bound. The
potential-function proof method is well established (in the exponential-time algorithm context the
survey [FGK05] calls it a “measure and conquer” strategy), and the LP method gives an efficient
and provably optimal way of carrying it out.

The LP method presented is certainly applicable to reductions other than our own, and we
also hope to see it applied to algorithm design and analysis in contexts other than exponential-
time algorithms and CSPs. (For a different use of LPs in automating extremal constructions,
see [TSSW00].)

1.3. Literature survey. We are not sure where the class (a, b)-CSP was first introduced, but
this model, where each variable has at most a possible colors and there are general constraints
each involving at most b variables, is extensively exploited for example in Beigel and Eppstein’s
O⋆(1.3829n)-time 3-coloring algorithm [BE05]. Finding relatively fast exponential-time algorithms
for NP-hard problems is a field of endeavor that includes Schöning’s famous randomized algorithm
for 3-Sat [Sch99], taking time O⋆((4/3)n) for an instance on n variables.

Narrowing the scope to Max 2-CSPs with time parametrized in m, we begin our history with
an algorithm of Niedermeier and Rossmanith [NR00]: designed for Max Sat generally, it solves
Max 2-Sat instances in time O⋆(20.348m). The Max 2-Sat result was improved by Hirsch to

O⋆(2m/4) [Hir00]. Gramm, Hirsch, Niedermeier and Rossmanith showed how to solve Max 2-

Sat in time O⋆(2m/5), and used a transformation from Max Cut into Max 2-Sat to allow Max Cut’s

solution in time O⋆(2m/3) [GHNR03]. Kulikov and Fedin showed how to solve Max Cut in time

O⋆(2m/4) [KF02]. Our own [SS03] improved the Max Cut time (and any Max 2-CSP) to O⋆(2m/5).

Kojevnikov and Kulikov recently improved the Max 2-Sat time to O⋆(2m/5.5) [KK06]; at the time
of writing this is the fastest.

We now improve the time for Max Cut to O⋆(219m/100). We also give linear-space algorithms for

all of Max 2-CSP running in time O⋆(r19m/100), as well as faster but exponential-space algorithms

running in time and space O⋆(2(13/75+o(1))m). All these new results are the best currently known.
A technical report of Kneis and Rossmanith [KR05] (published just months after our [SS04]), and

a subsequent paper of Kneis, Mölle, Richter and Rossmanith [KMRR05], give results overlapping
with those in [SS04] and the present paper. They give algorithms applying to several problems in

Max 2-CSP, with claimed running times of O⋆(219m/100) and (in exponential space) O⋆(213m/75).
The papers are widely cited but confuse the literature to a degree. First, the authors were evidently
unaware of [SS04]. [KR05] cites our much earlier conference paper [SS03] (which introduced many of
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the ideas extended in [SS04] and the present paper) but overlooks both its O⋆(2m/5) algorithm and
its II-reduction (which would have extended their results to all of Max 2-CSP). These oversights
are repeated in [KMRR05]. Also, both papers have a reparable but fairly serious flaw, as they
overlook the “component-splitting” case C4 of Section 5.4 (see Section 5 below). Rectifying this
means adding the missing case, modifying the algorithm to work component-wise, and analyzing
“III-reduction depth” rather than the total number of III-reductions — the issues that occupy
us throughout Section 5. While treewidth-based algorithms have a substantial history (surveyed
briefly in Section 7), [KR05] and [KMRR05] motivate our own exploration of treewidth, especially
Subsection 7.2’s use of Fomin and Høie’s [FH06].

We turn our attention briefly to algorithms parametrized in terms of the number n of ver-
tices (or variables), along with the average degree d (the average number of appearances of a
variable in 2-clauses) and the maximum degree ∆. A recent result of Della Croce, Kaminski, and

Paschos [DCKP07] solves Max Cut (specifically) in time O⋆
(

2mn/(m+n)
)

= O⋆
(

2(1− 2
d+2

)n)

. Another

recent paper, of Fürer and Kasiviswanathan [FK07], gives a running-time bound of O⋆
(

2(1− 1
d−1

)n)

for any Max 2-CSP (where d > 2 and the constraint graph is connected, per personal communica-
tion). Both of these results are superseded by the Max 2-CSP algorithm of Theorem 13, with time

bound O⋆
(

2(1− 2
d+1

)n)

, coupled with another of our algorithms from [SS03, SS06c], with running

time O⋆
(

2(1− 2
d+2

)n)

. A second algorithm from [DCKP07], solving Max Cut in time O⋆
(

2(1−2/∆)n
)

,
remains best for “nearly regular” instances where ∆ ≤ d + 1.

Particular problems within Max 2-CSP can often be solved faster. For example, an easy tailor-
ing of our O⋆(r19m/100) algorithm to weighted Maximum Independent Set runs in time O⋆(23n/8)
(see Corollary 14), which is O⋆(1.2969n). This improves upon an older algorithm of Dahllöf
and Jonsson [DJ02], but is not as good as the O⋆(1.2561n) algorithm of Dahllöf, Jonsson and
Wahlström [DJW05] or the O⋆(1.2461n) algorithm of Fürer and Kasiviswanathan [FK05]. (Even
faster algorithms are known for unweighted MIS.)

The elegant algorithm of Williams [Wil04], like our algorithms, applies to all of Max 2-CSP. It is
the only known algorithm to treat dense instances of that class relatively efficiently, and also enjoys
some of the strengths of our Polynomial CSP extension [SS06a, SS07]. It intrinsically requires

exponential space, of order 22n/3, and runs in time O⋆(2ωn/3), where ω < 2.376 is the matrix-
multiplication exponent. Noting the dependency on n rather than m, this algorithm is faster than
our polynomial-space algorithm if the average degree is above 2(ω/3)/(19/100)) < 8.337, and faster
than our exponential-space algorithm if the average degree is above 9.139.

An early version of our results was given in the technical report [SS04], and a conference version
appeared as [SS06b].

1.4. Outline. In the next section we define the class Max 2-CSP, and in Section 3 we introduce the
reductions our algorithms will use. In Section 4 we define and analyze the O(nr3+m/5) algorithm of

[SS03] as a relatively gentle introduction to the tools, including the LP analysis. The O(nr5+19m/100)
algorithm is presented in Section 5; it entails a new focus on components of the constraint graph,
affecting the algorithm and the analysis. Section 6 digresses to consider algorithms with run time
parametrized by the number of vertices rather than edges; by this measure, it gives the fastest
known polynomial-space algorithm for general Max 2-CSP instances. Section 7 presents corollaries
pertaining to the treewidth of a graph and the exponential-space O⋆(r(13/75+o(1))m) algorithm.
Section 8 recapitulates, and considers the potential for extending the approach in various ways.

2. Max (r, 2)-CSP

The problem Max Cut is to partition the vertices of a given graph into two classes so as to
maximize the number of edges “cut” by the partition. Think of each edge as being a function on
the classes (or “colors”) of its endpoints, with value 1 if the endpoints are of different colors, 0 if
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they are the same: Max Cut is equivalent to finding a 2-coloring of the vertices which maximizes
the sum of these edge functions. This view naturally suggests a generalization.

An instance (G, S) of Max (r, 2)-CSP is given by a “constraint” graph G = (V, E) and a set S of
“score” functions. Writing [r] = {1, . . . , r} for the set of available colors, we have a “dyadic” score
function se : [r]2 → R for each edge e ∈ E, a “monadic” score function sv : [r] → R for each vertex
v ∈ V , and finally a single “niladic” score “function” s∅ : [r]0 → R which takes no arguments and
is just a constant convenient for bookkeeping.

A candidate solution is a function φ : V → [r] assigning “colors” to the vertices (we call φ an
“assignment” or “coloring”), and its score is

s(φ) := s∅ +
∑

v∈V

sv(φ(v)) +
∑

uv∈E

suv(φ(u), φ(v)). (1)

An optimal solution φ is one which maximizes s(φ).
We don’t want to belabor the notation for edges, but we wish to take each edge just once, and

(since suv need not be a symmetric function) with a fixed notion of which endpoint is “u” and
which is “v”. We will typically assume that V = [n] and any edge uv is really an ordered pair (u, v)
with 1 ≤ u < v ≤ n; we will also feel free to abbreviate suv(C, D) as suv(CD), etc.

Henceforth we will simply write Max 2-CSP for the class Max (r, 2)-CSP. The “2” here refers
to score functions’ taking 2 or fewer arguments: 3-Sat, for example, is out of scope. Replacing 2
by a larger value would mean replacing the constraint graph with a hypergraph, and changes the
picture significantly.

An obvious computational-complexity issue is raised by our allowing scores to be arbitrary real
values. Our algorithms will add, subtract, and compare these scores, never introducing a number
larger in absolute value than the sum of the absolute values of all input values, and we assume
that each such operation can be done in time and space O(1). If desired, scores may be limited to
integers, and the length of the integers factored in to the algorithm’s complexity, but this seems
uninteresting and we will not remark on it further.

2.1. Notation. We reserve the symbols G for the constraint graph of a Max 2-CSP instance, n
and m for its numbers of vertices and edges, [r] = {1, . . . , r} for the allowed colors of each vertex,
and L = 1 + nr + mr2 for the input length. Since a CSP instance with r < 2 is trivial, we will
assume r ≥ 2 as part of the definition.

For brevity, we will often write “d-vertex” in lieu of “vertex of degree d”. We write ∆(G) for the
maximum degree of G.

The notation O⋆(·) suppresses polynomial factors in any parameters, so for example O⋆(rcn)
may mean O(r3n rcn). To avoid any ambiguity in multivariate O(·) expressions, we take a strong
interpretation that that f(·) = O(g(·)) if there exists some constant C such that f(·) ≤ Cg(·) for
all values of their (common) arguments. (To avoid some notational awkwardness, we disallow the
case n = 0, but allow m = 0.)

2.2. Remarks. Our assumption of an undirected constraint graph is sound even for a problem
such as Max Dicut (maximum directed cut). For example, for Max Dicut a directed edge (u, v)
with u < v would be expressed by the score function suv(φ(u), φ(v)) = 1 if (φ(u), φ(v)) = (0, 1) and
suv(φ(u), φ(v)) = 0 otherwise; symmetrically, a directed edge (v, u), again with u < v, would have
score suv(φ(u), φ(v)) = 1 if (φ(u), φ(v)) = (1, 0) and score 0 otherwise.

There is no loss of generality in assuming that an input instance has a simple constraint graph
(no loops or multiple edges), or by considering only maximization and not minimization problems.

Readers familiar with the class F-Sat (see for example Marx [Mar04], Creignou [Cre95], or
Khanna [KSTW01]) will realize that when the arity of F is limited to 2, Max 2-CSP contains
F-Sat, F-Max-Sat and F-Min-Sat; this includes Max 2-Sat and Max 2-Lin (satisfying as many as



6 ALEXANDER D. SCOTT AND GREGORY B. SORKIN

possible of m 2-variable linear equalities and/or inequalities). Max 2-CSP also contains F-Max-
Ones; for example Max-Ones-2-Sat. Additionally, Max 2-CSP contains similar problems where we
maximize the weight rather than merely the number of satisfied clauses.

The class Max 2-CSP is surprisingly flexible, and in addition to Max Cut and Max 2-Sat includes
problems like MIS and minimum vertex cover that are not at first inspection structured around
pairwise constraints. For instance, to model MIS as a Max 2-CSP, let φ(v) = 1 if vertex v is to be
included in the independent set, and 0 otherwise; define vertex scores sv(φ(v)) = φ(v); and define
edge scores suv(φ(u), φ(v)) = −2 if φ(u) = φ(v) = 1, and 0 otherwise.

3. Reductions

As with most of the works surveyed above, our algorithms are based on progressively reducing an
instance to one with fewer vertices and edges until the instance becomes trivial. Because we work
in the general class Max 2-CSP rather than trying to stay within a smaller class such as Max 2-Sat
or Max k-Cut, our reductions are simpler and fewer than is typical. For example, [GHNR03] uses
seven reduction rules; we have just three (plus a trivial “0-reduction” that other works may treat
implicitly). The first two reductions each produce equivalent instances with one vertex fewer, while
the third produces a set of r instances, each with one vertex fewer, some one of which is equivalent
to the original instance. We expand the previous notation (G, S) for an instance to (V, E, S), where
G = (V, E).

Reduction 0 (transformation): This is a trivial “pseudo-reduction”. If a vertex y has
degree 0 (so it has no dyadic constraints), then set s∅ = s∅ + maxC∈[r] sy(C) and delete y
from the instance entirely.

Reduction I: Let y be a vertex of degree 1, with neighbor x. Reducing (V, E, S) on y results
in a new problem (V ′, E′, S′) with V ′ = V \ y and E′ = E \ xy. S′ is the restriction of S to
V ′ and E′, except that for all colors C ∈ [r] we set

s′x(C) = sx(C) + max
D∈[r]

{sxy(CD) + sy(D)}.

Note that any coloring φ′ of V ′ can be extended to a coloring φ of V in r ways, depending
on the color assigned to y. Writing (φ′, D) for the extension in which φ(y) = D, the defining
property of the reduction is that S′(φ′) = maxD S(φ′, D). In particular, maxφ′ S′(φ′) =
maxφ S(φ), and an optimal coloring φ′ for the instance (V ′, E′, S′) can be extended to an
optimal coloring φ for (V, E, S).

xx y

Reduction II (transformation): Let y be a vertex of degree 2, with neighbors x and z.
Reducing (V, E, S) on y results in a new problem (V ′, E′, S′) with V ′ = V \ y and E′ =
(E \ {xy, yz}) ∪ {xz}. S′ is the restriction of S to V ′ and E′, except that for C, D ∈ [r] we
set

s′xz(CD) = sxz(CD) + max
F∈[r]

{sxy(CF ) + syz(FD) + sy(F )} (2)

if there was already an edge xz, discarding the first term sxz(CD) if there was not.
As in Reduction I, any coloring φ′ of V ′ can be extended to V in r ways, according

to the color F assigned to y, and the defining property of the reduction is that S′(φ′) =
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maxF S(φ′, F ). In particular, maxφ′ S′(φ′) = maxφ S(φ), and an optimal coloring φ′ for
(V ′, E′, S′) can be extended to an optimal coloring φ for (V, E, S).

xx

y

zz

Reduction III (splitting): Let y be a vertex of degree 3 or higher. Where reductions I
and II each had a single reduction of (V, E, S) to (V ′, E′, S′), here we define r different
reductions: for each color C there is a reduction of (V, E, S) to (V ′, E′, SC) corresponding
to assigning the color C to y. We define V ′ = V \ y, and E′ as the restriction of E to V \ y.
SC is the restriction of S to V \ y, except that we set

(sC)0 = s∅ + sy(C),

and, for every neighbor x of y and every D ∈ [r],

(sC)x(D) = sx(D) + sxy(DC).

As in the previous reductions, any coloring φ′ of V \ y can be extended to V in r ways:
for each color C there is an extension (φ′, C), where color C is given to y. We then have
(this is different!) SC(φ′) = S(φ′, C), and furthermore,

max
C

max
φ′

SC(φ′) = max
φ

S(φ),

where an optimal coloring on the left is an optimal coloring on the right.

y

(V, E, S) (V ′, E′, S1) (V ′, E′, Sr)

Note that each of the reductions above has a well-defined effect on the constraint graph of an
instance: A 0-reduction deletes its (isolated) vertex; a I-reduction deletes its vertex (of degree 1); a
II-reduction contracts away its vertex (of degree 2); and a III-reduction deletes its vertex (of degree
3 or more), independent of the “color” of the reduction. That is, all the CSP reductions have
graph-reduction counterparts depending only on the constraint graph and the reduction vertex.

4. An O(nr3+m/5) Algorithm

As a warm-up to our O⋆(r19m/100) algorithm, in this section we will present Algorithm A, which

will run in time O(nr3+m/5) and space O(L). (Recall that L = 1 + nr + mr2 is the input length.)
Roughly speaking, a simple recursive algorithm for solving an input instance could work as follows.
Begin with the input problem instance.

Given an instance M = (G, S):

(1) If any reduction of type 0, I or II is possible (in that order of preference), apply it to reduce
M to M′, recording certain information about the reduction. Solve M′ recursively, and use
the recorded information to reverse the reduction and extend the solution to one for M.
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(2) If only a type III reduction is possible, reduce (in order of preference) on a vertex of degree
5 or more, 4, or 3. For i ∈ [r], recursively solve each of the instances Mi in turn, select the
solution with the largest score, and use the recorded information to reverse the reduction
and extend the solution to one for M.

(3) If no reduction is possible then the graph has no vertices, there is a unique coloring (the
empty coloring), and the score is s∅ (from the niladic score function).

If the recursion depth — the number of III-reductions — is ℓ, the recursive algorithm’s running
time is O⋆(rℓ). Thus in order to prove an O⋆(rm/5) bound on running time, it is enough to prove
that ℓ ≤ m/5. We prove this bound in Lemma 4) in Section 4.6. (The preference order for type III
reductions described above is needed to obtain the bound.)

In order to obtain our more precise O(nr3+m/5) bound on running time, we must be a little more
careful with the description of implementation and data storage. Thus Sections 4.1 to 4.5 deal with
the additional difficulties arising from running in linear space and with a small polynomial factor
for running time. A reader willing to take this for granted, or who is primarily interested in the
exponent in the O⋆(r19m/100) bound, can skip directly to Section 4.6.

4.1. Linear space. If the recursion depth is ℓ, a straightforward recursive implementation would
use greater-than-linear space, namely Θ(ℓL). Thus, when the algorithm has reduced on a vertex v,
the reduced instance should be the only one maintained, while the pre-reduction instance should
be reconstructible from compact (O(1)-sized) information stored in the data structure for v.

4.2. Phases. For both efficiency of implementation and ease of analysis, we define Algorithm A as
running in three phases. As noted at the end of Section 3, the CSP reductions have graph-reduction
counterparts. In the first phase we merely perform such graph reductions. We reduce on vertices in
the order of preference given earlier: 0-reduction (on a vertex of degree 0); I-reduction (on a vertex
of degree 1); II-reduction (on a vertex of degree 2); or (still in order of preference) III-reduction on
a vertex of degree 5 or more, 4, or 3. The output of this phase is simply the sequence of vertices
on which we reduced.

The second phase finds the optimal cost recursively, following the reduction sequence of the first
phase; if there were ℓ III-reductions in the first phase’s reduction sequence, the second phase runs
in time O⋆(rℓ). The third phase is similar to the second phase and returns an optimal coloring.

4.3. First phase. In this subsection we show that a sequence of reductions following the stated
preference order can be constructed in linear time and space by Algorithm A.1 (see displayed
pseudocode).

Claim 1. On input of a graph G with n vertices and m edges, Algorithm A.1 runs in time and
space O(m + n) and produces a reduction sequence obeying the stated preference order.

Proof. Correctness of the algorithm is guaranteed by line 8. For the other steps we will have to
detail some data structures and algorithmic details.

We assume a RAM model, so that a given memory location can be accessed in constant time.
Let the input graph be presented in a sparse representation consisting of a vector of vertices, each
with a doubly-linked list of incident edges, each edge with a pointer to the edge’s twin copy indexed
by the other endpoint. From the vector of vertices we create a doubly linked list of them, so that
as vertices are removed from an instance to create a subinstance they are bridged over in the linked
list, and there is always a linked list of just the vertices in the subinstance.

Transforming the input graph into a simple one can be done in time O(m + n) and space O(n).
The procedure relies on a pointer array of length n, initially empty. For each vertex u, we iterate
through the incident edges. For an edge to vertex v, if the vth entry of the pointer array is empty,
we put a pointer to the edge uv. If the vth entry is not empty, this is not the first uv edge we
have seen, and so we coalesce the new edge with the existing one: using the pointer to the original



LP DESIGN OF FAST MAX 2-CSP ALGORITHMS 9

Algorithm A.1: Algorithm A, first phase

1: Input a constraint graph G.
2: if G is not simple then
3: Reduce it to a simple graph by identifying parallel edges.
4: end if
5: Sort the vertices into stacks, corresponding to degree 0, 1, 2, ≥ 5, 4 and 3, in that order.
6: Let G0 = G.
7: for i = 1 to n do
8: Pop a next-reduction vertex vi from the first non-empty stack.
9: if deg(vi) ≥ 5 then

10: Check for vi for duplicate incident edges.
11: Link any duplicate edge to the II-reduction that created it (using the label previously

created by line 15).
12: end if
13: Reduce Gi−1 on vi to produce Gi, except :
14: if vi had degree 2 then
15: Do not check whether the added edge duplicates an existing one; instead, label it as having

been added by the reduction on vi.
16: end if
17: Degree-check each Gi−1-neighbor of vi.
18: Place each neighbor on the appropriate stack, removing it from its old stack.
19: end for
20: Output the sequence v1, . . . , vn of reduction vertices, along with any duplicate-edge creations

associated with each II-reduction vertex.

edge, we use the link from the redundant uv edge to its “vu” twin copy to delete the twin and
bridge over it, then delete and bridge over the redundant uv edge itself. After processing the last
edge for vertex u we run through its edges again, clearing the pointer array. The time to process a
vertex u is of order the number of its incident edges (or O(1) if it is isolated), so the total time is
O(m + n) as claimed. Henceforth we assume without loss of generality that the input instance has
no multiple edges.

One of the trickier points is to maintain information about the degree of each vertex, because a
II-reduction may introduce multiple edges and there is not time to run through its neighbors’ edges
to detect and remove parallel edges immediately. However, it will be possible to track whether each
vertex has degree 0, 1, 2, 3, 4, or 5 or more. We have a vertex “stack” for each of these cases. Each
stack is maintained as a doubly linked list, and we keep pointers both ways between each vertex
and its “marker” in the stack.

The stacks can easily be created in linear time from the input. The key to maintaining them is
a degree-checking procedure for a vertex x. Iterate through x’s incident edges, keeping track of the
number of distinct neighboring vertices seen, stopping when we run out of edges or find 5 distinct
neighbors. If a neighbor is repeated, coalesce the two edges. The time spent on x is O(1) plus the
number of edge coalescences. Once the degree of x is determined as 0, 1, 2, 3, 4, or 5 or more,
remove x’s marker from its old stack (using the link from x to delete the marker, and links from
the marker to its predecessor and successor to bridge over it), and push a marker to x onto the
appropriate new stack.

When reducing on vertex v, run the degree-checking procedure on each neighbor x of v (line
17 of Algorithm A.1). The time for this is the time to count up to 5 for each neighbor (a total
of O(deg(v))), plus the number of edge coalescences. Vertex degrees never increase above their
initial values, so over the course of Algorithm A.1 the total of the O(deg(v)) terms is O(m).
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Parallel edges are created only by II-reductions, each producing at most one such edge, so over the
course of Algorithm A.1 at most n parallel edges are created, and the edge coalescences thus take
time O(n). The total time for degree-checking is therefore O(m + n).

Finally, each reduction (line 13 of Algorithm A.1) can itself be performed in time O(1+deg(v)):
for a 0, I, or III-reduction we simply delete v and its incident edges; for a II-reduction we do the
same, then add an edge between v’s two former neighbors. Again, the total time is O(m + n). �

With Algorithm A’s first phase Algorithm A.1 complete, we may assume henceforth that our
graphs are always simple: from this phase’s output we can (trivially) reproduce the sequence of
reductions in time O(m + n), and coalesce any duplicate edge the moment it appears.

4.4. Algorithm A: Second phase. The second phase, Algorithm A.2, determines the optimum
cost, while the third and final phase, Algorithm A.3, returns a coloring with this cost. These two
phases are nearly identical, and we proceed with Algorithm A.2.

Because the algorithm is recursive and limited to linear space, when recursing we cannot afford
to pass a separate copy of the data; rather, a “subinstance” for recursion must be an in-place
modification of the original data, and when a recursive call terminates it must restore the data to
its original form. This recursion is sketched in Algorithm A.2 (see displayed pseudocode).

Algorithm A.2: Algorithm A, second phase recursively computing s(G, S)

1: Input: A CSP instance (G, S), and reduction sequence v := v1, . . . , vn (with associated
duplicate-edge annotations, per Algorithm A.1 line 20).

2: if n = 0 then
3: Let s := s∅, the niladic score.
4: Return (s, G, S,v).
5: end if
6: if v1 is a 0-, I- or II-reduction vertex then
7: Reduce (G, S) on v1 to obtain (G′, S′)
8: Record an O(r2)-space annotation allowing the reduction on v1 to be reversed.
9: Truncate the reduction sequence correspondingly, letting v′ := v2, . . . , vn.

10: Let s := s(G′, S′), computed recursively.
11: Reverse the reduction to reconstruct (G, S) and v (and free the storage from line 8).
12: Return (s, G, S,v).
13: else
14: v is a III-reduction vertex.
15: Let s := −∞.
16: for color C = 1 to r do
17: III-reduce on v with color C to obtain (G′, SC), and v′.
18: Record an O(deg(v)r)-space reversal annotation.
19: Let s := max{s, s(G′, SC)}, computed recursively.
20: Reverse the reduction to reconstruct (G, S) (and free the storage from line 18).
21: end for
22: Return (s, G, S,v).
23: end if
24: Output: (s, G, S,v), where s is the optimal score of (G, S).

Claim 2. Given an (r, 2)-CSP instance with n vertices, m constraints, and length L, and a re-
duction sequence (per Algorithm A.1) with ℓ III-reductions, Algorithm A.2 returns the maximum
score, using space O(L) and time O(rℓ+3n).
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Proof. We first argue that each “branch” of the recursion (determined by the colors chosen in the
III-reductions) requires space O(L).

First we must detail how to implement the CSP reductions, which is a minor embellishment of
the graph reduction implementations described earlier. Recall that there is a score function on
each vertex, which we will assume is represented as an r-value table, and a similar function on each
edge, represented as a table with r2 values.

A CSP II-reduction on y with neighbors x and z follows the pattern of the graph reduction, but
instead of simply constructing a new edge (x, z) we now construct a new score function s′xz: iterate
through all color pairs C, D ∈ [r] and set s′xz(CD) := maxF∈[r]{sxy(CF ) + syz(FD) + sy(F )} as

in (2). Iterating through values C, D and F takes time O(r3), and the resulting table takes space
O(r2). If there already was a score function sxz (if there already was an edge (x, z)), the new score
function is the elementwise sum of the two tables. To reverse the reduction it suffices to record
the neighbors x and z and keep around the old score functions sxy and syz (allowing additional
space O(r2) for the new one). Similarly, a I-reduction takes time O(r2) and space O(r), and a
0-reduction time O(r) and space O(1).

To perform a III-reduction with color C on vertex y, for each neighbor x we incorporate the dyadic
score syx(CD) into the monadic score sx(D) (time O(r) to iterate through D ∈ [r]), maintain for
purposes of reversal the original score functions syx and sx, and allocate space O(r) for the new
score function s′x. Over all deg(y) neighbors the space required is O(deg(y)r), and for each of the
r colors for the reduction, the time is also O(deg(y)r). (Note that deg(y) 6= 0; indeed, deg(y) ≥ 3.)

Since vertex degrees are only decreased through the course of the algorithm, for one branch of
the recursion the total space is O(mr2 + nr), i.e., O(L). Since each branch of the recursion takes
space O(L), the same bound holds for the algorithm as a whole.

This concludes the analysis of space, and we turn to the running time. Let f(n, ℓ) be an upper
bound on the running time for an instance with n nodes and III-recursion depth ℓ. We claim that
f(0, 0) = 1 and for n > 0, f(n, ℓ) ≤ r3n(rℓ + (rℓ+1 − r)/(r − 1)), presuming that we have “rescaled
time” so that all absolute constants implicit in our O(·) expressions can be replaced by 1. (This
is equivalent to claiming that for some sufficiently large absolute constant C, f(0, 0) ≤ C and
f(n, ℓ) ≤ Cr3n(rℓ + (rℓ+1 − r)/(r − 1)).) The case n = 1 is trivial. In the event of a recursive call
in line (10), the recursion is preceded by just one 0-, I- or II-reduction, taking time ≤ r3; the other
non-recursive steps may also be accounted for in the same r3 time bound. By induction on n, in
this case we have

f(n, ℓ) ≤ r3 + f(n − 1, ℓ)

≤ r3 + r3(n − 1)(rℓ + (rℓ+1 − r)/(r − 1))

≤ r3n(rℓ + (rℓ+1 − r)/(r − 1)),

using only that rℓ + (rℓ+1 − r)/(r − 1) ≥ rℓ ≥ 1.
The interesting case is where there are r recursive calls originating in line (19), with the other

lines in the loop (16) consuming time O(r · deg(v)r); for convenience we bound this by r3n. In this
case, by induction on n and ℓ,

f(n, ℓ) ≤ r3n + rf(n − 1, ℓ − 1)

≤ r3n + r · r3n(rℓ−1 + (rℓ − r)/(r − 1))

= r3n + r3n(rℓ + (rℓ+1 − r2)/(r − 1))

= r3n(rℓ + (rℓ+1 − r2 + r − 1)/(r − 1))

≤ r3n(rℓ + (rℓ+1 − r)/(r − 1)),

using −r2 + r − 1 ≤ −r (from 0 ≤ (r − 1)2). �
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4.5. Algorithm A: Third phase. The third phase, Algorithm A.3 (not displayed) proceeds iden-
tically to the second until we visit a leaf achieving the maximum score (known from the second
phase), at which point we backtrack through all the reductions, filling in the vertex colors.

There are two key points here. The first is that when a maximum-score leaf is hit, we know it,
and can retrace back up the recursion tree. The second is the property that in retracing up the
tree, when we reach a node v, all descendant nodes in the tree have been assigned optimal colors,
v’s neighbors in the reduced graph correspond to such lower nodes, and thus we can optimally
color v (recursively preserving the property). These points are obvious for Algorithm A.3 and so
there is no need to write down its details, but we mention them because neither property holds for
Algorithm B , whose third phase Algorithm B.3 is thus trickier.

Because Algorithm A.3 is basically just an interruption of Algorithm A.2 when a maximum-score
leaf is encountered, the running time of Algorithm A.3 is no more than that of Algorithm A.2. We
have thus established the following claim.

Claim 3. Given an (r, 2)-CSP instance with n vertices, m constraints, and length L, Algorithm A
returns an optimal score and coloring in space O(L) and time O(rℓ+3n), where ℓ is the number of
III-reductions in the reduction sequence of Algorithm A.1.

4.6. Recursion depth. The crux of the analysis is now to show that the number of III-reductions
ℓ in the reduction sequence produced by Algorithm A’s first phase is at most m/5.

Lemma 4. Algorithm A.1 reduces a graph G with n vertices and m edges to a vertexless graph
after no more than m/5 III-reductions.

Proof. While the graph has maximum degree 5 or more, Algorithm A III-reduces only on such
a vertex, destroying at least 5 edges; any I- or II-reductions only increase the number of edges
destroyed. Thus, it suffices to prove the lemma for graphs with maximum degree 4 or less. Since
the reductions never increase the degree of any vertex, the maximum degree will always remain at
most 4.

In this paragraph, we give some intuition for the rest of the argument. Algorithm A III-reduces on
vertices of degree 4 as long as possible, before III-reducing on vertices of degree 3, whose neighbors
must then all be of degree 3 (vertices of degree 0, 1 or 2 would trigger a 0-, I- or II-reduction in
preference to the III-reduction). Referring to Figure 1, note that each III-reduction on a vertex of
degree 3 can be credited with destroying 6 edges, if we immediately follow up with II-reductions on
its neighbors. (In Algorithm A we do not explicitly couple the II-reductions to the III-reduction, but
the fact that the III-reduction creates 3 degree-2 vertices is sufficient to ensure the good outcome
that intuition suggests. In Algorithm B we will have to make the coupling explicit.) Similarly,
reduction on a 4-vertex destroys at least 5 edges unless the 4-vertex has no degree-3 neighbor.
The only problem comes from reductions on vertices of degree 4 all of whose neighbors are also of
degree 4, as these destroy only 4 edges. As we will see, the fact that such reductions also create 4
3-vertices, and the algorithm terminates with 0 3-vertices, is sufficient to limit the number of times
they are performed.

We proceed by considering the various types of reductions and their effect on the number of
edges and the number of 3-vertices. The reductions are catalogued in Table 2.

The first row, for example, shows that III-reducing on a vertex of degree 4 with 4 neighbors of
degree 4 (and thus no neighbors of degree 3) destroys 4 edges, and (changing the neighbors from
degree 4 to 3) destroys 5 vertices of degree 4 (including itself) and creates 4 vertices of degree 3.
The remaining rows up to the table’s separating line similarly illustrate the other III-reductions.
Below the line, II-reductions and I-reductions are decomposed into parts. As shown just below the
line, a II-reduction, regardless of the degrees of the neighbors, first destroys 1 edge and 1 2-vertex,
and counts as 0 steps (steps count only III-reductions). In the process, the II-reduction may create
a parallel edge, which will promptly be deleted (coalesced) by Algorithm A. Since the exact effect
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Figure 1. Left, a reduction on a 3-vertex with 3 3-neighbors, followed by II-
reductions on those neighbors, destroys 6 edges and 4 3-vertices. (The original
graph’s edges are shown in grey and the reduced graph’s edges in black.) Note
that Algorithm A does not actually force any particular II-reductions after a III-
reduction, but Algorithm B will do so. Right, a reduction on a 4-vertex with k
3-neighbors (k = 2 here) destroys 4 + k edges and 2k − 4 3-vertices (k 3-vertices
are destroyed, but 4 − k 4-vertices become 3-vertices). The algorithm and analysis
make no assumptions on the local structure of the graph; the figure is merely illus-
trative.

deg #nbrs of deg destroys steps
4 3 2 1 e 4 3 2 1

4 4 0 0 0 4 5 −4 0 0 1
4 3 1 0 0 4 4 −2 −1 0 1
4 2 2 0 0 4 3 0 −2 0 1
4 1 3 0 0 4 2 2 −3 0 1
4 0 4 0 0 4 1 4 −4 0 1
3 0 3 0 0 3 0 4 −3 0 1

2 1 0 0 1 0 0
e 1 0 0 0 1 −1 0 0 0
e 0 1 0 0 0 1 −1 0 0
e 0 0 1 0 0 0 1 −1 0
e 0 0 0 1 0 0 0 1 0

Table 2. Tabulation of the effects of various reductions in Algorithm A.

of an edge deletion depends on the degrees of its neighbors, to minimize the number of cases we
treat an edge deletion as two half-edge deletions, each of whose effects depends on the degree of the
half-edge’s incident vertex. For example the table’s next line shows deletion of a half-edge incident
to a 4-vertex, changing it to a 3-vertex and destroying half an edge. The last four rows of the table
also capture I-reductions. 0-reductions are irrelevant to the table, which does not consider vertices
of degree 0.

The sequence of reductions reducing a graph to a vertexless graph can be parametrized by an
11-vector ~n giving the number of reductions (and partial reductions) indexed by the rows of the
table, so for example its first element is the number of III-reductions on 4-vertices whose neighbors
are also all 4-vertices. Since the reductions destroy all m edges, the dot product of ~n with the table’s
column “destroys e” (call it ~e) must be precisely m. Since all vertices of degree 4 are destroyed,

the dot product of ~n with the column “destroys 4” (call it ~d4) must be ≥ 0, and the same goes for
the “destroy” columns 3, 2 and 1. The number of III-reductions is the dot product of ~n with the
“steps” column, ~n · ~s. How large can the number of III-reductions ~n · ~s possibly be?

To find out, let us maximize ~n · ~s subject to the constraints that ~n · ~e = m and that ~n · ~d4,

~n · ~d3, ~n · ~d2 and ~n · ~d1 are all ≥ 0. Instead of maximizing over proper reduction collections ~n,
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which seem hard to characterize, we maximize over the larger class of non-negative real vectors ~n,
thus obtaining an upper bound on the proper maximum. Maximizing the linear function ~n · ~s of ~n

subject to a set of linear constraints (such as ~n · ~e = m and ~n · ~d4 ≥ 0) is simply solving a linear
program (LP); the LP’s constraint matrix and objective function are the parts of Table 2 right of
the double line. To avoid dealing with “m” in the LP, we set ~n′ = ~n/m, and solve the LP with

constraints ~n′ · ~e = 1, and as before ~n′ · ~d4 ≥ 0, etc., to maximize ~n′ · ~s. The “~n′” LP is a small
linear program (11 variables and 5 constraints) and its maximum is precisely 1/5, showing that the
number of III-reduction steps — ~n · ~s = m~n′ · ~s — is at most m/5.

That the LP’s maximum is at most 5 can be verified from the LP’s dual solution of ~y =
(0.20, 0,−0.05,−0.2,−0.1). It is easy to check that in each row, the “steps” value is less than
or equal to the dot product of this dual vector with the “destroys” values. That is, writing D for
the whole “destroys” constraint matrix, we have ~s ≤ D~y. Thus, ~n′ · ~s ≤ ~n′ · (D~y) = (~n′D) · ~y.
But ~n′D must satisfy the LP’s constraints: its first element must be 1 and the remaining elements
non-negative. Meanwhile, the first element of ~y is 0.2 and its remaining elements are non-positive,
so ~n′ · ~s ≤ (~n′D) · ~y ≤ 0.2. This establishes that the number of type-III reductions can be at most
1/5th the number of edges m, concluding the proof. �

Theorem 5. A Max 2-CSP instance on n variables with m dyadic constraints and length L can
be solved in time O(nr3+m/5) and space O(L).

Proof. The theorem is an immediate consequence of Claim 3 and Lemma 4. �

The LP’s dual solution gives a “potential function” proof of Lemma 4. The dual assigns “po-
tentials” to the graph’s edges and to vertices according to their degrees, such that the number of
steps counted for a reduction is at most its change to the potential. Since the potential is initially
at most 0.20m and finally 0, the number of steps is at most m/5. (Another illustration of duality
appears in the proof of Lemma 20.)

The primal solution of the LP, which describes the worst case, uses (proportionally) 1 III-
reduction on a 4-vertex with all 4-neighbors, 1 III-reduction on a 3-vertex, and 3 II-reductions
(the actual values are 1/10th of these). As it happens, this LP worst-case bound is achieved by
the complete graph K5, whose 10 edges are destroyed by two III-reductions and then some I- and
II-reductions.

5. An O(nr5+19m/100) algorithm

5.1. Improving Algorithm A. The analysis of Algorithm A contains the seeds of its improve-
ment. First, since reduction on a 5-vertex may destroy only 5 edges, we can no longer ignore such
reductions if we want to improve on m/5. This simply means including them in the LP.

Second, were this the only change we made, we would find the LP solution to be the same as
before (adding new rows leaves the previous primal solution feasible). The solution is supported
on a “bad” reduction destroying only 4 edges (reducing on a 4-vertex with all 4-neighbors), while
the other reductions it uses are more efficient. This suggests that we should focus on eliminating
the bad reduction. Indeed, if in the LP we ascribe 0 “steps” to the bad reduction instead of 1, the
LP cost decreases to 23/120 (about 0.192), and support of the new solution includes reductions on
a degree-5 vertex with all degree-5 neighbors and on a degree-4 vertex with one degree-3 neighbor,
each resulting in the destruction of only 5 edges. Counting 0 steps instead of 1 for this degree-5
reduction gives the LP a cost of 19/100, suggesting that if we could somehow avoid this reduction

too, we might be able to hope for an algorithm running in time O⋆(r19m/100); in fact our algorithm
will achieve this. Further improvements could come from avoiding the next bad cases — a 5-vertex
with neighbors of degree 5 except for one of degree 4, and a 4-vertex with neighbors of degree 4
except for one of degree 3 — but we have not pursued this.
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Finally, we will also need to take advantage of the component structure of our graph. The
example of a collection of many disjoint K5 graphs requires m/5 III-reductions in total. To beat

O⋆(rm/5) we will have to use the fact that an optimum solution to a disconnected CSP is a union of
solutions of its components, and thus that the m/5 reductions can in some sense be done in parallel,
rather than sequentially. Correspondingly, where Algorithm A built a sequence of reductions of
length at most m/5, Algorithm B will build a reduction tree whose III-reduction depth is at most
2 + 19m/100. The depth bound is proved by showing that in any sequence of reductions in a
component on a fixed vertex, all but at most two “bad” reductions can be paired with other
reductions, and for the good reductions (including the paired ones), the LP has maximum 19/100.

5.2. Algorithm B: General description. Like Algorithm A.1, Algorithm B.1 preferentially per-
forms type 0, I or II reductions, but it is more particular about the vertices on which it III-reduces.
When forced to perform a type III reduction, Algorithm B.1 selects a vertex in the following
decreasing order of preference:

• a vertex of degree ≥ 6;
• a vertex of degree 5 with at least one neighbor of degree 3 or 4;
• a vertex of degree 5 whose neighbors all have degree 5;
• a vertex of degree 4 with at least one neighbor of degree 3;
• a vertex of degree 4 whose neighbors all have degree 4;
• a vertex of degree 3.

When Algorithm B makes any such reduction with any degree-3 neighbor, it immediately follows up
with II-reductions on all those neighbors.1 Algorithm B then recurses separately on each component
of the resulting graph.

As before, in order to get an efficient implementation we must be careful about details. Section 5.3
discusses the construction of the “reduction tree”; a reader only interested in an O⋆(r19m/100) bound
could skip Lemma 6 there. Section 5.4 is essential, and gives the crucial bound 19m/100 + O(1)
on the depth of a reduction tree, while Section 5.5 establishes that if the depth of a reduction tree
is d then an optimal score can be found in time O⋆(rd). Finally, Section 5.6 ties up loose ends
(including how to move from an optimal score to an optimal assignment) and gives the main result
of this part of the paper (Theorem 11).

5.3. Algorithm B: First phase. As with Algorithm A, a first phase Algorithm B.1 of Algo-
rithm B starts by identifying a sequence of graph reductions. Because Algorithm B will treat graph
components individually, phase Algorithm B.1 then organizes this sequence of reductions into a
reduction tree. The tree has vertices in correspondence with those of G, and the defining property
that if reduction on a (graph) vertex v divides the graph into k components, then the corresponding
tree vertex v has k children, one for each component, where each child node corresponds to the
first vertex reduced upon in its component (i.e. the first vertex in the reduction sequence restricted
to the set of vertices in the component). If the graph is initially disconnected, the reduction “tree”
is really a forest, but since this case presents no additional issues we will speak in terms of a tree.
We remark that the number of child components k is necessarily 1 for I- and II-reductions, can be
1 or more for a III-reduction, and is 0 for a 0-reduction.

We define the III-reduction depth of an instance to be the maximum number of III-reduction
nodes in any root-to-leaf path in the reduction tree. Lemma 6 characterizes an efficient construction
of the tree, but it is clear that it can be done in polynomial time and space. The crux of the matter is
Lemma 7, which relies on the reduction preference order set forth above, but not on the algorithmic
details of Algorithm B.1.

1An example of this was shown in Figure 1. In some cases, we may have to use I-reductions or 0-reductions instead
of II-reductions (for instance if the degree-3 neighbors contain a cycle), but the effect is still to destroy one edge and
one vertex for each degree-3 neighbor.
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Algorithm B.1: Algorithm B, first phase

1: Input a constraint graph G0 = G.
2: for i = 1 to n do
3: Select a vertex vi by the preference order described above.
4: Reduce Gi−1 on vi to produce Gi.
5: end for
6: Initialize T to be an empty forest.
7: for i = n to 1 do
8: Reverse the ith reduction. For a 0-reduction on vi, add an isolated node vi to the forest T .

For a I-reduction on vi with neighbor xi in Gi−1, set vi to be the parent of the root node of the
component of T containing xi. Do the same for a II-reduction on vi, whose Gi−1-neighbors
xi and yi will belong to a common component of T . For a III-reduction on vi, unite all
component trees of T containing Gi−1-neighbors of vi by setting vi as the common parent of
their roots. (Details of an efficient implementation are in the proof of Lemma 6.)

9: end for
10: Output the reduction tree T . T has the property that for any node v ∈ T , reducing G on

all ancestor nodes of the corresponding node v ∈ G produces a graph G′ whose component
containing v has vertex set equal to the vertex set of the subtree of T rooted at v.

Lemma 6. A reduction tree on n vertices which has III-reduction depth d can be constructed in
time O(dn + n) and space O(m + n).

Proof. We use Algorithm B.1 (see displayed pseudocode). First the sequence of reductions is found
much as in Algorithm A.1 and in the same time and space (see Claim 1). As long as there are any
vertices of degree ≥ 6 this works exactly as in Algorithm A.1, but with stacks up to degree 6. Once
the degree-6 stack is empty it will remain empty (no reduction increases any vertex degree) and
at this point we create stacks according to the degree of a vertex and the degrees of its neighbors
(for example, a stack for vertices of degree 5 with two neighbors of degree 5 and one neighbor each
with degrees 4, 3 and 2). Since the degrees are bounded by 5 this is a small constant number of
stacks, which can be initialized in linear time. After that, for each vertex whose degree is affected
by a reduction (and which thus required processing time Ω(1) in Algorithm A.1), we must update
the stacks for its at most 5 neighbors (time O(1)); this does not change the complexity.

To form the reduction tree we read backwards through the sequence of reductions growing a col-
lection of subtrees, starting from the leaves, gluing trees together into larger ones when appropriate,
and ending with the final reduction tree. We now analyze the time and space of Algorithm B.1.

Remember that there is a direct correspondence between reductions, vertices of the CSP’s con-
straint graph, and nodes in the reduction tree. At each stage of the algorithm we have a set of
subtrees of the reduction tree, each subtree labeled by some vertex it contains. We also maintain
a list which indicates, for each vertex, the label of the subtree to which it belongs, or “none” if the
corresponding reduction has not been reached yet. Finally, for each label, there is a pointer to the
corresponding tree’s root.

Reading backwards through the sequence of reductions, we consider each type of reduction in
turn.

0-reduction: A forward 0-reduction on y destroys the isolated vertex y, so the reverse re-
duction creates a component consisting only of y. We create a new subtree consisting only
of y, label it “y”, root it at y, and record that y belongs to that subtree.

I-reduction: If we come to a I-reduction on vertex y with neighbor x, note that x must
already have been seen in our backwards reading and, since I-reductions do not divide
components, the reversed I-reduction does not unite components. In this case we identify
the tree to which x belongs, leave its label unchanged, make y its new root, make the



LP DESIGN OF FAST MAX 2-CSP ALGORITHMS 17

previous root v (typically v 6= x) the sole child of y, update the label root-pointer from v
to y, and record that y belongs to this tree.

II-reduction: For a II-reduction on vertex y with neighbors x and z, the forward reduction
merely replaces the x–y–z path with the edge x–y and thus does not divide components.
Thus the reversed reduction does not unite components, and so in the backwards reading
x and z must already belong to a common tree. We identify that tree, leave its label
unchanged, make y its new root, make the previous root the sole child of y, and record that
y belongs to this tree.

III-reduction: Finally, given a III-reduction on vertex y, we consider y’s neighbors xi, which
must previously have been considered in the backwards reading. We unite the subtrees for
the xi into a single tree with root y, y’s children consisting of the roots for the labels of
the xi. (If some or all the xi already belong to a common subtree, we take the corresponding
root just once. Since the roots are values between 1 and n, getting each root just once can
be done without any increase in complexity using a length-n array; this is done just as
we eliminated parallel edges on a vertex in Algorithm A’s first phase — see the proof of
Claim 1.) We give the resulting tree the new label y, abandon the old labels of the united
trees, and point the label y to the root y. Relabeling the tree also means conducting a
depth-first search to find all the tree’s nodes and update the label information for each. If
the resulting tree has size n′ the entire process takes time O(n′).

In the complete reduction tree, define “levels” from the root based only on vertices corresponding
to III-reductions (as if contracting out vertices from 0, I and II-reductions). The III-reduction
vertices at a given level of the tree have disjoint subtrees, and thus in the “backwards reading” the
total time to process all of these nodes together is O(n). Over d levels, this adds up to O(dn). The
final time bound O(dn + n) also accommodates time to process all O(n) 0-, I- and II-reductions.

The space requirements are a minimal O(n): beyond the space implicit in the input and that
entailed by the analog of Algorithm A.1, the only space needed is the O(n) to maintain the labeled
forest. �

5.4. Reduction-tree depth. Analogous to Lemma 4 characterizing Algorithm A, the next lemma
is the heart of the analysis of Algorithm B.

Lemma 7. For a graph G with m edges, the reduction tree’s III-reduction depth is d ≤ 2+19m/100.

Proof. By the same reasoning as in the proof of Lemma 4, it suffices to prove the lemma for graphs
with maximum degree at most 5.

Define a “bad” reduction to be one on a 5-vertex all of whose neighbors are also of degree 5, or
on a 4-vertex all of whose neighbors are of degree 4. (These two reductions destroy 5 and 4 edges
respectively, while most other reductions, coupled with the II-reductions they enable, destroy at
least 6 edges.) The analysis is aimed at controlling the number of bad reductions. In particular, we
show that every occurrence of a bad reduction can be paired with one or more “good” reductions,
which delete enough edges to compensate for the bad reduction

For shorthand, we write reductions in terms of the degree of the vertex on which we are reducing
followed by the numbers of neighbors of degrees 5, 4, and 3, so for example the bad reduction on
a 5-vertex is written (5|500). Within a component, a (5|500) reduction is performed only if there
is no 5-vertex adjacent to a 3- or 4-vertex; this means the component has no 3- or 4-vertices, since
otherwise a path from such a vertex to the 5-vertex would include an edge incident on a 5-vertex
and a 3- or 4-vertex.

We bound the depth by tracking the component containing a fixed vertex, say vertex 1, as it
is reduced. Of course the same argument (and therefore the same depth bound) applies to every
vertex. If the component necessitates a “bad 5-reduction” (a bad III-reduction on a vertex of
degree 5), one of four things must be true:
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C1: This is the first degree-5 reduction in this branch of the reduction tree.
C2: The previous III-reduction (the first III-reduction ancestor in the reduction tree, which

because of our preference order must also have been a degree-5 reduction) was on a (5|005)
vertex, and left no vertices of degree 3 or 4.

C3: The previous III-reduction was on a 5-vertex and produced vertices of degree 3 or 4 in
this component, but they were destroyed by I- and II-reductions.

C4: The previous III-reduction was on a 5-vertex and produced vertices of degree 3 or 4, but
split them all off into other components.

As in the proof of Lemma 4, for each type of reduction we will count: its contribution to the
depth (normally 1 or 0, but we also introduce “paired” reductions counting for depth 2); the number
of edges it destroys; and the number of vertices of degree 4, 3, 2, and 1 it destroys. Table 3 shows
this tabulation. In Algorithm B we immediately follow each III-reduction with a II-reduction on
each 2-vertex it produces, so for example in row 1 a (5|005) reduction destroys a total of 10 edges
and 5 3-vertices; it also momentarily creates 5 2-vertices but immediately reduces them away.

The table’s boldfaced rows and the new column “forces” require explanation. They relate to
the elimination of the bad (5|500) reduction from the table, and its replacement with versions
corresponding to the cases above.

Case (C1) above can occur only once. Weakening this constraint, we will allow it to occur any
number of times, but we will count its depth contribution as 0, and add 1 to the depth at the end.
For this reason, the first bold row in Table 3 has depth 0 not 1.

In case (C2) we may pair the bad (5|500) reduction with its preceding (5|005) reduction. This
defines a new “pair” reduction shown as the second bold row of the table: it counts for 2 steps,
destroys 15 edges, etc. (Other, non-paired (5|005) good reductions are still allowed as before.)

In case (C3) we wish to similarly pair the (5|500) reduction with a I- or II-reduction, but we
cannot say specifically with which sort. The “forces” column of Table 3 will constrain each (5|500)
reduction for this case to be accompanied by at least one I-reduction (two half-edge reductions of
any sort) or II-reduction.

In case (C4), the (5|500) reduction produces a non-empty side component destroyed with the
usual reductions but adding depth 0 to the component of interest. These reductions can be ex-
pressed as a nonnegative combination of half-edge reductions, which must destroy at least one edge,
so we force the (5|500) reduction to be accompanied by at least two half-edge reductions, precisely
as in case (C3). Thus case (C4) does not require any further changes to the table.

Together, the four cases mean that we were able to exclude (5|500) reductions, replacing them
with less harmful possibilities represented by the first three bold rows in the table.

We may reason identically for bad (4|040) reductions on 4-vertices, contributing the other three
bold rows. We reiterate the observation that I-reductions, as well as the merging of parallel edges,
can be written as a nonnegative combination of half-edge reductions.

In analyzing a leaf of the reduction tree, let vector ~n count the number of reductions of each
type, as in the proof of Lemma 4. As before, the dot product of ~n with the “destroys e” column is
constrained to be 1 (we will skip the version where it is m and go straight to the normalized form),
its dot products with the other “destroys” columns must be non-negative, ditto its dot product
with the “forces” column, and the question is how large its dot product x with the “depth” column
can possibly be. For then, unnormalizing, the splitting-tree depth of vertex 1 as we counted it is at
most xm, and the true III-reduction depth (accounting for the possible case (C1) occurrences for
4- and 5-vertices) is at most 2 + xm.

As before, x is found by solving the LP: it is 19/100. The dual solution (0.190, −0.005, −0.035,
−0.190, −0.095) witnesses this as the maximum possible. This concludes the proof. �

We observe that the maximum is achieved by a weight vector with just four nonzero elements,
putting relative weights of 8, 6, 5 and 21 on the reductions (5|410), (4|031), (3|003) and (2|000).
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line # deg #nbrs of deg destroys forces depth
5 4 3 2 1 e 4 3 2 1

1 5 0 0 5 0 0 10 0 5 0 0 0 1
2 5 0 1 4 0 0 9 1 3 0 0 0 1
3 5 0 2 3 0 0 8 2 1 0 0 0 1
4 5 0 3 2 0 0 7 3 −1 0 0 0 1
5 5 0 4 1 0 0 6 4 −3 0 0 0 1
6 5 0 5 0 0 0 5 5 −5 0 0 0 1
7 5 1 0 4 0 0 9 −1 4 0 0 0 1
8 5 1 1 3 0 0 8 0 2 0 0 0 1
9 5 1 2 2 0 0 7 1 0 0 0 0 1

10 5 1 3 1 0 0 6 2 −2 0 0 0 1
11 5 1 4 0 0 0 5 3 −4 0 0 0 1
12 5 2 0 3 0 0 8 −2 3 0 0 0 1
13 5 2 1 2 0 0 7 −1 1 0 0 0 1
14 5 2 2 1 0 0 6 0 −1 0 0 0 1
15 5 2 3 0 0 0 5 1 −3 0 0 0 1
16 5 3 0 2 0 0 7 −3 2 0 0 0 1
17 5 3 1 1 0 0 6 −2 0 0 0 0 1
18 5 3 2 0 0 0 5 −1 −2 0 0 0 1
19 5 4 0 1 0 0 6 −4 1 0 0 0 1
20 5 4 1 0 0 0 5 −3 −1 0 0 0 1
21 5 5 0 0 0 0 5 −5 0 0 0 0 0
22 5 + 5 5 0 5 0 0 15 −5 5 0 0 0 2
23 5 5 0 0 0 0 5 −5 0 0 0 −1 1
24 4 0 0 4 0 0 8 1 4 0 0 0 1
25 4 0 1 3 0 0 7 2 2 0 0 0 1
26 4 0 2 2 0 0 6 3 0 0 0 0 1
27 4 0 3 1 0 0 5 4 −2 0 0 0 1
28 4 0 4 0 0 0 4 5 −4 0 0 0 0
29 4 + 4 0 4 4 0 0 12 6 0 0 0 0 2
30 4 0 4 0 0 0 4 5 −4 0 0 −1 1
31 3 0 0 3 0 0 6 0 4 0 0 0 1

32 2 0 0 0 0 0 1 0 0 1 0 1 0
33 e 1 0 0 0 0 −1 0 0 0 0
34 e 0 1 0 0 0 1 −1 0 0 0
35 e 0 0 1 0 0 0 1 −1 0 0
36 e 0 0 0 1 0 0 0 1 −1 0
37 e 0 0 0 0 1 0 0 0 1 0

Table 3. Tabulation of the effects of various reductions in Algorithm B.

That is, the proof worked by essentially eliminating bad reductions of types (5|500) and (4|040)
(which destroy only 5 and 4 edges respectively, in conjunction with the II-reductions they enable),
and the bound produced uses the second-worst reductions, of types (5|410) and (4|031) (each
destroying 5 edges, with the accompanying II-reductions), which it is forced to balance out with
II-reductions and favorable III-reductions of type (3|003).

Remark 8. For an m-edge graph G and maximum degree ≤ 4, the reduction tree’s III-reduction
depth is d ≤ 1 + (3/16)m. If G has maximum degree ≤ 3, the depth is d ≤ m/6.

Proof. The first statement’s proof is identical to that of Lemma 7 except that from Table 3 we
discard reductions (rows) involving vertices of degree 5, we solve the new LP, and we have an
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additive 1 instead of 2 (for a single bad reduction on a vertex of degree 4, rather than one each
for degrees 4 and 5). The second statement can be obtained directly and trivially, or we may go
through the same process. �

5.5. Algorithm B: Second phase. It is straightforward to compute the optimal score of an
instance; this is Algorithm B.2 (see displayed pseudocode). As with Algorithm A.2, Algorithm B.2

Algorithm B.2: Algorithm B, second phase

1: Input: The input consists of a CSP instance (G, S), a tree T , and a vertex v ∈ T such that
the subtree of T rooted at v is a reduction tree for the component of (G, S) containing v. (We
start with an initial CSP (G0, S0) with reduction tree T , and (G, S) is the reduction of (G0, S0)
on the ancestors of v, with some choices of colors for the III-reductions.)

2: Let v′ be the first 0- or III-reduction node below (or equal to) v.
3: I- and II-reduce on all nodes from v up to but not including v′. (If v = v′, do nothing.)
4: if v′ is a 0-reduction node then
5: Reduce on v′ and return the resulting niladic score s.
6: end if
7: Let v1, . . . , vk be the children of v′. Let s := −∞.
8: for color C = 1 to r do
9: III-reduce on v′ with color C.

10: Let s′ := 0.
11: for i = 1, . . . , k do
12: Let s′ := s′ + B.2(vi), computed recursively.
13: end for
14: Let s := max{s, s′},
15: end for
16: Output: s, the optimal score of the component of G containing v.

is a recursive procedure which, with the exception of a minimal amount of state information, works
“in place” in the global data structure for the problem instance. In addition to the algorithm’s
explicit input, state information is a single active node v⋆ ∈ T (a descendant of v), and, for each
ancestor of v⋆: a reference to which of its children leads to v⋆; the sum of the optimal scores for
the earlier children; its current color; and the usual information needed to reverse the reduction.

The recursion can be executed with a global state consisting of a path from the root node to
the currently active node, along with a color for each III-reduction node along the path: after the
current node v⋆ and color have been explored, if possible the color is incremented, otherwise if
there is a next sibling of v⋆ it is tried with color 1, otherwise control passes to the first III-reduction
ancestor of v′, and if there is no such ancestor then the recursion is complete.

Define the depth d of a tree node v to be the maximum, over all leaves ℓ under v, of the
number of III-reduction nodes from v to ℓ inclusive. The following claim governs the running time
of Algorithm B.2.

Claim 9. For a tree node v of depth d whose subtree has order nv, Algorithm B.2 runs in time
O(nvr

3+d) and in linear space.

Proof. Any sequence of 0-, I- and II-reductions can be performed in time O(r3n), and a set of r
III-reductions (one for each color) in time O(r2n) (see the proof of Claim 2). Let us “renormalize”
time so that the sum of these two can be bounded simply by r3n (again as in the proof of Claim 2).
We will prove by induction on d that an instance of order nv and depth d can be solved in time at
most

f(nv, d) := r3nv

(

rd + (rd+1 − r)/(r − 1)
)

, (3)
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which is at most 3nvr
3+d.

The base case is that d = 0, no III-reductions are required, and the instance is solved by
performing and reversing a series of 0-, I- and II-reductions; this takes time ≤ r3nv, which is
smaller than the right-hand side of (3).

For a node v of depth d > 0, define v′ to be the first III-reduction descendant of v (or v itself
if v is a III-reduction node). The reductions from v up to but not including v′, and the r possible
reductions on v′, take time ≤ r3n. The total time taken by Algorithm B.2 is this plus the time to
recursively solve each of the r subinstances reduced from v′. If the tree node v′ has outdegree k,
each of the r subinstances decomposes into k components, the ith component having order ni

and depth di (with n1 + · · · + nk = nv − 1, and di ≤ d − 1), and thus the total time taken is

f(nv, d) ≤ r3n + r
∑k

i=1 f(ni, di). By the inductive hypothesis (3), then,

f(nv, d) ≤ r3nv + r
k

∑

i=1

f(ni, di)

≤ r3nv + r

k
∑

i=1

r3ni

(

rdi + (rdi+1 − r)/(r − 1)
)

≤ r3nv + r
k

∑

i=1

r3ni

(

rd−1 + (rd − r)/(r − 1)
)

< r3nv + (r3nv)r
(

rd−1 + (rd − r)/(r − 1)
)

≤ r3nv

(

1 + rd + (rd+1 − r2)/(r − 1)
)

≤ r3nv

(

rd + (rd+1 − r)/(r − 1)
)

.

The linear space demand follows just as for Algorithm A.2. �

5.6. Algorithm B: Third phase. In Algorithm A, the moment an optimal score is achieved (at
the point of reduction to an empty instance), all III-reduction vertices already have their optimal
colors, and reversing all reductions gives an optimal coloring. This approach does not work for
Algorithm B, because we now have a tree of reductions rather than a path of reductions.

Imagine, for example, 3-coloring a III-reduction vertex A with children B and C that are also
III-reduction vertices, and where the optimal colors are φ(A) = 1, φ(B) = 2, φ(C) = 3. We first
try the coloring φ(A) = 1, and within this we try the six (not nine!) combinations φ(B) = 1, 2, 3
and then φ(C) = 1, 2, 3. Even knowing the optimal score, there is no “moment of truth” when the
score is achieved: we have gone past φ(B) = 2 by the time we start with φ(C) = 1. Also, even if we
could recover the fact that for φ(A) = 1 the optimal settings were φ(B) = 2, φ(C) = 3, we would
not be able to remember this as we were trying φ(A) = 2, 3. (In this simple example we would
already be forced to remember optimal choices for both B and C for each possible color of A, and
taking the full tree into account this would become an exponential memory requirement.)

Fortunately, there is a relatively simple work-around. Having computed the optimal score with
Algorithm B.2, we can try different colors at the highest III-reduction vertex to see which gives
that score; this gives the optimal coloring of that vertex. (It is worth noting that we cannot
immediately reverse the ancestor I- and II-reductions, as those vertices may be adjacent to vertices
not yet colored; coloring by reversing reductions only works after we have reduced to an empty
instance.) We can repeat this procedure, working top down, to optimally color all III-reduction
vertices. After this, it is trivial to color all the remaining, 0-, I- and II-reduction vertices. These
stages are all described as Algorithm B.3 (see displayed pseudocode).

Correctness of this recursive algorithm is immediate from the score-preserving nature of the
reductions.
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Algorithm B.3: Algorithm B, third phase

1: Input a CSP (G, S) and a reduction tree T for G.
2: for each III-reduction node v ∈ T , in depth-first search order (by first visit) do
3: Let s := B.2(v).
4: Let v1, . . . , vk be the children of v.
5: for color C = 1 to r do
6: III-reduce on v with color C.
7: if s = B.2(v1) + · · · + B.2(vk) then
8: Assign color C to v and break.
9: end if

10: end for
11: end for
12: At this point all III-reduction nodes of G are colored, optimally.
13: Perform all corresponding III-reductions on G, using these optimal colors, to derive an equiv-

alent instance G′.
14: Perform the 0-, I- and II-reductions of T , in depth-first search order, reducing G′ to an empty

instance.
15: Reverse the 0-, I- and II-reductions to optimally color all vertices of G′, and thus of G.
16: Output the coloring of G.

Claim 10. For a CSP instance (G, S) where G has n nodes and m edges, and whose reduction tree
per Algorithm B.1 has depth d, Algorithm B.3 runs in time O(nr3+d) and in linear space, O(L).

Our main result follows immediately from Lemma 6, Claims 9 and 10, and Lemma 7 (or Remark 8
for graphs with maximum degree 4 or less).

Theorem 11. Algorithm B solves a Max 2-CSP instance (G, S), where G has n vertices and m

edges, in time O(nr5+19m/100) and in linear space, O(L). If G has maximum degree 4 the time

bound may be replaced by O(nr4+3m/16), and if G has maximum degree 3, by O(nr3+m/6).

6. Vertex-parametrized run time

In most of this paper we consider run-time bounds as a function of the number of edges in a Max
2-CSP instance’s constraint graph, but we briefly present a couple of results giving time bounds
as a function of the number of vertices, along with the average degree d and (for comparison with
existing results) the maximum degree ∆.

For general Max 2-CSPs, we derive a run-time bound by using the following lemma in lieu of
Lemma 7. (Thus, the linear-programming analysis plays no role here; we are simply using the
power of our reductions. Because the lemma bounds the number of III-reductions, not just their
depth, it will also suffice to use Algorithm A instead of the more complicated Algorithm B.)

Lemma 12. For a graph G of order n, with average degree d ≥ 2, in time poly(n) we can find a
reduction sequence with at most (1 − 2

d+1)n III-reductions.

Proof. Let α2(G) be the maximum number of vertices in an induced forest in G. This quantity was
investigated by Alon, Kahn and Seymour [AKS87], who showed that

α2(G) ≥
∑

v∈V (G)

min

{

1,
2

d(v) + 1

}

,

and that there is a polynomial-time algorithm for finding an induced forest of the latter size (in
fact, they proved a rather more general result; this is the special case of their Theorem 1.3 with
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degeneracy parameter 2). It follows (same special case of their Corollary 1.4) that if G has average
degree d ≥ 2 then

α2(G) ≥ 2n

d + 1
.

Note that this is sharp when G is a union of complete graphs of order d + 1.
Now we simply III-reduce on every vertex of G not in the induced subgraph (or 0-, I- or II-

reduce on such a vertex which has degree < 3 by the time we reduce on it). After this sequence
of reductions, the graph is a forest, and 0-, I- and II-reductions suffice to reduce it to the empty
graph. Thus the total number of III-reductions needed is ≤ n − α2(G) ≤ n(1 − 2

d+1). �

Theorem 13. A Max 2-CSP instance with constraint graph G of order n with average degree d ≥ 2
can be solved in time

O
(

nr(1−
2

d+1)n + poly(n)
)

.

Proof. Immediate from Lemma 12 and Claim 3. (Since Lemma 12 gives a bound on the number of
III-reductions, not merely the depth, it suffices to use Algorithm A rather than the more complicated
Algorithm B.) �

Note that for d < (
√

17561+181)/31 ≈ 8.25, Theorem 11 gives a smaller bound than Theorem 13,

while for d < 100/31 ≈ 3.23 the best bound is given by our O⋆(r(d−2)n/4) algorithm from [SS03,

SS06c] (there stated more precisely as O
(

nr(m−n)/2
)

).
Theorem 13 improves upon one recent result of Della Croce, Kaminski, and Paschos [DCKP07],

which solves Max Cut (specifically) in time O⋆(2mn/(m+n)) = O⋆(2(1− 2
d+2

)n). A second algorithm

from [DCKP07] solves Max Cut in time O⋆(2(1−2/∆)n), where ∆ is the constraint graph’s maximum
degree; this is better than our general algorithm if the constraint graph is “nearly regular”, with
∆ < d + 1.

Our results also improve upon a recent result of Fürer and Kasiviswanathan [FK07], which, for

binary Max 2-CSPs, claims a running time of O⋆
(

2
(1−

1
d−1 )n)

(when d > 2 and the constraint graph
is connected, per personal communication). For d > 3 the bound of Theorem 13 is smaller, while

for 2 < d ≤ 3 (in fact, for d up to 5), our O⋆(2n(d−2)/4) algorithm from [SS03, SS06c] is best.
It is also possible to modify the algorithm described by Theorem 11 to give reasonably good

vertex-parametrized algorithms for special cases, such as Maximum Independent Set. As remarked
in the Introduction, however, there are faster algorithms for MIS.

Corollary 14. An instance of weighted Maximum Independent Set on an n-vertex graph can be
solved in time O

(

n23n/8
)

and in linear space, O(m + n).

Proof. If n < 20 we may solve the instance in time O(1), and if the graph’s maximum degree is

∆ ≤ 4 we apply Algorithm B, use Theorem 11’s time bound of O(nr4+3m/16), and observe that

this is O(n23n/8). Otherwise we use a very standard MIS reduction: for any vertex v, either v is
not included in the independent set or else it is and thus none of its neighbors is; therefore the
maximum weight of an independent set of G satisfies s(G) = max{s(G−v), w(v)+s(G−v−Γ(v))},
where w(v) is the weight of vertex v and Γ(v) is its neighborhood. “Rescaling” time as usual so
that we may drop the O(·) notation, if there is a vertex of degree 5 or more, the running time f(n)
satisfies f(n) ≤ n+f(n−1)+f(n−6). (A relevant constant for this recursion is α : 1 = α−1 +α−6;

its value is about 1.285, and in particular less than 23/8.) For n ≥ 20, induction on n confirms that

f(n) ≤ n23n/8. �

7. Treewidth and cubic graphs

In this section we show several connections between our LP method, algorithms, and the treewidth
of graphs, especially cubic (3-regular) graphs. We first define treewidth, and in Section 7.1 show
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that it can be bounded in terms of our III-reduction depth. In Section 7.2 we show how a bound
on the treewidth of cubic graphs can be incorporated into our LP method to give a treewidth
bound for general graphs, and in turn faster (but exponential space) algorithms. In Section 7.3
we show how fast algorithms for cubic graphs generally imply fast algorithms for general graphs,
independent of treewidth.

First, we recall the definition of treewidth and introduce the notation we will use. Where
G = (V, E), a tree decomposition of G is a pair (X, T ), where

(1) X = {X1, . . . , Xq} is a collection of vertex subsets, called “bags”, covering V , i.e., Xi ⊂ V
and

⋃q
i=1 Xi = V ;

(2) each edge of G lies in some bag, i.e., (∀uv ∈ E)(∃i) : {u, v} ⊂ Xi; and
(3) T is a tree on vertex set X with the property that if Xj lies on the path between Xi and Xk,

then Xj ⊃ (Xi ∩ Xk).

The width of the decomposition tree is defined as maxi |Xi| − 1, and a graph’s treewidth is the
minimum width over all tree decompositions. Trees with at least one edge have treewidth 1, and
series-parallel graphs have treewidth at most 2.

From Claim 10 we have the following corollary.

Corollary 15. A CSP whose constraint graph G is a tree or series-parallel graph can be solved in
time O(r3n) and in linear space.

Proof. A tree G can be reduced to a vertexless graph by 0- and I-reductions alone: it has III-
reduction depth 0. By definition, a series-parallel graph G arises from repeated subdivision and
duplication of a single edge. It follows that II-reductions (with their fusings of multiple edges) suffice
to reduce G to a collection of isolated edges (disjoint K2’s), which are reduced to the vertexless
graph by 0- and I-reductions. Again, G has III-reduction depth 0. �

7.1. Implications of our results for treewidth. Although trees and series-parallel graphs are
both classes of graphs with small treewidth and III-reduction depth 0, there is no reason to think
that our algorithm will produce shallow III-reduction depth for all graphs of small treewidth.
However, there is an implication in the opposite direction, per Claim 17.

Lemma 16. If G is 0-reduced to a vertexless graph, tw(G) = 0. If G is I-reduced to G′, tw(G) =
max{1, tw(G′)}. If G is II-reduced to G′, tw(G) = tw(G′). If G is III-reduced to G1, . . . , Gs,
tw(G) ≤ 1 + maxi tw(Gi).

Proof. For a 0-reduction, G is a single vertex, which has treewidth 0. Otherwise, first note that
tw(G) ≥ tw(G′), as shown by the tree decomposition for G′ induced by any tree decomposition
of G.

For a I-reduction, G adds a pendant edge uv to some vertex v of G′. For any tree decomposition
(X ′, T ′) of G′, we can form a tree decomposition of G by adding a new bag X0 = {u, v} and
linking it to any bag X ′

i ∋ v. This satisfies the defining properties of a tree decomposition, and has
treewidth max{1, tw G}.

For a II-reduction, G subdivides some edge uv of G′ with a new vertex w. We mirror this in
the decomposition tree in a way depending on two cases. Either way, (X ′, T ′) has a bag containing
{u, v}. If there is any bag of size 3 or more, we simply add a new bag X0 = {u, v, w} and link it to
any bag X ′

i ⊇ {u, v}. If the maximum bag size is 2 then without loss of generality there is a single
bag X ′

i = {u, v}, each of whose neighbors may contain either u or v but not both. We replace X ′
i

with a pair of bags Xu = {u, w} and Xv = {v, w}, join them with an edge, and join the former
neighbors of X ′

i to either Xu or Xv depending on whether the neighbor contained u or v (if neither,
the choice is arbitrary). In either case this shows that tw(G) ≤ tw(G′).

For a III-reduction on a vertex v, let (X(i), T (i)) be tree decompositions of the components Gi

resulting from v’s deletion. To obtain a tree decomposition of G, first add v to every bag of
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every tree; every edge (v, x) can be put in some such bag. Also, create a new bag containing

only the vertex v, and join it to one (arbitrarily chosen) bag from each (X(i), T (i)), thus creating
a single tree and having the third defining property of a tree decomposition. This shows that
tw(G) ≤ 1 + maxi tw(Gi). �

Claim 17. If a graph G has a reduction tree of III-reduction depth d, then G has treewidth ≤ d+1.

Proof. From the previous lemma, the treewidth of G is bounded by applying the various treewidth-
reduction rules along some critical (though typically not unique) root-to-leaf path in the reduction
tree. Traversing that path from leaf to root, the case where treewidth changes from 0 to 1 (from
a I-reduction) occurs at most once, and otherwise the treewidth increases only at III-reduction
nodes. Thus, tw(G) is at most 1 plus the maximum, over all root-to-leaf paths, of the number of
III-reductions in the path, which is to say d + 1. �

Corollary 18. A graph G with m edges has treewidth at most 3+19m/100, and a tree decomposition
of this width can be produced in time O(mn + n).

Proof. Immediate from the depth bound of Lemma 7, Algorithm B.1’s running time per Lemma 6,
and the algorithm in the proof of Claim 17. �

7.2. Implications from treewidth of cubic graphs. In this section we explore how treewidth
bounds for cubic graphs imply treewidth bounds for general graphs. Algorithmic implications of
these treewidth bounds are discussed in the next subsection.

Building on a theorem of Monien and Preiss that any cubic (3-regular) graph with m edges has
bisection width at most (1/9 + o(1))m [MP06], Fomin and Høie show that such a graph also has
pathwidth at most (1/9 + o(1))m [FH06]. (The o(1) terms here are as m → ∞.) For large m this
is significantly better than the treewidth bound of 1 + m/6 that would result from Claim 17 and
the cubic III-reduction depth bound of m/6 (each III-reduction on a vertex of degree 3 destroying
6 edges). Since we perform degree-3 III-reductions in a component only when it has no vertices
of higher degree, it is possible to use this more efficient treatment of cubic graphs in place of our
degree-3 III-reductions, as we now explain.

The result from [FH06] that a 3-regular graph with m edges has pathwidth at most (1/9+o(1))m
implies the following lemma. Since [FH06] relies on a polynomial-time construction, the lemma is
also constructive.

Lemma 19. If every 3-regular graph G with m edges has treewidth at most αm, then any graph G
with m edges has treewidth tw(G) ≤ 3 + β(α)m, and any graph of maximum degree ∆(G) ≤ 4 has
tw(G) ≤ 2 + β4(α)m, where β(α) and β4(α) are given by Lemma 20.

Proof. Recall that our graph reduction algorithm performed III-reductions on vertices of degree
5 and 4 in preference to vertices of degree 3. Build the reduction tree as usual, but terminating
at any node corresponding to a graph which is either vertexless or 3-regular. By Lemma 16 and
observations in the proof of Lemma 17, the treewidth of the root (the original graph G) is at most
1 plus the maximum, over all root-to-leaf paths, of the “step count” (or “depth”) of each reduction
(1 for III-reductions, 0 for other reductions) plus the treewidth of the leaf. If we add a “reduction”
taking an m-edge 3-regular graph to a vertexless graph, and count it as αm steps, then tw(G) is
at most 1 plus the maximum over all root-to-leaf paths of the step counts along the path.

We may bound this value by the same LP approach taken previously. We exclude the old degree-
3 III-reduction, characterized by line 31 of Table 3. In its place we introduce a family of reductions:
for each number of edges m′ in a cubic graph (necessarily a multiple of 3) we have a reduction
that counts as αm′ steps and destroys all m′ edges, all 2/3m′ degree-3 vertices of the cubic graph,
and 0 vertices of degrees 4 and 5. As before, going down a path in the reduction tree, any “bad”
reduction (a (4|040) or (5|500) reduction) is either paired with a good one to make a combined
reduction, or is counted as 0 steps (in at most 2 instances per path). The total number of reduction
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steps is thus at most 2 plus the step count of a feasible LP solution. Since a row of an LP may
be rescaled without affecting the solution value, we may replace the family of 3-regular reductions
with a single reduction that counts as α steps, destroys 1 edge and 2/3 vertices of degree 3, and 0
vertices of degrees 4 and 5. If this LP has optimal solution βm, then the path has true step count
≤ 2+βm and G has treewidth tw(G) ≤ 3+βm. The proof is completed by Lemma 20, establishing
β as a function of α. �

Lemma 20. Let LP be the linear program of Table 3 whose line 31 is replaced as below.

deg #nbrs of deg destroys forces depth
5 4 3 2 1 e 4 3 2 1

old 3 0 0 3 0 0 6 0 4 0 0 0 1
new 3 0 0 3 0 0 1 0 2/3 0 0 0 α

Then LP has optimal solution

β(α) =

{

7/50 + (3/10)α 1/9 ≤ α ≤ 1/5

13/75 0 ≤ α ≤ 1/9.

The same linear program restricted to the constraints corresponding to reductions on vertices of
degree 4 and smaller, call it LP4, has optimal solution

β4(α) =

{

1/8 + (3/8)α 1/9 ≤ α ≤ 1/5

1/6 0 ≤ α ≤ 1/9.

Proof. To help give a feeling for the interpretation of our linear-programming analysis, we will first
give a very explicit duality-based proof, carrying it through for just one of the lemma’s four cases.
We will then show a much simpler proof method and apply it to all the cases.

For the first case, it suffices to produce feasible primal and dual LP solutions with the claimed
costs. With 1/9 ≤ α ≤ 1/5, the primal solution puts weights exactly 0.30, 0.06, 0.08 respectively
on the following rows of LP:

deg #nbrs of deg destroys forces depth
5 4 3 2 1 e 4 3 2 1

3 0 0 3 0 0 1 0 2/3 0 0 0 α
4 0 3 1 0 0 5 4 −2 0 0 0 1
5 4 1 0 0 0 5 −3 −1 0 0 0 1

The solution is feasible because the weighted sum of the rows destroys exactly 1 edge and a nonneg-
ative number (in fact, 0) of vertices of each degree. The value of α does not enter into this at all: α
does not appear in the constraints, so the primal solution is feasible regardless of α. The primal’s
value is the dot product of (0.30, 0.06, 0.08) with the “depth” column (α, 1, 1), and matches the
value of β claimed in the lemma.

The dual solution is 1
600 [(84,−18,−126, 0, 0) + α(180, 90, 630, 0, 0)]. It is dual-feasible because,

interpreting these values as weights on (respectively) edges and vertices of degree 4, 3, 2, and 1, for
each row of LP the sum of the weights of vertices destroyed is at least the number of steps counted.
(The inequality is tight for the rows displayed above, but one must check it for all rows. For some
rows, such as row 5, corresponding to reduction on a vertex of degree 5 with four neighbors of degree
4 and one of degree 3, the inequality is violated for α < 5.) The dual LP value is the dot product
of the dual solution with the primal’s constraint vector (1, 0, 0, 0, 0) (at least 1 edge and 0 vertices
of each degree should be destroyed). Thus the dual value is 1 × (84 + 180α)/600 = 0.14 + 0.30α,
matching the value specified in the lemma, and thus also matching the primal value and proving
the solution’s optimality.
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A much easier proof comes from exploiting a standard and simple fact from linear-programming
sensitivity analysis: Suppose a single vector x∗ is an optimal solution to two linear programs with
the same constraints but different objective functions, given by vectors c1 and c2 respectively. Then
x∗ is also optimal for any linear program where again the constraints are the same, and the objective
function c is any convex combination of c1 and c2.

2

Thus, to verify the case we have already done, it suffices to check that a single primal solution x∗ is
optimal for both α = 1/9 and α = 1/5. This can easily be done by solving LP for some intermediate
value, say α = 1/7, and checking that the primal x∗ obtained, dotted with the objective vector
corresponding to α = 1/9, is equal to the solution value of the LP for α = 1/9, and performing the
same check for α = 1/5. (Even easier, but not quite rigorous, is simply to solve the LP for, say,
α = 1/9 + 0.001 and α = 1/5 − 0.001, and verify that the two primal solutions are equal.) The
remaining cases are verified identically. �

Corollary 21. Any graph G with m edges has tw(G) ≤ (13/75 + o(1))m, and if ∆(G) ≤ 4 then
tw(G) ≤ (1/6 + o(1))m.

Proof. Immediate from Lemmas 19 and 20, and the fact that every cubic graph with m edges has
treewidth ≤ (1/9 + o(1))m [FH06]. The additive constants can be absorbed into the o(1)m. �

We now discuss algorithmic implications of these treewidth bounds.

7.3. Implications from algorithms for cubic graphs. Efficient algorithms for constraint satis-
faction of various sorts, and related problems, on graphs of small treewidth have been studied since
at least the mid-1980s, with systematic approaches dating back at least to [DP87, DP89, SP89].
A special issue of Discrete Applied Mathematics was devoted to this and related topics in 1994
[DAM94], and the field remains an extremely active area of research.

It is something of a folk theorem that a Max 2-CSP instance of treewidth k can be solved in
time and space O⋆(rk) through dynamic programming. (The need for exponential space is of course
a serious practical drawback.) Such a procedure was detailed by Jansen, Karpinski, Lingas and
Seidel [JKLS05] for solving maximum bisection, minimum bisection, and maximum clique. Those
problems are in fact slightly outside the Max 2-CSP framework defined here, but within a broader
framework of “Polynomial CSPs” that we explore in [SS06a, SS07]. In [SS06a, SS07] we show how
to use dynamic programming on tree decompositions of width k to solve any Polynomial CSP, and
therefore any Max 2-CSP, in time and space O⋆(rk).

Direct application of dynamic programming in conjunction with Corollary 21 means that any
Max 2-CSP can be solved in time and space O⋆(r(13/75+o(1))m). However, we can do better.

Similarly to how Lemma 19 showed that a cubic treewidth bound αm implies a general treewidth
bound of βm, Theorem 22 shows that an O⋆(rαm)-time algorithm for cubic instances of Max 2-
CSP can be used to construct an O⋆(rβm)-time algorithm for arbitrary instances. The approach
gives greater generality, since the algorithm for cubic instances need not have anything to do
with treewidth. And when the algorithm for cubic instances is tree decomposition-based dynamic
programming, this approach gives greater efficiency: we can match the previous paragraph’s time
bound, while reducing the space requirement (Corollary 23).

Theorem 22. Given a value α > 0, an integer r, and a function g(m) = O⋆(rαm), suppose there
is an algorithm that, for any m-edge 3-regular graph G, solves any CSP with constraint graph G
and domain [r] in time g(m). Then there is an algorithm which solves any CSP with domain [r]

and any m-edge constraint graph G in time O⋆(rβ(α)m), and in time O⋆(rβ4(α)m) if ∆(G) ≤ 4, with
β(α) and β4(α) given by Lemma 20. If the hypothesized algorithm is guaranteed to solve an instance

2Proof of this fact is instant: Optimality of x∗ for c1 means that for any feasible x, c1x ≤ c1x
∗, and likewise for c2.

Then for any convex combination c = pc1 +qc2, p+q = 1, p, q ≥ 0, optimality of x∗ for c is proved by the observation
that for any feasible x, cx = (pc1 + qc2)x = p(c1x) + q(c2x) ≤ p(c1x

∗) + q(c2x
∗) = (pc1 + qc2)x

∗ = cx∗.
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of input size L using space O(s(L)), for some nondecreasing function s, then the algorithm assured
by the theorem uses space O(L + s(L)).

Proof. The proof is similar to that of Lemma 19. Introduce a family of “reductions” reducing an
m-edge 3-regular graph to a vertexless graph and counting for depth αm. Precisely as in the earlier
proof, represent them all in the LP by a single reduction destroying 1 edge, 2/3 vertices of degree 3,
and 0 vertices of degree 4 and 5, and counting as depth α.

Reduce a graph G as far as possible by 0-, I- and II-reductions, and III-reductions on vertices
of degree 4 and above. For any tree node, and corresponding reduced constraint graph G′, define
the depth of G′ to be the maximum, over all its 3-regular leaf instances Gi having mi edges
respectively, of αmi plus the number of III-reductions to get from G to Gi. From our usual LP
setup and Lemma 20, it is immediate that any m′-edge graph G′ has depth ≤ 2 + βm′.

It remains only to show that depth 2 + βm implies running time O⋆(r2+βm), and we will do
this inductively. Note that a cubic graph with m edges has n = 2m/3 vertices, so the fact that
g(m) = O⋆(rβm) implies that there is some polynomial p(n) such that g(m) ≤ p(n)f(n, βm), where
f is the function defined by (3). Without loss of generality, assume p(n) ≥ 1. Note that f is given
explicitly, and p depends on the bound g guaranteed by the Theorem’s hypothesis, but not on r,
G, etc.

Suppose the original instance’s constraint graph G has n vertices. We now show inductively that
each reduced instance G′ with n′ vertices and depth d′ can be solved in time p(n)f(n′, d′). (We
really do mean p(n), not p(n′).) The induction begins at the leaves, and proceeding up the tree.
For a leaf G′, which is a 3-regular instance, the property is guaranteed by the theorem’s hypothesis,
d′ = βm′, and p(n) ≥ 1. Otherwise, for a node G′ we may inductively assume the property holds
for its children, in which case the running time for G′ is at most

r3n′ + r
∑

p(n)f(ni, di) ≤ p(n)[r3n′ + r
∑

f(ni, d − 1)

≤ p(n)f(n′, d),

where the second inequality is precisely the calculation performed after (3). Taking G′ = G shows
that the root node G can be solved in time ≤ p(n)f(n, βm) = O⋆(rβm).

Except for the calls on the hypothesized algorithm, our overall algorithm uses space O(L), per
Theorem 5. Since each cubic subinstance has size at most L, and s is nondecreasing, the total
space needed is O(L + s(L)). �

Corollary 23. A Max 2-CSP instance with domain size r and m dyadic constraints can be
solved in time O⋆(r(13/75+o(1))m), and if ∆(G) ≤ 4, time O⋆(r(1/6+o(1))m), in either case in space

O⋆(r(1/9+o(1))m).

Proof. With α = 1/9 + o(1), Theorem 22’s hypothesized algorithm for m-edge cubic instances is
given by dynamic programming on a tree decomposition of treewidth ≤ αm (which by [FH06]
exists and can be found in polynomial space and time), and runs in space and time O⋆(rαm). The
Corollary follows from Theorem 22. �

Remark 24. While it would be nice to reduce the treewidth bound of a cubic graph from the
(1/9 + o(1))m of [FH06] to a simple m/9, any further reduction (e.g., to m/10) would result in no
improvement in Corollaries 21 or 23, unless accompanied by improvements in some other aspect of
the analysis.

While surprising, this fact is instantly obvious from the linear-programming results of Lemma 20.
One interpretation is that it happens because, for α < 1/9, the primal solution has weight 0 on the
degree-3 III-reduction.
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8. Conclusions

As noted in the Introduction, linear programming is key to our algorithm design as well as the
analysis. We begin with a collection of reductions, and a preference order on them, guided by
intuition. The preference order both excludes some cases (e.g., reducing on high-degree vertices
first, we do not need to worry about a reduction vertex having a neighbor of larger degree) and
determines an LP. Solving the LP pinpoints the “bad” reductions that determine the bound. We
then try to ameliorate these cases: in the present paper we showed that each could be paired with
another reduction to give a less bad combined reduction, but we might also have taken some other
course such as changing the preference order to eliminate bad reductions. Using the LP as a black
box is a convenient way to engage in this cycle of algorithm analysis and improvement, an approach
that should be applicable to other problems.

While we focus on the linear program as a way to bound our key parameter, a graph’s III-
reduction depth, Section 7 shows that it also applies to treewidth. Sharper results for (constraint)
graphs of maximum degree 4 can be obtained simply by pruning down the LP.

Because the LP’s dual solution can be interpreted as a set of weights on edges and vertices
of various degrees, the LP method introduced in [SS03], and further developed here, is closely
connected to a potential-function approach. The determination of optimal weights can always be
expressed as an optimization problem (see Eppstein’s [Epp04] and the survey [FGK05]), but its
expression as an LP seems limited to cases where the CSP reductions are “symmetric” in the sense
that they yield a single reduced graph. (A natural independent-set reduction is not symmetric
in this sense, as reducing on a vertex v yields two reduced instances with different graphs: one
deleting only the vertex v, the other also deleting all v’s neighbors. However, it can still be
possible to plug bounds derived from asymmetric reductions into the LP method; for example the
hypothesized algorithm in Theorem 22 might depend on asymmetric reductions.) When the LP
method is applicable, provably optimal weights are efficiently obtainable. Linear programming also
provides an elegant framework and points the way to structural results like Lemma 20, but similar
results could also be obtained under weaker conditions, outside the LP framework. For example,
to prove Lemma 20, convexity of the solution space and linearity of the objective function would
have sufficed.

It must be emphasized that the improvement of the present 19m/100 depth bound over the
previous m/5 is not a matter of a more detailed case analysis; indeed there are far fewer cases here
than in most reduction-based CSP algorithms. Ultimately, the improvement comes from exploiting
the constraint graph’s division into components. While this is very natural, its use in combination
with the reduction approach and LP analysis is slightly tricky, and appears to be novel.

Linear programming aside, our approach seems not to extend to 3-variable CSPs, since a II-
reduction would combine two 3-variable clauses into a 4-variable clause.

The improvement from m/5 to 19m/100 is significant in that m/6 appears to be a natural barrier:
In a random cubic graph, a III-reduction results in the deletion of 6 edges and a new cubic graph,
and to beat m/6 requires either distinguishing the new graph from random cubic, or targeting a
set of III-reductions to divide the graph into components. Such an approach would require new
ideas outside the scope of the local properties we consider here.

Finally, we remark that it would be interesting to analyze further the behavior of algorithms on
random instances. For example, it is shown in [SS06c] that for any c ≤ 1, any Max 2-CSP instance
with constraint graph G ∈ G(n, p) can be solved in linear expected time. (Note that this is much
stronger than succeeding in linear time with high probability.) Could this be extended to other

problems? Could 2o(n) runtime bounds be proved for random instances of problems such as Max
Cut and Max 2-Sat with cn clauses, where c ≫ 1? What about approximation results?
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[DJ02] Vilhelm Dahllöf and Peter Jonsson, An algorithm for counting maximum weighted independent sets and its

applications, Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
January 2002.
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