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Abstract We propose distributed algorithms for two well-
established problems that operate efficiently under extremely
harsh conditions. Our algorithms achieve state-of-the-art per-
formance in a simple and novel way.

Our algorithm for maximal independent set selection op-
erates on a network of identical anonymous processors. The
processor at each node has no prior information about the
network. At each time step, each node can only broadcast a
single bit to all its neighbours, or remain silent. Each node
can detect whether one or more neighbours have broadcast,
but cannot tell how many of its neighbours have broadcast,
or which ones.

We build on recent work of Afek et al. which was in-
spired by studying the development of a network of cells in
the fruit fly [2]. However we incorporate for the first time
another important feature of the biological system: vary-
ing the probability value used at each node based on lo-
cal feedback from neighbouring nodes. Given any n-node
network, our algorithm achieves with high probability the
optimal time complexity of O(logn) rounds and the opti-
mal expected message complexity of O(1) single-bit mes-
sages broadcast by each node. We also show that the previ-
ous approach, without feedback, cannot achieve better than
Q(log?n) time complexity with high probability, whatever
global scheme is used to choose the probabilities.

Our algorithm for distributed greedy colouring works
under similar harsh conditions: each identical node has no
prior information about the network, can only broadcast a
single message to all neighbours at each time step represent-
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ing a desired colour, and can only detect whether at least one
neighbour has broadcast each colour value. We show that
with high probability our algorithm has a time complexity
of O(A +logn), where A is the maximum degree of the net-
work, and also has an expected message complexity of O(1)
messages broadcast by each node.

1 Introduction

One of the most fundamental problems in distributed com-
puting is to distributively choose a set of local leaders in a
network of connected processors so that every processor is
either a leader or connected to a leader, and no two leaders
are connected to each other. This problem is known as the
distributed maximal independent set (MIS) selection prob-
lem and has been considered as a challenging problem for
three decades [2]. It has many applications, especially in
wireless networks [25,46] and has been extensively stud-
ied [36,35,3,27,29,41,40].

Another fundamental problem in distributed computing
that is closely related to the distributed MIS selection prob-
lem is the (A 4 1)-colouring problem. In this problem the
aim is to colour the vertices of a graph which has maximum
degree A using no more than A + 1 colours so that adjacent
vertices are assigned different colours. Like the distributed
MIS selection problem, the distributed (A 4 1)-colouring
problem also serves as a basic building block in many other
distributed algorithms, and has many applications for re-
source assignment, in particular for frequency assignment
in radio-communication networks [38,51,42,45]. Because
of this, it has also been extensively studied [4,6,26,44,49,
22,43,20, 19].

A more restricted variant of the colouring problem is
called greedy colouring [17,13], where the aim is to obtain
a colouring with the property that no individual vertex can
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be recoloured with a smaller colour (in some fixed ordering
of the colours). Computing a greedy colouring distributively
is believed to be more difficult than computing an arbitrary
(A + 1)-colouring distributively [13], but such colourings
often use a much smaller number of colours [54].

1.1 Our Results

In this paper, we first propose a randomised distributed MIS
selection algorithm that is able to operate under very harsh
conditions. Our model of distributed computing assumes an
identical anonymous processor at each node that has no in-
formation about the network. At each time step, each node
can only broadcast a single bit to all its neighbours, or re-
main silent. Each node can detect whether one or more neigh-
bours have broadcast, but cannot tell how many neighbours
have broadcast, or which ones.

We prove that our algorithm is optimal in both time and
bit complexity for such a model, by showing that it runs
in expected O(logn) time, where n is the number of nodes,
and the expected number of messages sent by each node is
bounded by a constant, regardless of the network.

We then extend the approach to obtain an algorithm for
the distributed greedy colouring problem. This algorithm
also runs under very harsh conditions where the processors
are anonymous and have no information about the network.
For this problem we allow each node to broadcast only a
single message to all neighbours at each time step repre-
senting a single desired colour value. Once again nodes can
only detect whether at least one neighbour has broadcast a
colour, and cannot tell how many neighbours have broad-
cast, or which ones.

The algorithm we obtain is remarkably simple and com-
putes a greedy colouring in expected O(A +1logn) time, where
n is the number of nodes and A is the maximum degree of
the network. Once again the expected total number of mes-
sages sent by each processor is bounded by a constant. As
well as matching the best known time complexity for obtain-
ing a greedy colouring, our algorithm is the first proposed
algorithm for this problem where the nodes require no prior
knowledge of the network and cannot distinguish between
their neighbours.

To obtain our results we introduce a new form of analy-
sis to determine the time complexity. Most previous analy-
sis has relied on a general technique, originally devised by
Luby [36], which divides the computation into successive
phases and shows that some fixed fraction of the network
is expected to be eliminated in each phase, so that there are
at most logarithmically many phases. Our algorithms do not
have this property, and hence require a more flexible form
of analysis, which we describe in detail below.

2 Preliminaries

Given an undirected graph G = (V, E), the neighbourhood of
each vertex v € V is defined to be the set I'(v) = {u: {u,v} €
E} and the degree of each vertex v is defined to be the num-
ber deg;(v) = |I"(v)|. We define the maximum degree of the
graph G to be the maximum value of the degree over all ver-
tices of G, which is denoted by A = max,cy {deg;(v)}. The
number of vertices of G is |V| and will usually be denoted
by n. We will say that an event on G occurs with high prob-
ability if it occurs with probability at least 1 — O(1/n¢) for
some ¢ > 1. (Note that this is stronger than simply requiring
that the probability tends to 1 as n tends to infinity.) We will
write loga for the natural logarithm of a, and log; a for the
logarithm of a to the base b.

2.1 Maximal Independent Set Selection

Definition 1 (Maximal Independent Set) Given an undi-
rected graph G = (V,E), an independent set in G is a subset
of vertices U C V, such that no two vertices in U are adja-
cent. An independent set U is called a maximal independent
set (MIS) if no further vertex can be added to U without
violating independence.

Different maximal independent sets for the same net-
work can vary greatly in size. In contrast to the MIS selec-
tion problem, the related problem of finding a maximum size
independent set (MaxIS) is notoriously hard. It is equivalent
to finding a maximum clique in the complementary graph,
and is therefore NP-hard [23]. However, computing an arbi-
trary MIS (which is not necessarily of the maximum possi-
ble size) in linear time using a centralised sequential algo-
rithm is trivial: simply scan the nodes in arbitrary order. If a
node u does not violate independence, add u to the MIS. If u
violates independence, discard it. Hence the challenge is to
compute such an MIS more efficiently in a distributed way
with no centralised control.

2.2 Greedy Colouring

A proper colouring of a graph assigns a colour to each ver-
tex such that no two adjacent vertices are assigned the same
colour. The colouring is called a k-colouring if at most k dif-
ferent colours are used.

Definition 2 (Graph Colouring) For any undirected graph
G = (V,E), a k-colouring of G is a function f from the ver-
tices V to a set of colours {cj,c2,...,cx} such that f(u) #
S (v) for every edge {u,v} € E. G is called k-colourable if
and only if there exists a k-colouring of G.
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For many practical applications it is desirable to mini-
mize the number of colours used. The smallest possible pos-
itive integer k for which there exists a k-colouring of G is
defined to be the chromatic number x of G. It is known to
be NP-hard to approximate the chromatic number } within
a factor of \V\l_‘g, for any € > 0, even using a centralised
algorithm with complete knowledge of the graph [55].

However, a number of heuristic approaches can be used
to rapidly obtain colourings with a reasonably low num-
ber of colours on many graphs. For example, the following
greedy approach produces a colouring in linear time using a
centralised control.

Definition 3 (Greedy Colouring) Given an arbitrary order-
ing, (vi,v2,...,vy), of the vertices of G, and an arbitrary or-
dering on the colour values, a greedy colouring algorithm
considers each vertex from vy to v, in turn, assigning each
vertex the smallest possible colour value that is not already
assigned to any of its neighbours.

Note that a colouring obtained in this way has the property
that no individual vertex can be recoloured using a smaller
colour. A colouring with this property is sometimes called
a Grundy colouring [13,17]. Since every greedy colouring
algorithm produces a Grundy colouring, and every Grundy
colouring can be obtained using a greedy colouring algo-
rithm (by choosing a suitable ordering on the vertices) [13],
we will refer to any Grundy colouring as a greedy colouring,
even if it is computed in some other way.

It is easy to see that a greedy colouring uses no more
than A + 1 colours, so we have that y < A + 1 for any graph
G. Brooks Theorem strengthens this observation by stating
that A colours suffice for all graphs except odd cycles and
complete graphs, which require A 41 colours.

2.3 Distributed Computation Model

In the widely-used Linial model [9,33,35,13], a distributed
network is composed of a set V of processors and a set E of
bidirectional communication links (channels) between pairs
of processors. If there is a link (channel) between two pro-
cessors, these two processors are said to be neighbours. A
distributed network with n processors where each processor
has no more than A neighbours corresponds to an undirected
graph G = (V,E) with n vertices and maximum degree A.
A network is called anonymous if the processors cannot dis-
tinguish each other by unique identifiers. Linial’s distributed
computation model is a synchronous system and all proces-
sors operate in a lockstep fashion as we now describe. We
assume that all processors wake up and start their computa-
tion at the same time step. During each time step, all pro-
cessors act in parallel and carry out the following operations
sequentially [37]:

1. Optionally send a message to each neighbouring node;
2. Receive any messages sent by neighbours;
3. Perform arbitrary local computation.

The computation is said to be complete only when the local
computations at every vertex have terminated.

The distributed computation model we use is based on
this model, but we impose the following severe additional
conditions:

1. Each processor is anonymous and has no local or global
information about the network;

2. At each time step, each processor either keeps silent or
broadcasts one message to all its neighbours;

3. Each processor can tell whether at least one neighbour
has broadcast a message, but cannot tell how many of
them have done so, or which ones.

In our MIS algorithm we restrict the communication even
further, so that each message contains only a single bit. In
our greedy colouring algorithm we allow longer messages
representing different colours.

Information about a network may be difficult to obtain,
or subject to uncertainty and change, so it is desirable for
some applications to find algorithms that can complete their
task without using such information [18,47]. Moreover, us-
ing a small number of messages, each containing a single
bit (or a small number of bits), allows an implementation to
use less communication resources and less energy, and this
may be crucial in some applications [32]. Because of the
restrictions we impose, our algorithms can be implemented
using very simple communication mechanisms such as ra-
dio waves, optical signals, or even chemical signals, as in
biological intercellular signalling [8, 10].

3 Related Results
3.1 Distributed MIS selection

The study of distributed MIS selection can be traced back
to the 1980s. It was shown early on that the MIS selection
problem is in the complexity class NC [24], and hence likely
to be a good candidate for a parallel or distributed approach.

We review the current state-of-the-art here, focusing on
the size of the messages (in bits) and the information about
the network that is used at each node (see Table 1). In many
cases it is possible to use estimates for the required graph
parameters, and to iteratively refine these, at the cost of a
more sophisticated algorithm and additional communication
rounds, but we describe only the simplest versions of the
algorithms, as originally presented.

A lower bound of Q(log* n) time for distributed MIS se-
lection on graphs with A > 2 is given in [34]. The most well-
known lower bound for distributed MIS selection on general
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Table 1 Distributed MIS selection algorithms on general graphs with n nodes and maximal degree A

’ Type ‘ Time Steps ‘ Message size (bits) | Information about the graph and neighbourhood used at each node | Reference
O(A +log" n) Unique IDs, size and maximum degree of the al
Det. Q(logn) o [26]
graph, and distinguishable channels
0(20WIoem) [44]
Q(logA) Maximum degree in 2-neighbourhood [46]
3 None 12
O(log?n) - L12]
1 Size of the graph [2]
1 None (1]
Rand. | O(logA+/Togn) | Q(logn) Size, maximum degree of the graph, and distinguishable channels [7]
Q(logn) Size of the graph [37]
O(logn) Q(logA) Dégfees f)f neighbours [52]
1 Distinguishable channels [40]
1 None This paper
graphs, Q(+/logn/(loglogn)), is given in [28]. This was  to terminate in O(logn) time on average and with high prob-

improved to Q(min{logA,+/Togn}) in [30] (see also [7]).
All of these lower bounds have been shown to apply to both
deterministic and randomised algorithms. It was observed
in [40] that if only one-bit messages are allowed to be sent
along each edge in any time step, then every distributed al-
gorithm to select an MIS in a ring of size n requires at least
Q(logn) time steps with high probability.

For deterministic distributed MIS selection on general
graphs, the fastest known algorithms run in O(A + log* n)
time [26,4] or 0(20(\/@>) time [44]. These determinis-
tic MIS algorithms rely on very sophisticated multi-phase
techniques, use a considerable amount of global information
about the graph at each node, including unique node IDs,
and allow complex messages to be sent on specific chan-
nels between nodes. Note that any deterministic algorithm
requires some information at each node (such as a unique
node ID) in order to break the symmetry [21,46].

Using randomisation to break symmetry between nodes
allows for simpler algorithms, often requiring a smaller num-
ber of time steps. A simple parallel randomised algorithm
for distributed MIS selection in the PRAM model of com-
putation was presented in 1986 by Luby [36] and indepen-
dently by Alon et al. [3].

This algorithm has been adapted to the message-passing
model of distributed computation in several slightly differ-
ent ways. In the version presented by Lynch [37] each pro-
cessor is assumed to know the total size, n, of the graph,
and chooses a random integer in the range 1 to n* at each
time step. These integers are then broadcast as messages
to all neighbouring nodes, so the messages sent between
processors contain £2(logn) bits. Using these messages the
nodes are able to compute an MIS by selecting the nodes that
choose the largest random values in their neighbourhood, re-
moving those nodes and their neighbours, and iterating this
process. Using the analysis from [36], this process is shown

ability.

In the version presented by Wattenhofer [52] the nodes
choose a probability value based on their degree in the graph,
and use this value, together with the degree values of their
neighbours to decide whether to join the MIS at each time
step. In this variant the nodes exchange messages to deter-
mine the current degrees of their neighbours at each time
step, and hence the messages sent between processors con-
tain Q2 (log A) bits. Once again, using the analysis from [36],
this process is shown to terminate in O(logn) time on aver-
age and with high probability.

In the version presented by Peleg [46] the probability
value at each node is chosen based on the maximum degree
of the nodes at distance 1 or 2 away from it in the graph,
and this value is then used to decide whether to join the MIS
at each time step. Peleg shows with a simpler analysis that
this algorithm halts in O(log?n) time on average and with
high probability. Once again the nodes exchange messages
to determine the current degrees of their neighbours at each
time step, and hence the messages sent between processors
contain Q2 (logA) bits.

These distributed randomised algorithms, all based on a
similar approach and generally known as Luby’s algorithm,
remained the state-of-the-art for many years, but there have
recently been some new developments.

A new randomised MIS algorithm with time complex-
ity O(logA+/logn) was proposed in [7]. This algorithm im-
proves on the O(logn) algorithms when logA < y/logn. On
the other hand, this algorithm assumes that each processor
knows the size and maximal degree of the graph and can
distinguish between channels so that it can send different
messages along different edges. Since it relies on exchang-
ing information about specific nodes, using node identities,
the messages exchanged in this algorithm contain Q(logn)
bits.



Feedback from Nature: Simple Randomised Distributed Algorithms for Maximal Independent Set Selection and Greedy Colouring 5

Algorithms for MIS selection on special graphs such as
sparse graphs and growth-bounded graphs have also been
studied [15,5,48].

3.2 MIS Selection with Limited Communication

There has recently been considerable interest in finding ef-
ficient distributed MIS selection algorithms that can work
in more restricted computational models, such as wireless
network models [41,12,11,2,1,40,53].

For example, the approach proposed in [40] splits the
randomly generated values at each node into single bits,
and communicates them one by one. When these bits are
broadcast to all neighbours, this approach achieves a time
complexity of 0(10g2 n). By distinguishing between differ-
ent neighbours, and having separate, overlapping, exchanges
of messages with each neighbour, the overall time complex-
ity is brought down to O(logn) time on average and with
high probability. This is shown to be the optimal time com-
plexity that can be achieved with one-bit messages [40].
However, to achieve this optimal performance requires that
each vertex can distinguish between its neighbours by lo-
cally known channel names, so that different messages can
be sent along different edges at the same time step.

A more radical approach is the novel distributed MIS se-
lection algorithm inspired by the neurological development
of the fruit fly which is given in [2, 1].

During development, certain cells in the pre-neural clus-
ters of the fruit fly specialise to become sensory organ pre-
cursor (SOP) cells, which later develop into cells attached to
small bristles (microchaetes) on the fly that are used to sense
the environment. During the first stage of this developmental
process each cell either becomes an SOP or a neighbour of
an SOP, and no two SOPs are neighbours. These observed
conditions are identical to the formal requirements in the
maximal independent set selection problem.

However, Afek et al. pointed out [2] that the method
used by the fly to select the SOPs appears to be rather dif-
ferent from the standard algorithms for choosing an MIS
described above. The cells of the fly appear to solve the
problem using only simple local interactions between cer-
tain membrane-bound proteins, notably the proteins Notch
and Delta [8,10]. Moreover, they require very little knowl-
edge about connectivity. Based on their study of this devel-
opmental process, Afek et al. proposed an algorithm that
works in a distributed model where each node can only broad-
cast to all its neighbours or remain silent. Moreover, each
node can only detect whether at least one neighbour has
broadcast a signal. This model of communication is some-
times referred to as a “beeping” model with collision detec-
tion [1].

In their proposed algorithm, each node broadcasts at each
time step with a certain probability, which changes over time,

and then checks whether any of its neighbours has broad-
cast at the same time. As originally presented [2], the algo-
rithm uses a sequence of gradually increasing global prob-
ability values calculated from the total number of nodes of
the graph n and its maximum degree A. The algorithm was
further refined by Afek ef al. in a later paper [1]. In the
later version the probability values are chosen according to
a fixed pattern, so that the individual nodes require no in-
formation at all about the graph. However, in both versions
the expected number of time steps required was shown to be
O(log®n) (see Table 1).

Another approach to distributed computing with very re-
stricted communication and processing capabilities is the
networked finite state machine model introduced in [12].
This only allows a fixed finite number of distinct messages,
and very limited computation at each node, based on the no-
tion of a randomised finite state machine, with no informa-
tion about the network. It is shown in [12] that a MIS can
be computed in this very restricted model in 0(10g2 n) time,
using only 7 states and 7 corresponding messages.

3.3 Distributed Colouring

The problem of (A + 1)-colouring is closely related to MIS
selection [31]. Hence it can be shown that the lower bounds
for distributed MIS selection mentioned above also apply
for distributed (A + 1)-colouring. Similarly, some state-of-
the-art distributed (A + 1)-colouring algorithms are closely
related to the algorithms for distributed MIS selection de-
scribed earlier (see Table 2).

A randomised distributed (A + 1)-colouring algorithm
requiring O(logA + /logn) time is proposed in [49]. In
this algorithm the messages represent randomised prefer-
ence levels for each of the possible colours. This algorithm
needs to know an upper bound of the size of the graph and
requires each processor to be able to send different messages
along different channels. Since the messages exchanged rep-
resent colours, the message size is at least Q2 (logA).

A randomised algorithm wwhich achieves a time com-
plexity of O(logA + 20(VIoglogn)) with high probability is
given in [7]. However, this algorithm relies on a determin-
istic algorithm to complete a partial colouring, and hence
requires unique node IDs, and messages with Q2 (logn) bits.

Johansson proposed and analysed a simple randomised
distributed (A + 1)-colouring algorithm requiring O(logn)
time [22]. The algorithm of Johansson requires that each
vertex knows the maximum degree of the graph. Each mes-
sage corresponds to a potential colour choice, so the mes-
sages in this algorithm contain Q (logA) bits.

These algorithms do not attempt to obtain greedy colour-
ings, and hence tend to use the maximum number, A + 1, of
colours. For many classes of graphs, a greedy colouring will
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Table 2 Distributed (A + 1)-colouring algorithms on general graphs with # nodes and maximal degree A

Greediness | Type | Time Steps zfze:iiies) Information used at each node Reference
. (4]
Det O(A +log"n) Q(logn) Unique IDs, size and maximum degree of the
’ g graph, and distinguishable channels [26]
0(20(\/logn)) [44]
O(logA + /Togn) Q(logA) Upper bound on the size of the graph and distin- [49]
Non-greedy [gJulshabltI: ]Shannels . . _—
0(y/Toglogn) o nique IDs, size and maximum degree of the
OllogA +2 ) (logn) graph, and distinguishable channels 7]
Rand. Q(logn) Size of the graph [37]
O(logn) Degrees of neighbours [52]
Q(logA)
Maximum degree of the graph [22]
Det O(A? +log"n) Q(logn) Unique IDs, maximum degree of the graph, own | [43]
: O(A +1log" n) g degree and distinguishable channels [4] + [13]
0(A%logn) Q(logA) Own degree and degrees of neighbours [19]
Greedy Rand Q(logA) Maximum degree of the graph [13]
and.
O(A +logn) O(logp) Distinguishable channels [39]
(where = max
colour used) None This paper

often use considerably fewer colours. In fact, we showed in
an earlier paper that a simple greedy colouring algorithm
can produce colourings that use an optimal, or near-optimal
number of colours on many standard graph colouring bench-
marks [54]. However, computing a greedy colouring with a
distributed algorithm is a more challenging problem. In fact,
the problem of computing a greedy colouring for a given
ordering of the vertices is known to be P-complete [16, 14].

Panconesi and Rizzi proposed a deterministic algorithm
for graph colouring that attempts to use a small number of
colours [43]. This algorithm was not originally designed to
construct a greedy colouring. However, it can be easily mod-
ified to become a distributed greedy colouring algorithm by
always choosing the first available colour when assigning a
colour. In view of this it is described in [13] as the first dis-
tributed approach to greedy colouring. The number of time
steps taken by this algorithm is O(A? +log*n) [43]. The
algorithm is divided into distinct phases, where the first is
a preprocessing phase which produces a forest decomposi-
tion of the graph. The algorithm assumes that each vertex
has a unique identifier, and it also requires that each ver-
tex knows its own degree and the maximum degree of the
whole graph. This algorithm also requires the ability to send
different messages to different neighbours simultaneously.
Because identifiers are exchanged the message size of the
algorithm is Q (logn).

Hansen et al. proposed a randomised distributed algo-
rithm for graph colouring in [19]. Even though the algo-
rithm is not explicitly described in the original paper as a
greedy colouring algorithm, it is pointed out in [13] that the

colourings it produces are actually greedy colourings. The
expected number of time steps taken by this algorithm to
produce a colouring is O(A?logn) [19]. However, this al-
gorithm assumes that each vertex knows its degree in the
graph, and the messages exchanged include these numerical
degree values as well as the colour values. Hence the size of
each message sent is at least 2 (logA) bits.

Gavoille et al. give a detailed theoretical study of dis-
tributed greedy colouring [13]. They establish a lower bound
for this problem of Q (logn/loglogn) time steps. Moreover,
they note that an arbitrary k-colouring can be converted to a
greedy colouring by a simple distributed algorithm in O(k)
time steps. However, the conversion algorithm in [13] re-
quires each node to know the value of k. Combining this ap-
proach with the most efficient randomised (A + 1)-colouring
algorithms described earlier gives a two-stage algorithm with
an overall expected time complexity of O(A +1logn). Simi-
larly, combining with the most efficient deterministic (A +
1)-colouring algorithm described earlier gives a two-stage
algorithm with an overall time complexity of O(A +logn).

Métivier et al. proposed a simple randomised distributed
(A +1)-colouring algorithm requiring O(A +logn) time [39].
The algorithm proposed by Métivier et al., does not assume
any global knowledge of the network, but requires each pro-
cessor to know from which channel it receives each mes-
sage. The algorithm consists of two stages: it first uses ran-
domisation to break the symmetry and obtains a colouring
in O(logn) time with an unbounded number of colours; it
then reduces the number of colours used to at most A + 1 in
O(A +logn) time. The colours in this second stage are cho-
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ALGORITHM 1: The algorithm for distributed MIS selection at each node

Global constants: pg : lower bound on initial probability value;

/1, f> : lower and upper bounds on change factor for probability value.

Local variables: p : local probability value, initialised to some value in [po, 1];
f : change factor for probability value, chosen arbitrarily in [f1, f2];

TRYING : Boolean flag, initialised to FALSE.

1. while active, in each round do

*FIRST EXCHANGE*

Receive any signals sent by neighbours;
Set f to some arbitrary value in the interval [f1, f2];
if any signal was received then

TRYING < FALSE and p < p/f (decrease p)

R AR SR

else

p < min{fp, 1} (increase p)
10. *SECOND EXCHANGE*
1. if TRYING then
12. Send signal to all neighbours;
13. Join the MIS and terminate (become inactive).
14. Receive any signals sent by neighbours;
1s. if any signal was received then
16. Terminate (become inactive)

With probability p, set TRYING <— TRUE and send signal to all neighbours;

sen to be the smallest available, so the resulting colouring
is a greedy colouring (although this is not made explicit).
Each message exchanged in the first stage contains only one
bit, but each message in the second stage represents a final
colour choice. Since the total number of colours used may
be much lower than A in some classes of graphs, we give
an upper bound on the message size of (log ) bits for this
algorithm, where i is the maximum colour number used.

4 Algorithm for MIS Selection

The distributed algorithm for MIS selection proposed by
Afek et al. is remarkably simple [2]. At each step, each node
may choose, with a certain probability p (that varies over
time), to signal to all its neighbours that it wishes to join the
independent set. If a node chooses to issue this signal, and
none of its neighbours choose to do so in the same time step,
then it successfully joins the independent set, and becomes
inactive, along with all its immediate neighbours. However
if any of these neighbouring nodes issue the same signal at
the same time step, then the node does not succeed in join-
ing the independent set at that step. This process is repeated
until all nodes become inactive.

Our new algorithm uses a similar basic scheme, but with
a different approach to the way that the probability value
p varies over time (see Algorithm 1). Inspired by the posi-
tive feedback mechanisms that control cellular processes [8,
10], we give each node an independently updated probabil-
ity value. These probabilities are initialised to arbitrary val-
ues (above some fixed threshold value, pg > 0). They are

decreased whenever one or more neighbouring nodes signal
that they wish to join the independent set, and are increased
whenever no neighbouring node issues such a signal. We al-
low each increase or decrease to be by some arbitrary factor
f, which may vary at each step, but is bounded by the global
parameters f1 and f> (with 1 < f1 < f2).

Our main result below shows that varying the probabil-
ities in this way, using a simple local feedback mechanism,
gives an algorithm whose expected time to compute a maxi-
mal independent set is O(logn) (see Corollary 1, below). We
also show that the expected number of signals sent by each
node is bounded by a constant (see Theorem 3, below).

Note that Algorithm 1 consists of two successive mes-
sage exchanges. We shall refer to each such pair of message
exchanges as a round of the algorithm. Hence each round
occupies two consecutive time steps.

To investigate the performance of our new algorithm in
practice we constructed an implementation with the proba-
bility p at each node varying as follows: p is initially set to
1/2. In any round where a signal is received from at least
one neighbouring cell the value of p is halved. In all other
rounds it is doubled (up to a maximum of 1). We then com-
pared this algorithm with the algorithm in [1] by running
both of them on random networks with different numbers of
nodes, where each edge is present with probability 1/2 [50].

We found that the mean number of rounds required in
our experiments to complete our algorithm and choose a
maximal independent set in these networks was approxi-
mately 2.5log, n, for all values of n between 20 and 200.
However, the mean number of rounds required by the algo-
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rithm in [1] to select a maximal independent set was close
to the exact value of log3n. Afek et al. do not discuss the
expected number of signals broadcast at each node in their
algorithm. We found that the mean number of signals sent
by each node in our algorithm was less than 2, regardless
of the size of the network. However, our experiments indi-
cated that the mean number of signals sent by each node
when running the algorithm described in [1] increased with
the size of the network.

Before we analyse the performance of this algorithm we
first demonstrate in Section 4.1 that the use of a feedback
mechanism to adjust the probability values, as described in
lines 5-9 of Algorithm 1, is crucial to achieving the effi-
ciency.

4.1 Lower Bound for Globally Chosen Probability Values

In this section we consider a class of algorithms similar to
the one described in [2] where each node runs through the
same fixed preset sequence of probability values, and does
not adjust these to take into account the behaviour of other
nodes. In other words, we consider a simplified version of
Algorithm 1, where the probability values at all nodes are
initialised to the same value pg, and the probability updates
described in lines 5-9 are replaced by a simple update rule
that changes p to the next value in some fixed sequence
P1,P2,.... We refer to this modified algorithm as MIS se-
lection with global probability values.

Our first result constructs an explicit family of graphs
with O(n) vertices, for which any such algorithm takes at
least Q(log2 n) rounds, no matter what sequence of proba-
bility values is used. (Note that we generally omit floors and
ceilings for clarity, and the graphs we construct in this result
have O(n) vertices rather than exactly n vertices, to simplify
their description.)

Theorem 1 There is a constant Kk > 0 such that the follow-
ing holds. Let G be the graph consisting of n'/3 disjoint
copies of the complete graph Ky, for each d = 1,... /3,
Then with high probability, any MIS selection algorithm with
global probability values running on G does not terminate
within klog® n rounds.

Proof Let po, p1,p2,..., be the sequence of probability val-
ues used by the algorithm. Fix d, and consider a copy K of
K. The probability that some vertex of K is added to the in-
dependent set at the ith round is the probability that exactly
one vertex of K beeps, and so equals

dpi(1—pi)*" < dpiexp(—(d —1)p:). M

Note that the function xe ™ is bounded on [0,c), and has
maximum 1 /e (at x = 1). So for d > 2,

d
_f'(d_

dpiexp(—(d—1)p:) 1

Dprexp(—(d—1)p) < 5

Also, for x € [0,3/2¢], we have 1 —x > exp(—2x). So, by
inequality (1), the probability that all the vertices of K are
still active after 7' rounds is at least

T T
[T (1—dpie=@"Dri) > Texp(—2dpie =P

i=1 i=1
T

= exp(— Z 2dpie~ 4= 1pi)
i=1

T
Z 6dpie=P).
i=1

> exp(—

The last inequality follows from the fact that et < e < 3.

Hence if Y1 | 6dpe=Pi < %logn then the nodes of K
remain active with probability at least n~!/*. In that case the
probability that the nodes in all the copies of K; become
inactive in 7 rounds is at most

(104" < exp(—n'/12),

and so with high probability the algorithm fails to terminate
in T rounds.
It follows that we need only consider the case when

4 1
Z6dp,-e*d”" > —logn
i=1 4

for every choice of d > 3. We will show that this implies
T = Q(log*n).

Let us choose d at random. We define a probability dis-
tribution for d by

c

[d=j] Tlogn’
for j =3,...,n'/3 (where ¢ is a normalizing constant: note
that c = ©(1), as )::-’!13 1/j=06
[0,1],

(logn)). Then, for any p €

nl/3

dp]:Z

= jlogn

Eldpe~ jpe P < — Zp

- logn

But Y7 pe /7 = p/(1—e"P) <2,as p €[0,1]; so we have
E[dpe~9P] < 2¢/logn. By linearity of expectation, choosing
a random d, we have

T
E lz 6dp,~ed”"] < 12¢T /logn.
i=1

Hence there is some value of d for which
T
Z 6dpie Pi < 12¢T [ logn.
i=1

By the argument above, this quantity must be at least % logn,
and so we must have T = Q(log’n). O
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4.2 Time Complexity with Locally Chosen Probability
Values and Feedback

In this section we analyse the running time of our new al-
gorithm for distributed MIS selection (Algorithm 1, where
the probability values at each node are locally varied in each
round based on feedback from neighbouring nodes.

It follows from the analysis of [2] that if this algorithm
terminates (i.e., all nodes become inactive) then it correctly
identifies an MIS. The only question is the number of rounds
required.

Note that, unlike Luby’s algorithm [3,36], it is not true
that in every round we can expect at least some constant
fraction of the edges to be incident to nodes that become
inactive in that round. For example, in a complete graph
nodes will only become inactive when exactly one node sig-
nals. If all nodes are initialised with the same probability
value and with the same (fixed) increase and decrease factor
f, then all nodes will always possess the same probability
value p;. Whenever more than one node signals, all nodes
will decrease their probabilities by f; if no node signals, all
nodes will increase their probabilities by f. The probability
of exactly one node signalling is thus np, (1 — p,)"~! at each
round ¢. Hence, for complete graphs, with high probability
all nodes will remain active for any fixed constant number
of rounds. It follows that we must carry out a more detailed
analysis over a sequence of rounds whose length increases
with n.

Theorem 2 For any fixed values of po > 0, and 1 < fi < fo,
there is a constant Ky such that the following holds: For
any graph G with n vertices, and any k > 1, Algorithm 1
terminates in at most Ko(k+ 1) logn rounds, with probability
at least 1 — O(1/n%).

Before beginning the proof of Theorem 2, it will be use-
ful to define some notation and record a few simple facts.
We will frequently use the well-known inequality

(1—8) < exp(—9). @)

We will also use the following inequality, which holds
for any A > 0 and any & € [0,1 —e*] (it holds with equal-
ity at the ends of this interval, and so holds at all points in
between, by convexity).

(1-8)>exp(—84/(1—¢ ). 3)

Finally, we will also need the following Chernoff-type
inequality: if X is a sum of Bernoulli random variables, with
expected value EX = m, then for every & > 0,

P[X > m+ 8] < exp(—82/(2m+25/3)).
In particular,

P[X > 2m] < exp(—m/3). 4)

We refer to sending a signal in the first exchange of Al-
gorithm 1 as “beeping”, and receiving such a signal from a
neighbour as “hearing a beep”.

For any vertex v, we define y,(v), which we call the
“weight” of v, to be the probability that v beeps in round
t. (By convention, we set i, (v) = 0 if v is inactive at time
t; this simplifies notation, while allowing us to ignore the
contribution of inactive vertices.) For any W C V we write
(W) for ¥,cw 1 (v). Note that p, is a random measure on
V, as it depends on the beeps of other vertices during the
first t — 1 rounds.

Recall that the set of vertices adjacent to a given vertex
v is called the set of neighbours of v, and denoted by I"(v).

Definition 4 For any A > 0, a vertex v will be called A-light
in round 7 if u,(I"'(v)) < A and every neighbour of v has
weight at most 1 —exp(—A); otherwise, vertex v is called
A-heavy.

For any vertex that is A-light, the weight of each of its
neighbours individually is bounded by 1 —exp(—A2) and the
sum of all its neighbours’ weights is not too large (and so
the vertex is not too likely to hear a beep at time ¢). Note
that a fixed vertex may move back and forth between being
A-heavy and A-light over time.

Our first result establishes a lower bound on the proba-
bility that at least one vertex in a set of A-light vertices will
be added to the independent set in the current round.

Lemma 1 Let W be a set of vertices that are A-light at
round t. The probability that at least one vertex in W is
added to the independent set in round t is at least e~ 9* (1-

e M W)y where ¢ = A /(1 —exp(—A)).

Proof Let us order the vertices of W as wy,...,w,,, where
m = |W|. The probability that some vertex of W is added to
the independent set in round ¢ is at least the probability that
the smallest vertex of W that beeps in round 7 is added to the
independent set. For i = 1,...,m, define events E; and F; by

E; = (w; beeps; wy,...,w;_; do not beep)

F; = (no neighbour of w; beeps).
The events E; N F; are pairwise disjoint, so using the defini-
tion of conditional probability, we have that the probability
that the smallest of W that beeps is added to the independent
set is

m
P [U EiNF)

i=1

i P[E;NF] i]}» P[F|E;).
i=1 =1

It is easily seen that P[F;|E;] > P[F;] since P[F}|E;] is con-
ditioned on the event that w; beeps and wy,...,w;_; do not.
Hence we have

PIF|E] > P[F] =

[T t-u®)

vel (w;)
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Since w; is A-light, we may apply Inequality (3), to conclude
that

T (1 -w) =

VEF(W,‘)

[T exp(=¢wm(v))

vel (w;)
=exp(—ou(I"(w;i)))
> exp(—9A)

where ¢ = A /(1 —exp(—A1)). Hence we have

™=
lagE

PIE|P[F|E] > exp(—94) ) PEi].

1 1

But Y7 | P[E;] is simply the probability that some vertex in
W beeps, which is given by 1 — [T,ew (1 — t(v)). Using In-
equality (2) this value is at least 1 —exp(—(W)).

Thus the probability that some vertex of W is added to
the independent set in round ¢ is at least

P[E] > e 9% (1 — e W),

™=

exp(—¢4),

O

Proof (of Theorem 2) Fix an arbitrary vertex v. We shall
show that, with failure probability O(1/n**!), v becomes
inactive within Ky(k + 1)logn rounds, for a suitable choice
of constant K. Taking a union bound over all n choices of
v, it follows that with failure probability O(1/n*) every ver-
tex becomes inactive and the algorithm terminates within
Ko(k+ 1)logn rounds, which proves the theorem.

At each time step t > 1, we partition the neighbourhood
of v into A-light and A-heavy vertices, for a suitable fixed
choice of 4

L =L(v)
H, = H,(v)

={xeI'(v)]|xis A-light at step 7}
={xeI'(v)|xis A-heavy at step ¢ }.

We will follow the behaviour of p,(L,) and g, (Hy) over
time.

The idea of the argument is roughly as follows: if p, (L)
is large at many rounds, then by Lemma 1 it is very likely
that some neighbour of v will be added to the independent
set on one of these occasions, leading to v becoming inac-
tive. If this does not happen, then y, (L,) must be small most
of the time. Now consider H;. Vertices that are A-heavy at
time ¢ are likely to hear beeps and so drop in weight (as
their signalling probability is reduced); it will follow that
with high probability ;1 (H;) is a constant factor smaller
than u; (H;) most of the time. Now we look at the evolution
of 1, (I"(v)), the weight of the whole neighbourhood of v. It
may be large and increasing for some small fraction of the
time, but mostly it is either shrinking or else it is already
small. It will follow that, for at least some fixed fraction of
the time, w, (I"(v)) is small. But this implies that, for at least
some fixed fraction of the time, v will not hear any beeps,

(E4) (L) <, g (T(v) > Band g1 (C(v) > f;

and hence 1, (v) will be large for some fixed fraction of the
time. This implies that it is very likely that at some point in
the sequence of rounds we are considering v will beep and
not hear any beeps, and so get added to the independent set.

To make this argument precise, we now define the fol-
lowing constants:

r=1+(log f2/log f1);

-1
= log(32r(r+2)(fo— 7 )/ (/"
d) A/ (1 —exp(=24));
B=1/(4(r+2)0 /)
—1/r _ —
= (B/2)(5 =K D/B=£)
Ko—(Sr(r+2))max{6 1/po,1/1og f,1/(e ®* (1 —e %))}
The values of these constants depend only on the fixed pa-
rameters f; and f> which bound the probability update factor
f used in the algorithm, and on the initial minimum proba-
bility threshold pg (see Algorithm 1). Note that 1 < f; < f>,

sor>2and A > log256 > 5.
To simplify the presentation, we also define

-

K =Ko(k+1).

At each round ¢, we consider the following four possible
events:

ED w(L) = o

[‘["(v) has a significant weight of light neighbours’]

(E2) w(L) < aand (I (v)) <P

[vis very light’]

(E3) (L) < o (F()) > B and oy (D) < 5 (D ()

[ ‘the neighbourhood of v shrinks significantly in weight
during round #’]

" (L (v))
[‘the neighbourhood of v does not shrink significantly in
weight during round ¢ (and may grow)’]

Exactly one of these events must occur in each round.
We organize the rest of the proof as a series of claims.

Claim 1 With failure probability O(1/rn¥*1), (E1) occurs at
most (Klogn)/(8r(r+2)) times in the first K logn rounds.

Each time that (E1) occurs, it follows from Lemma 1
that with probability at least e~ ?* (1 — ¢ ML) > ¢=04 (1 —
e~ %) some vertex of L, is added to the independent set (and
so v becomes inactive and the process at v terminates). Let
¢1 = e 9% (1 —e~%): the probability that (E1) occurs at least
(Klogn)/(8r(r+2)) times without v becoming inactive is
at most (1 — ¢ ) K102/ (8(+2)) which is at most

exp(—(01Ko/(8r(r+2)))(k+1)logn).

By our choice of Ky, we have Ky > (8r(r+2))/¢, so this
probability is at most exp(—(k+ 1)logn) = n~**1)_ This
proves Claim 1.
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The bad event for us will be (E4), so let us bound the
probability that (E4) occurs.

Claim 2 At each round ¢, the probability that (E4) occurs is
at most 1/(16r(r+2)).

If (E4) can occur, then we must have that i, (L) < o and
w(I"(v)) > B. For any x € H;, there are two cases to con-
sider - the first is that the total weight of all its neighbouring
vertices is greater than A; the second is that at least one of
its neighbouring vertices individually has weight more than
1 —exp(—A).

In the first case, using Inequality (2), the probability that
no neighbour of x beeps in round 7 is at most exp(—, (I"(x)))
which is bounded by exp(—A2). In the second case, the prob-
ability that no neighbour of x beeps in round ¢ is still at most
exp(—A). Thus, for any x € H; we have shown that the prob-
ability that no neighbour of x beeps in round ¢ is at most
exp(—A).

Let H? be the set of vertices in H; that do not hear a beep
in round 7, and let H' = H, \ H? be the remaining vertices in
H, that do hear a beep. Then E[y, (H?)] < exp(—2A)u, (H,),
and so by Markov’s inequality

P [ (HO) = 16r(r+2)exp(—A) (H,)] < 1/(16r(r+2).
&)

Now all vertices in H,' decrease their weight by a factor of

at least fi, while vertices in L, and Ht0 may either decrease

or increase their weight (additionally, some weights may get
set to 0 if vertices become inactive). So

it (C0)) < o (HY) + ot (HO) + fost (L)

fi
1
— S H(r )
(- %mwfwfz - %)M(L,)

It follows from Inequality (5) that, with probability at least
1—1/(16r(r+2)),

e () <~ (T + (5

1 -2
7 7 Y6r(r+2)e ", (H;)

1

+(f2— %)MI(LI)

< f; (o)),
where the final inequality follows from our choice of A,
which gives
(fa= Sy V16r(r+2)e e (Hy)
< (H=fi N6r(r+2)e *p (N (v)
<1720 = T o)),

and our choice of o and 3, because we are assuming that
W (L) < o and y, (I (v)) > B, so we have

(- fihwL) < (h-fHa
=120~ ;"B
<1/2(f; " = (T ().

Thus the probability that (E4) does occur is bounded above
by 1/(16r(r+2)). This proves Claim 2.

Claim 3 With failure probability O(1/n**1), (E4) occurs at
most (Klogn)/(8r(r+2)) times in the first K logn rounds.

At each round, the probability of (E4) depends on the past
history of the process. However, by Claim 2, it is always at
most 1/(16r(r+2)), and so we can couple occurrences of
(E4) with a sequence of independent events each occurring
with probability 1/(167(r+2)). It follows that the number
of occurrences of (E4) in the first Klogn rounds is stochas-
tically dominated by a binomial random variable X with
parameters Klogn and 1/(16r(r+2)). The probability that
(E4) occurs more than (Klogn)/(8r(r+2)) times is there-
fore, by (4), at most

PIX > 2EX] <exp(—EX/3) <exp(—(Klogn)/(48r(r+2))).

By our choice of Ky, we have Ky > 48r(r+2), so this prob-
ability is O(n~**+1), which proves Claim 3.

From Claim 1 and Claim 3, we conclude that with fail-
ure probability O(n~*+1)), (E1) and (E4) altogether occur at
most K (logn)/(4r(r+2)) times in the first Klogn rounds.
We next show that, with small failure probability, u, (I"(v))
is small most of the time.

Claim 4 With failure probability O(1/n*1), u,(I"(v)) > f28
at most (K'logn)/(2(r+2)) times in the first Klogn rounds.

Let T be the set of rounds z > 1 at which i, (I'(v)) > f>.
We decompose T into (maximal) intervals of integers, say
as Ty U---UT,. Let T; = [s;,1;] be one of these intervals.
We colour each integer t € T; red if (E1) or (E4) occurred
at the previous round, and blue if (E3) occurred (note that
(E2) cannot occur, as t,—1(I'(v)) > w,(I'(v))/f2 > B). By
the definition of (E3), we have i, (I"(v)) < f;l/r,u,,l (I'(v))
at blue rounds, and we have i, (I"(v)) < fory—1 (' (v)) oth-
erwise. Let r; be the number of red elements in 7; and b; the
number of blue elements. It follows that

U (V) < fgoa (T () - 27007,

Since w;, (I'(v)) > f2p it follows that

1
ri > —bi+logy, fof —logy, (ks-1(I'(v)))-
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However, u;,—1(I'(v)) < f2B in all cases where s; > 1, and
Uo(I"(v)) < n. Summing over i, we see that

m 1 m
Zri > P Zbi+10gf2f2ﬁ —log, n
i=1 i=1

But red rounds correspond to events (E1) and (E4), and we
have already shown in Claims 1 and 3 that these occur at
most (Klogn)/(4r(r+2)) times altogether in the first K logn
rounds. Hence the total number of rounds in 7', both red and
blue, is less than (Klogn)/(4r(r+2)) + (Klogn)/(4(r +
2)) + rlogn/log f>. By our choice of Ky, this is less than
(Klogn)/(2(r+2)). This proves Claim 4.

Claim 5 With failure probability O(1/nf*1), v hears a beep
at most (Klogn)/(r+2) times in the first K logn rounds.

By our choice of 8, we have that 28 = (1—e ) /(4(r+
2)A) < (1 —e*). Hence we may apply Inequality (3), to
show that when w, (I'(v)) < f>3 the probability that v hears
no beep is

[T 0-m@)> [T exp(-om(x))

xel(v) xel(v)
p(=¢u (L (v)))
p(—=9/2B8) > 1-9¢ /2B,

and so v hears a beep with probability at most ¢ /8 which
equals 1/(4(r+2)). Using (4), this implies that with failure
probability O(n~**+1)) there are at most (K logn)/(2(r+2))
rounds among the first Klogn at which w,(I'(v)) < £ and
v hears a beep. By Claim 4, with the same failure probability,
there are also at most (Klogn)/(2(r+2)) rounds at which
W (I (v)) > f2 (and v might hear a beep at any of these
steps). It follows that, with failure probability O(n~*+1)),
v hears a beep at most (Klogn)/(r+ 2) times in the first
Klogn rounds. This proves Claim 5.

> ex
> ex

Claim 6 With failure probability O(1/n**1), v becomes in-
active during the first Klogn rounds.

From the previous claim, we may assume that v hears
a beep on at most Klogn/(r+2) occasions during the first
Klogn rounds. On these occasions it decreases its local prob-
ability value p by a factor of at most f,. We shall refer to
these as red steps.
Hence there are at least E:ié;l( logn rounds during the
first Klogn rounds where v does not hear a beep, so it either
terminates, or increases its local probability value p by a
factor of at least f, or else increases p to 1. We shall refer to
these as blue rounds. Note that if v beeps in a blue round then
it will terminate in that round. Hence a blue round where the
value of p increases to 1 must be immediately followed by a
red round, or a blue round where v terminates.

Now, by our choice of 7, f{ > f». This means that there

1

must be at least ml( logn blue rounds during the first

Klogn rounds where either v has terminated, or else the lo-
cal probability value p at v is at least as high as the initial
value, pg.

The probability that v will terminate at each of these blue
rounds is at least pg, so the probability that v remains active
throughout all these blue rounds is at most (1 — pg)K1ogn/(7+2),
Using Inequality (2), this means that the probability that v
remains active throughout these rounds is at most

exp(—poKlogn/(r+2)).

By our choice of Ky, we have Ky > (r+2)/po, so this is
O(n~**t1). Hence v terminates with a failure probability
that is O(n~(k+1),

This proves Claim 6, and completes the proof of Theo-
rem 2. a

Corollary 1 The expected number of rounds taken by Algo-
rithm 1 on any graph with n nodes is O(logn).

Proof Let T be the total number of rounds taken by the algo-
rithm and let 7/ = [T /(Kylogn)|, where K is the constant
identified in Theorem 2.

By Theorem 2, we have that, for any k > 1,

P[T" > k+1] < /n*

for some constant ¢’. Hence E[T'] = Y~ P[T’ > k] = O(1).
O

4.3 Expected Number of Signals

In this section we will show that the expected number of
times that each node signals is bounded by a constant. Hence
the expected bit complexity per node for this algorithm does
not increase at all with the number of nodes.

Theorem 3 The expected total number of signals broadcast
by any node executing Algorithm 1 is O(1).

Proof Let v be a node executing Algorithm 1, and consider
the whole sequence of rounds until v becomes inactive.
Once again we will refer to sending a signal in the first
exchange of Algorithm 1 as “beeping”, and receiving such a
signal from a neighbour as “hearing a beep”.
During each round, one of the following 3 things hap-
pens in the first exchange:

Case 1 v hears a beep from its neighbours, and so decreases
its probability of beeping by a factor of f (from p; to
% pr). We will call these red rounds.

Case 2 v hears no beep from its neighbours, and so increases
its probability of beeping by a factor of f (from p; to
fpr). We will call these blue rounds.
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Case 3 v hears no beep from its neighbours, and so increases
its probability of beeping to 1. We will call these dark
blue rounds.

If v beeps in any blue or dark blue round then it joins
the MIS and becomes inactive, so the total number of beeps
at such rounds is at most one, at the final round in the se-
quence. Hence we only need to consider the expected num-
ber of beeps at red rounds.

Consider first those red rounds (if any) where the value
of p; is at its lowest point in the sequence so far. At each such
round the lowest probability value seen so far decreases by
a factor of at least f;. Hence, the expected number of times
that v beeps during this subsequence of rounds is bounded
byp0+%+57?+% < flfllpoﬁ flfly

At all of the remaining red rounds the value of p; is not
at its lowest point so far, so it was lower at some previous
blue round. Hence each of these red rounds can be associ-
ated with a corresponding earlier blue round: the most recent
blue round where the value of p; was lower. We now define
the constant r = [log f>/log fi], where f; and f, denote re-
spectively the lower bound and upper bound of f as given in
Algorithm 1. Note that f{ > f>. Since blue rounds increase
the value of p; by at most a factor of f>, and red rounds de-
crease the value of p; by at least a factor of f1, it follows that
each blue round will be associated with at most r red rounds.

Hence we have partitioned the remaining red rounds into
groups of at most r red rounds, each associated with a sin-
gle (earlier) blue round. We now consider these groups of at
most »+ 1 rounds, ordered by the position of the initial blue
round. For any such group, if the probability of beeping at
the blue round is p, then the probability of beeping at any of
the associated red rounds is at most f>p. Hence the condi-
tional probability of beeping at the initial blue round, given
that a beep occurs somewhere in this group of rounds, is at
least 1/(1+rf,). Hence if we consider the subsequence of
groups where at least one beep occurs, the expected number
of such groups before a beep occurs at a blue round is at
most rf> (expected number of failures before the first suc-
cess in a geometric distribution). Since each group can con-
tribute at most » beeps, the expected number of beeps added
in these groups before terminating is at most 7(rf2).

We have shown that the expected number of times that
v beeps is at most 1 + flfil + ([log f>/1log f11)% f>, which
proves the result. a

5 Algorithm for Distributed Greedy Colouring

Our new algorithm for distributed greedy colouring (Algo-
rithm 2) is similar to our new distributed MIS selection algo-
rithm. At each round, each node may choose, with a certain
probability p, to broadcast its first available colour to all its
neighbours, indicating that it wishes to use that colour. If two

neighbouring nodes broadcast the same colour in the same
round, then they will both abandon choosing that colour
in that round. On the other hand, if a node broadcasts a
colour and none of its neighbouring nodes broadcast the
same colour in that round, then it is successfully coloured,
and will notify all its neighbouring nodes that they are for-
bidden to use that colour.

As in our MIS selection algorithm, the way that the prob-
ability values p are chosen is inspired by the positive feed-
back mechanisms that control cellular processes. The value
of pisinitialised to some arbitrary value at each node (above
some strictly positive fixed threshold value, pg). These val-
ues are then independently updated at each node in each
round using feedback from neighbouring nodes. The value
of pis decreased at a node whenever one or more neighbour-
ing nodes broadcast the same colour, and is increased when-
ever no neighbouring node broadcasts the same colour. As in
our MIS selection algorithm, we allow each increase or de-
crease to be by some arbitrary factor f, which may vary at
each round, but is always bounded by the global parameters
fiand f> (with 1 < f1 < fo).

The correctness of Algorithm 2 follows easily from the
two facts below:

Fact 1 No two nodes that are assigned the same colour in
the same round are adjacent.

Fact 2 The colour assigned to any node is the smallest colour
that is different from all colours previously assigned to
neighbouring nodes.

Thus, if Algorithm 2 is run on the nodes of any graph G, and
all nodes become inactive, then the colour assigned to each
of the nodes defines a greedy colouring of G.

Our analysis of the distributed greedy colouring algo-
rithm (Algorithm 2) is very similar to the analysis for the
MIS selection algorithm given in Section 4.2.

Theorem 4 For any fixed values of pg > 0, and 1 < fi < fo,
there is a constant Ko and a constant r such that the follow-
ing holds: For any graph G with n vertices and maximum
degree A, and any k > 1, Algorithm 2 terminates in at most
8r(r+2)A + Ko(k+ 1)logn rounds, with probability at least
1—0(1/n%).

As in Section 4.2, we refer to broadcasting any colour ¢
in the first exchange as “beeping”, and receiving the same
colour ¢ from a neighbour in that exchange as “hearing a
beep”. As before, for any vertex v, at any time step ¢, we
define the measure i, (v), called the “weight” of v, to be the
probability that v beeps in round 7.

The set of neighbours of a vertex v which are competing
for the same colour as v in any round will be called the ho-
mogeneous neighbours of v, and will be denoted by I"") (v).
We adapt Definition 4 to refer to homogeneous neighbours
only, as follows.
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ALGORITHM 2: The algorithm for distributed greedy colouring at each node

Global constants: pg : lower bound on initial probability value;

/1, f> : lower and upper bounds on change factor for probability value.

Local variables:

p : local probability value, initialised to some value in [po, 1];

f : change factor for probability value, chosen arbitrarily in [f1, f2];

TRYING : Boolean flag, initialised to FALSE;

S : Set of forbidden colours, i.e., those taken by neighbours, initialised to 0.

1. while active, at each time step do

*FIRST EXCHANGE*

3 Choose the smallest available colour ¢ that is not in S;

4 With probability p, set TRYING <— TRUE and send c to all neighbours;
5. Receive any colour signals sent by neighbours;

6 Set f to some arbitrary value in the interval [f1, f2];

7 if any neighbour sent colour ¢ then

8 TRYING < FALSE and p < p/f (decrease p)

. else

10. p < min{fp,1} (increase p)

1. *SECOND EXCHANGE*

12. if TRYING then

13. Send c to all neighbours;

14, Assign colour c¢ to this node and terminate (become inactive).
1s. Receive any colour signals sent by neighbours and add all distinct colours received to S.

Definition 5 For any A > 0, a vertex v will be called A-
light”) at round 7 if u, ("' (v)) < A and every homoge-
neous neighbour of v has weight at most 1 —exp(—A); oth-
erwise, vertex v is called l—heavyw).

As in Section 4.2, we first establish a lower bound on the
probability that at least one vertex in a set of A-light") ver-
tices will be coloured at each round.

Lemma 2 Let W be a set of vertices that are A-light’) at
round t. The probability that at least one vertex in W gets
coloured in round t is at least e~ 9* (1 — e W)Y where ¢ =

2/(1 —exp(~2)
Proof Identical to the proof of Lemma 1. ad

Proof (of Theorem 4) Fix an arbitrary vertex v. We use es-
sentially the same argument as in the proof of Theorem 2,
partitioning the neighbourhood of v into A-light!®) and A-
heavy(h) vertices, and following the progress of these sets
over time. Note that we consider the entire neighbourhood
of v, not just the homogeneous neighbours. We show that
the weight of this entire neighbourhood is small for at least
a fixed fraction of the time, and hence v fails to receive any
colour signals for at least a fixed fraction of the time.

We define the same constants, and the same events (E1)
to (E4) (see page 14). However, in this proof we will need
to allow for the possibility that one or more neighbours of v
are successfully coloured at any time step, which can happen
up to A times, and does not immediately force v to become
inactive.

Each time that (E1) occurs, it follows from Lemma 2
that with probability at least e=?* (1 — e~ %) some A-light(")

neighbour of v will be coloured. Let ¢; = e (1 — e~ %).
As in the proof of Claim 1, the probability that there are
(Klogn)/(8r(r+2)) occurrences of (E1) where no neigh-
bour of v is coloured is at most (1 — ¢ )Klogn)/(8r(r+2)) <
exp(—(¢1Ko/(8r(r+2)))(k+1)logn). By our choice of Ky,
we have Ky > (8r(r+2))/¢1, so this probability is at most
exp(—(k+1)logn) = n~ k1),

Hence with failure probability O(1/n**1), the total num-
ber of occurrences of (E'1) is at most A + (Klogn)/(8r(r+
2)).

Since we have a weaker upper bound on the number of
occurrences of (E1), we will need to consider a longer se-
quence of rounds overall. In fact, we will consider the first
8r(r+2)A + Klogn rounds.

Following exactly the same arguments as in the proof
of Claims 2 and 3, we obtain that with failure probability
O(1/n**1), (B4) occurs at most A + (Klogn)/(8r(r +2))
times in the first 87(r4+2)A + Klogn rounds.

Next, following the argument used to prove Claim 4,
but using the weaker bound of 2A + (Klogn)/(4r(r +2))
for the total number of red rounds, we obtain that with fail-
ure probability O(1/n**1), u,(I"(v)) > foB at most 4rA +
(Klogn)/(2(r+2)) times in the first 8(r +2)A + Klogn
rounds.

Now, using the same argument as in Claim 5 we can
show that with failure probability O(1/n**1), the fraction of
rounds where v hears a beep (or in fact receives any colour
signal in the first exchange) during the first 8r(r +2)A +
Klogn rounds is at most 1/(r+2).
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