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recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].



Abstract

A class of graphs is χ-bounded if there is a function f such that every graph G in the class has
chromatic number at most f(ω(G)), where ω(G) is the clique number of G; the class is polynomially
χ-bounded if f can be taken to be a polynomial. The Gyárfás-Sumner conjecture asserts that, for
every forest H, the class of H-free graphs (graphs with no induced copy of H) is χ-bounded. Let
us say a forest H is good if it satisfies the stronger property that the class of H-free graphs is
polynomially χ-bounded.

Very few forests are known to be good: for example, it is open for the five-vertex path. Indeed,
it is not even known that if every component of a forest H is good then H is good, and in particular,
it was not known that the disjoint union of two four-vertex paths is good. Here we show the latter,
and more generally, that if H is good then so is the disjoint union of H and a four-vertex path. We
also prove a more general result: if every component of H1 is good, and H2 is any path (or broom)
then the class of graphs that are both H1-free and H2-free is polynomially χ-bounded.



1 Introduction

A class G of graphs is hereditary if it is closed under taking induced subgraphs. We say that a
hereditary class G is χ-bounded if there is a function f such that every graph G ∈ G has chromatic
number at most f(ω(G)), where ω(G) is the clique number of G; the class G is polynomially χ-bounded
if f can be taken to be a polynomial. A graph is H-free if it has no induced subgraph isomorphic to
H.

The Gyárfás-Sumner conjecture [4, 14] asserts:

1.1 Conjecture: For every forest H, the class of H-free graphs is χ-bounded.

There has been a great deal of recent progress on χ-bounded classes (see [9] for a survey), although
the Gyárfás-Sumner conjecture remains open. In most cases, proofs of χ-boundedness give fairly fast-
growing functions, so it is interesting to ask: when do we get the stronger property of polynomial
χ-boundedness?

A provocative conjecture of Louis Esperet [3] asserted that every χ-bounded hereditary class is
polynomially χ-bounded. But this was recently disproved by Briański, Davies and Walczak [1]. So
the question now is: which hereditary classes are polynomially χ-bounded? For example, when can
1.1 be strengthened to polynomial χ-boundedness? Let us say a graph H is good if the class of H-free
graphs is polynomially χ-bounded. Very few trees are known to be good: it is easy to show that
stars are good, and it was shown in [11] that all trees not containing the five-vertex path P5 are good.
But it is not known whether P5 is good (although see [12] for the best current bounds for H = P5;
and see [13] for the case when H a general tree of radius two).

In the case of χ-boundedness, it is not hard to show that a forest H satisfies the Gyárfás-Sumner
conjecture if and only if all its components do. But it has not been shown that if every component
of a forest H is good then H is good. Indeed, only some very restricted forests are known to be
good [8, 10]. One outstanding case was when H is the disjoint union of two copies of the four-vertex
path P4; and this was particularly annoying since the P4-free graphs are very well-understood and
rather trivial.

We will prove the following:

1.2 If H is a good forest, then the disjoint union of H and P4 is also good.

In particular, the disjoint union of two or more copies of P4 is good. 1.2 is a consequence of the
next result, about brooms. A (k, d)-broom is a tree obtained from a k-vertex path with one end v
by adding d new vertices adjacent to v, and a broom is a tree that is a (k, d)-broom for some k, d. It
is known that (3, d)-brooms are good [6, 11], but this is not known for larger brooms (all of which
contain P5). We will show the following, which implies 1.2:

1.3 Let H1 be a forest such that every component of H1 is good, and let H2 be either a broom, or
the disjoint union of a good forest and a number of paths. Then there is a polynomial φ such that
χ(G) ≤ φ(ω(G)) for every {H1, H2}-free graph G.

({H1, H2}-free means both H1-free and H2-free.) To deduce 1.2 from 1.3, let H be a good forest, let
H1 = H2 be the disjoint union of H and P4, and apply 1.3.

Some notation and terminology: if G is a graph and X ⊆ V (G), we denote by G[X] the subgraph
of G induced on X, and we sometimes write χ(X) for χ(G[X]) and ω(X) for ω(G[X]). Two disjoint
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subsets A,B ⊆ V (G) are complete if every vertex in A is adjacent to every vertex of B, and anti-
complete if there is no edge between A,B; and we say a vertex v is complete to B if {v} is complete
to B, and so on. A graph G contains a graph H if some induced subgraph of G is isomorphic to H,
and such a subgraph is a copy of H. The cone of a graph H is obtained from H by adding a new
vertex adjacent to every vertex of H.

Let us say a graph is 0-bad if it is good; and a graph J is β-bad, where β ≥ 1 is an integer, if
either J is the disjoint union of two (β − 1)-bad graphs, or J is the cone of a (β − 1)-bad graph, or
J is (β − 1)-bad. In general, cones are not forests, so they are not good. Nevertheless, we will prove
the following strengthening of 1.3:

1.4 Let β ≥ 0, let H1 be a β-bad graph, and let H2 be either a broom, or the disjoint union of a
good forest and a number of paths. Then there is a polynomial φ such that χ(G) ≤ φ(ω(G)) for every
{H1, H2}-free graph G.

This implies several results that were previously known. For instance, in [7] it is proved that:

1.5 Let H1 be either

� the disjoint union of a complete graph and a good graph, or

� the disjoint union of some complete graphs, or

� the cone of the disjoint union of some complete graphs.

Let H2 be a path. Then there is a polynomial φ such that χ(G) ≤ φ(ω(G)) for every {H1, H2}-free
graph G.

Some other results of [7, 8] are also special cases of 1.4.

2 Finding a disjoint union

Suppose that H is the disjoint union of good forests H1, H2. Choose c1, c2 such that for i = 1, 2,
every Hi-free graph G satisfies χ(G) ≤ ω(G)ci . Thus, if G is H-free, we know that there do not exist
disjoint, anticomplete subsets P,Q ⊆ V (G) with χ(P ) > ω(P )c1 and χ(Q) > ω(Q)c2 ; because then
G[P ] is not H1-free, and G[Q] is not H2-free, and the union of a copy of H1 in G[P ] and a copy of
H2 in G[Q] gives a copy of H, which is impossible.

But we do not really need P,Q to be anticomplete. It is enough that χ(P ) > ω(P )c1 , and
χ(Q) > |H1|r + ω(Q)c2 , where r denotes the maximum over v ∈ P of the chromatic number of the
set of neighbours of v in Q; because then if we choose a copy H ′1 of H in G[P ], the chromatic number
of the set of vertices in Q with no neighbours in V (H ′1) is at least χ(Q)−|H1|r > ω(Q)c2 , and so this
set contains a copy of H2, a contradiction. In the proof to come later in the paper, this is the only
way we will ever use that G is H-free; and so we might as well prove a stronger theorem, replacing
the hypothesis that G is H-free with the weaker hypothesis that there is no suitable pair P,Q in G.

Thus we will be excluding pairs of disjoint sets P,Q where χ(P ) is at least some power of ω(P ),
and for each vertex in P , its set of neighbours in Q has chromatic number at most some r that is
small compared with the chromatic number of Q.

2



In our proof, it happens that when we find a suitable pair (P,Q), it comes equipped with an
extra vertex v that is complete to P and anticomplete to Q; so we might as well prove that there is
a “suitable triple” (v, P,Q). Such a thing will also allow us to handle cones.

We denote the set of nonnegative integers by N, and say a function φ : N→ N is non-decreasing
if φ(x) ≤ φ(x′) for all x, x′ ∈ N with x ≤ x′.

Let ψ : N → N be non-decreasing, and let q ≥ 0 be an integer. We say a (ψ, q)-scattering in a
graph G is a triple (v, P,Q) where:

� P,Q are disjoint subsets of V (G), and v ∈ V (G) \ (P ∪Q);

� {v} is complete to P and anticomplete to Q;

� χ(P ) > ψ(ω(P )); and

� χ(Q) > qr + ψ(ω(Q)), where r is the maximum, over v ∈ P , of the chromatic number of the
set of neighbours of v in Q.

Thus we will replace the hypothesis in 1.4 that G is H1-free and H1 is β-bad, with the hypothesis
that G contains no (ψ, q)-scattering, for appropriate ψ, q. We will show:

2.1 Let ψ : N→ N be a non-decreasing polynomial and let q ∈ N. Let H2 be either a broom, or the
disjoint union of a good forest and a number of paths. Then there is a polynomial φ : N → N such
that if χ(G) > ψ(ω(G)) and G contains no (ψ, q)-scattering, then G contains H2.

Proof of 1.4, assuming 2.1. We proceed by induction on β. Let H1 be β-bad, and let H2 be
either a broom, or the disjoint union of a good forest and a number of paths.

If H1 is good, the result is true, so we assume that H1 is not good, and therefore β ≥ 1. Thus
either H1 is the disjoint union of two (β − 1)-bad graphs J1, J2, or the cone of a (β − 1)-bad graph
J1 (and in this case let J2 be the null graph). From the inductive hypothesis on β, for i = 1, 2 there
is a non-decreasing polynomial φi such that if G is H2-free and Ji-free then χ(G) ≤ φi(ω(G)), and
by replacing φ1, φ2 by φ1 + φ2 we may assume that φ1 = φ2.

Let q = |J1|. By 2.1, there is a non-decreasing polynomial φ such that if χ(G) > φ(ω(G)) and
contains no (φ1, q)-scattering, then G contains H2. We claim that φ satisfies 1.4.

Let G be {H1, H2}-free, and suppose that χ(G) > φ(ω(G)). Since G is H2-free, it follows from
the choice of φ that G contains a (φ1, q)-scattering (w,P,Q) say. Let r be the maximum, over v ∈ P ,
of the chromatic number of the set of neighbours of v in Q. Since χ(P ) > φ1(ω(P )), there is an
induced subgraph of G[P ] isomorphic to J1, say J ′1. Hence G contains the cone of J1, so we may
assume that H1 is the disjoint union of J1, J2. The set of vertices in Q with a neighbour in V (J ′1)
has chromatic number at most r|J1|, and since

χ(Q) > |J1|r + φ2(ω(Q)),

it follows that the set (say Q′) of vertices in Q that are anticomplete to J ′1 has chromatic number
more than φ2(ω(Q)). From the choice of φ2, and since G is H2-free, it follows that G[Q′] is not
J2-free; but then, combining this copy of J2 with J ′1, we find a copy of H1 in G, a contradiction.
This proves 1.4.
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Let σ : N → N be a non-decreasing function. We say a subgraph P of a graph G is σ-
nondominating if there is a set X ⊆ V (G) \ V (P ), anticomplete to V (P ), with χ(X) > σ(ω(X)).
Next we will show that to prove 2.1 it suffices to prove the following:

2.2 Let ψ, σ : N → N be non-decreasing polynomials, and let q ≥ 0 an integer. Let H be a broom,
and let J be a path. Then there is a non-decreasing polynomial φ : N→ N such that if G is a graph,
and χ(G) > φ(ω(G)), and G contains no (ψ, q)-scattering, then G contains H and a σ-nondominating
copy of J .

Proof of 2.1, assuming 2.2. Let ψ, q,H2 be as in 2.1. If H2 is a broom, then 2.1 follows
immediately from 2.2 (setting H = H2 and setting J to be some path, for instance the one-vertex
path). Thus we assume that H2 is the disjoint union of a good forest J1 and a forest J2 that is a
disjoint union of paths. Let σ : N→ N be a non-decreasing function such that every J1-free graph G
has chromatic number at most σ(ω(G)); and choose a path J such that J2 is an induced subgraph
of J . By 2.2 (setting H to be some broom, for instance with one vertex) there is a non-decreasing
polynomial φ : N → N such that if χ(G) > φ(ω(G)) and G contains no (ψ, q)-scattering, then G
contains a σ-nondominating copy J ′ of J .

We claim that φ satisfies 2.1. Thus we must show that if G is H2-free and contains no (ψ, q)-
scattering then χ(G) ≤ φ(ω(G)). Suppose not. By the choice of f , and since G contains no (ψ, q)-
scattering, it follows that G contains a copy J ′ of J , such that there is a set X ⊆ V (G) with
χ(X) > σ(ω(X)) anticomplete to V (J ′1). But since χ(X) > σ(ω(X)), it follows that G[X] contains
J1, and since J contains J2, and V (J) is anticomplete to X, it follows that G contains H2. This
proves 2.1.

We remark that there is an appealing possible strengthening of 2.2, that we could not prove:

2.3 Conjecture: Let ψ, σ : N→ N be non-decreasing polynomials, let q ≥ 0 an integer, and let H
be a broom. Then there is a non-decreasing polynomial φ : N → N such that if G is a graph, and
χ(G) > φ(ω(G)), and G contains no (ψ, q)-scattering, then G a σ-nondominating copy of H.

Let us say a graph H is self-isolating if for every non-decreasing polynomial ψ : N→ N, there is
a polynomial φ : N→ N with the following property: for every graph G with χ(G) > φ(ω(G)), there
exists A ⊆ V (G) with χ(A) > ψ(ω(A)), such that either

� G[A] is H-free, or

� G contains a copy H ′ of H such that V (H ′) is disjoint from and anticomplete to A.

Which graphs are self-isolating? It is proved in [10] that stars are self-isolating, and we will show
in [2] that complete graphs and complete bipartite graphs are self-isolating. Let us observe that 2.2
implies that:

2.4 Every path is self-isolating.

Proof. Let J be a path, and let ψ : N → N be a non-decreasing polynomial. Choose φ satisfying
2.2 with H = J and σ = ψ and q = |J |, and let G be a graph with χ(G) > φ(ω(G)). We claim that
either there is a ψ-nondominating copy of J in G, or there exists A ⊆ V (G) with χ(A) > ψ(ω(A))
such that G[A] is J-free. By 2.2 we may assume that there is a (ψ, q)-scattering (w,P,Q) in G. If
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G[P ] is J-free, the claim holds, so we assume that there is a copy J ′ of J in G[P ]. Thus |J ′| = q.
Let r be the maximum over v ∈ P of the chromatic number of the set of neighbours of v in Q.
The set of vertices in Q with a neighbour in V (J ′) has chromatic number at most |J ′|r = qr; and
χ(Q) > ψ(ω(Q))+qr from the definition of a (ψ, q)-scattering. Consequently J ′ is ψ-nondominating,
and hence J is self-isolating. This proves 2.4.

3 Constructing a horn

Let d ≥ 0 be an integer. If A,B ⊆ V (G) are disjoint, we say that A is d-dense to B if for every
vertex v ∈ A, the set of non-neighbours of v in B has chromatic number at most d. Let us say a
(d, z)-horn in a graph G is a triple (v,A,B) where

� A,B are disjoint subsets of V (G), and v ∈ V (G) \ (A ∪B);

� v is complete to A and anticomplete to B; and

� there is no Z ⊆ A ∪B with χ(Z) ≤ z such that A \ Z is d-dense to B \ Z.

We will need a (d, z)-horn (v,A,B) where z is at least some large function of the clique number
of A ∪ B, and this section produces such a horn. We will use the following well-known version of
Ramsey’s theorem, proved (for instance) in [10] (|G| denotes the number of vertices of G):

3.1 Let x ≥ 2 and y ≥ 1 be integers. For a graph G, if |G| ≥ xy, then G has either a clique of
cardinality x+ 1, or a stable set of cardinality y.

If v ∈ V (G), we denote by N(v) or NG(v) the set of all neighbours of v in G. First, we need a
result of Gyárfás [5] (we give the well-known proof, because it is so pretty.)

3.2 Let k ≥ 1 and x ≥ 0 be integers. Let G be a connected graph such that χ(N(v)) ≤ x for every
vertex v. Let H be a connected induced subgraph of G, and let v ∈ V (G) \ V (H) with a neighbour
in V (H). If χ(H) > (k − 2)x, there is an induced k-vertex path of G with one end v and all other
vertices in V (H).

Proof. We proceed by induction on k. The result is clear for k ≤ 2, so we assume that k ≥ 3.
Define J be obtained from H by deleting all vertices in N(v); thus χ(J) > (k − 3)x > 0, and so
there is a component H ′ of J with chromatic number more than (k − 3)x. Let v′ ∈ N(v) ∩ V (H)
with a neighbour in V (H ′). From the inductive hypothesis applied to v′, H ′, there is an induced
(k − 1)-vertex path of G with one end v′ and all other vertices in V (H ′). Appending v to this path
proves 3.2.

We deduce:

3.3 Let σ : N→ N be non-decreasing, let k, x ≥ 1 be integers, and let G be a graph. If χ(N(v)) ≤ x
for every v ∈ V (G), and χ(G) > kx + σ(ω(G)), then there is a σ-nondominating k-vertex induced
path P in G.

Proof. We may assume that G is connected; choose v ∈ V (G). Since χ(G \ v) > kx− 1 ≥ (k− 2)x,
3.2 (applied to v and to a component of G\v of maximum chromatic number) implies that G contains
a k-vertex induced path P . The set of vertices of G with a neighbour in V (P ) has chromatic number
at most kx, and the result follows. This proves 3.3.
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The next result is also essentially due to Gyárfás (mentioned in [5]):

3.4 Let H be a (k, s)-broom, and suppose that G is H-free, and χ(N(v)) ≤ x for every v ∈ V (G).
Then

χ(G) ≤ max(ω(G)2s, (2s+ 1)(x+ 1) + (k − 2)x).

Proof. Suppose that χ(G) > max(ω(G)2s, (2s + 1)(t + 1) + (k − 2)x). We may assume that G is
connected. If every vertex of G has degree less than ω(G)2s then χ(G) ≤ ω(G)2s, a contradiction,
so some vertex v has at least ω(G)2s neighbours. By 3.1 applied to G[N(v)], there is a stable set
S of neighbours of v, with |S| = 2s. Let M be the set of all vertices of G that do not belong to
S ∪ {v} and have a neighbour in S ∪ {v}. Thus χ(M) ≤ (2s + 1)x. Let H be a component of
G \ (M ∪ S ∪ {v}) of maximum chromatic number; then χ(H) ≥ χ(G)− (2s+ 1)(x+ 1) > (k − 2)x.
Choose u ∈ M ∪ S ∪ {v} with a neighbour in V (H). By 3.2 applied to u,H, there is an induced
k-vertex path P of G with one end u and all other vertices in V (H). Thus u is the only vertex of
P with a neighbour in M ∪ S ∪ {v}. If u is adjacent to at least s vertices in S, then the subgraph
induced on V (P ) and some s of these neighbours is a (k, s)-broom, a contradiction. Thus there exists
S′ ⊆ S with |S′| = s, such that all vertices in S′ are nonadjacent to u. If u is adjacent to v, the
subgraph induced on V (P ) ∪ S ∪ {v} is a (k + 1, s)-broom, a contradiction. Thus u is adjacent to
some w ∈ S \ S′, and nonadjacent to v. But then the subgraph induced on V (P ) ∪ S ∪ {v, w} is a
(k + 2, s)-broom, a contradiction. This proves 3.4.

3.5 Let σ : N → N be non-decreasing. Let k, s, d, z ≥ 0 and c ≥ 2s be integers. Let G be a graph
such that

χ(G) > ω(G)c;

χ(G′) ≤ ω(G′)c for every induced subgraph G′ of G with G′ 6= G;

ω(G)c ≥ (ω(G)− 1)c + z + dω(G) + 2;

ω(G)c ≥ (2s+ 1)(z + 1) + (k − 2)z; and

ω(G)c ≥ kz + σ(ω(G)).

Then either

� G contains a (d, z)-horn; or

� G contains a (k, s)-broom, and a σ-nondominating k-vertex path.

Proof. Suppose that χ(N(v)) ≤ z for every vertex v ∈ V (G). By 3.4, and since

χ(G) > ω(G)c ≥ max(ω(G)2s, (2s+ 1)(x+ 1) + (k − 2)z)

(because c ≥ 2s), it follows that G contains a (k, s)-broom. By 3.3, since

χ(G)− kz > σ(ω(G)) ≥ σ(ω(X)),

there is a σ-nondominating k-vertex induced path P in G, and so the second bullet holds.
Thus we assume that χ(N(v)) > z for some vertex v. Let A be the set of neighbours of v, and

B = V (G) \ (A ∪ {v}). We claim that (v,A,B) is a (d, z)-horn. Suppose not; then there exists
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Z ⊆ A ∪ B with χ(Z) ≤ z, such that A \ Z is d-dense to B \ Z. Let P ⊆ A \ Z be a clique with
cardinality p = ω(A \Z). Then p ≥ 1, since χ(Z) ≤ z < χ(A); and p < ω(G) since otherwise adding
v would give a clique of cardinality ω(G)+1. For each u ∈ P , the set of vertices in B \Z nonadjacent
to u has chromatic number at most d, since A \ Z is d-dense to B \ Z; and so the set of vertices in
B with a non-neighbour in P has chromatic number at most pd ≤ dω(G). The set of vertices in B
complete to P has clique number at most ω(G)− p and so has chromatic number at most (ω − p)c.
Hence χ(B \ Z) ≤ pd+ (ω(G)− p)c, and so

χ(G) ≤ χ(Z) + χ(A \ Z) + χ(B \ Z) + 1 ≤ z + pc + dω(G) + (ω(G)− p)c + 1.

Since 1 ≤ p ≤ ω(G)− 1, pc + (ω(G)− p)c ≤ (ω(G)− 1)c + 1, and so

ω(G)c < χ(G) ≤ z + dω(G) + (ω(G)− 1)c + 2,

a contradiction. This proves 3.5.

4 Making taller horns

In this section we prove 2.2, and hence complete the proofs of 2.1, 1.4, 1.3, and therefore 1.2. If
d, z, ω ≥ 0 are integers, a graph G is (d, z, ω)-unsplittable if there is no partition (A,B,Z) of V (G)
such that χ(Z) ≤ z, and χ(A), χ(B) > dω, and A is d-dense to B. We begin with:

4.1 If d, z ≥ 0 are integers, every graph G admits a partition (D0, D1, . . . , Dk) of its vertex set with
k ≤ ω(G) such that χ(D0) ≤ zω(G) and G[Di] is (d, z, ω(G))-unsplittable for 1 ≤ i ≤ k.

Proof. We may assume that G is not (d, z, ω(G))-unsplittable, and so it admits a partition
(D0, D1, D2) such that χ(D0) ≤ z, χ(D1), χ(D2) > dω(G), and D1 is d-dense to D2. Hence we
may choose k ≥ 2 maximum such that there is a sequence D0, D1, . . . , Dk of pairwise disjoint subsets
of V (G) with union V (G), and with the following properties:

� χ(D0) ≤ (k − 1)z

� Di is d-dense to Dj for 1 ≤ i < j ≤ k; and

� χ(Di) > dω(G) for 1 ≤ i ≤ k.

We claim:

(1) k ≤ ω(G).

Suppose that k > ω(G), and define di ∈ Di for 1 ≤ i ≤ ω(G) + 1 inductively as follows. Let
1 ≤ i ≤ ω(G) + 1, and suppose that d1, . . . , di−1 have been defined, all pairwise adjacent. The set of
vertices in Di that have a non-neighbour among d1, . . . , di−1 has chromatic number at most

(i− 1)d ≤ dω(G) < χ(Di),

and so some vertex di ∈ Di is adjacent to all of d1, . . . , di−1. This completes the inductive defini-
tion. But then {d1, . . . , dω(G)+1} is a clique of G, contradicting the definition of ω(G). This proves (1).
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(2) For 1 ≤ i ≤ k, G[Di] is (d, z, ω(G))-unsplittable.

Suppose that (A,B,Z) is a partition of Di such that χ(Z) ≤ z, and χ(A), χ(B) > dω(G), and
A is d-dense to B. Then the sequence

(D0 ∪ Z,D1, . . . , Di−1, A,B,Di+1, . . . , Dk)

contradicts the maximality of k. This proves (2).

From (1), (2), this proves 4.1.

Let (v,A,B) be a (d, z)-horn in a graph G, and let k ≥ 1 be an integer. We say that (v,A,B)
is k-tall if there is an induced path P in G with k vertices, with one end v, such that V (P ) \ {v}
is disjoint from and anticomplete to A ∪ B. Thus every (d, z)-horn is 1-tall. We use 4.1 to prove a
result which is the heart of the paper:

4.2 Let G be a graph, let d, z, d′, z′, q ≥ 0 be integers, and let ψ : N → N be non-decreasing,
satisfying:

z ≥
(
2ψ(ω(G)) + (1 + q)z′ + qd′ω(G)

)
ω(G)

d ≥
(
z′ + d′ω(G)

)
ω(G).

Let (v,A,B) be an `-tall (d, z)-horn in a graph G, for some ` ≥ 1. Then either

� there exist P ⊆ A and Q ⊆ B such that (v, P,Q) is a (ψ, q)-scattering; or

� there exist v′ ∈ A and disjoint subsets A′, B′ of B such that (v′, A′, B′) is an (` + 1)-tall
(d′, z′)-horn.

Proof. Let p = ψ(ω(G)). By 4.1, B admits a partition (D0, D1, . . . , Dk) with k ≤ ω(G) such
that χ(D0) ≤ z′ω(G) and G[Di] is (d′, z′, ω(G))-unsplittable for 1 ≤ i ≤ k. For 1 ≤ i ≤ k, if
χ(Di) ≤ q(z′ + d′ω(G)) + p let Pi = ∅, and if χ(Di) > q(z′ + d′ω(G)) + p let Pi be the set of vertices
a ∈ A such that χ(U) ≤ z′+d′ω(G), where U is the set of neighbours of a in Di. Let P = P1∪· · ·∪Pk.
For 1 ≤ i ≤ k, we may assume that χ(Pi) ≤ p, for otherwise the first bullet of the theorem holds;
and consequently χ(P ) ≤ pω(G).

Let Z be the union of P,D0, and all the sets Di with 1 ≤ i ≤ k such that

χ(Di) ≤ q(z′ + d′ω(G)) + p.

Consequently
χ(Z) ≤ 2pω(G) + z′ω(G) + q(z′ + d′ω(G))ω(G) ≤ z.

Since (v,A,B) is a (d, z)-horn, it follows that A \ Z is not d-dense to B \ Z; and so there exists
v′ ∈ A \ P such that the set of vertices in B \ Z that are nonadjacent to v′ has chromatic number
more than d. Since B \ Z is the union of the sets Di with χ(Di) > q(z′ + d′ω(G)) + p, there exists
i ∈ {1, . . . , k} with χ(Di) ≥ q(z′ + d′ω(G)) + p such that the set B′ of vertices in Di nonadjacent to
v′ has chromatic number more than d/ω(G). Since v′ /∈ P , the set A′ of neighbours of v′ in Di has
chromatic number more than d′ω(G) + z′.
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Let Z ′ ⊆ Di with χ(Z ′) ≤ z′. Thus χ(A′ \ Z ′) ≥ χ(A′) − χ(Z ′) ≥ d′ω(G); and χ(B′ \ Z ′) ≥
d/ω(G)− z′ ≥ d′ω(G). Since G[Di] is (d′, z′, ω(G))-unsplittable, it follows that A′ \Z ′ is not d′-dense
to B′ \ Z ′. This proves that (v′, A′, B′) is a (d′, z′)-horn.

Since (v,A,B) is `-tall, there is an `-vertex induced path P of G with one end v, such that
V (P ) \ {v} is disjoint from and anticomplete to A ∪ B. Then P ′ = G[V (P ) ∪ {v′}] is an (` + 1)-
vertex path, and since V (P ) is anticomplete to B and hence to A′ ∪B′, it follows that (v′, A′, B′) is
(`+ 1)-tall, and so the second bullet of the theorem holds. This proves 4.2.

Now we prove 2.2, which we restate:

4.3 Let k, s ≥ 1 and q ≥ 0 be integers, and let ψ, σ : N → N be non-decreasing polynomials. Then
there exists an integer c ≥ 0 such that if G is a graph with χ(G) > ω(G)c, and G contains no
(ψ, q)-scattering, then G contains a (k, s)-broom and a σ-nondominating k-vertex path.

Proof. Let ζk : N → N be the polynomial defined by ζk(x) = σ(x) + xs, and let δk(x) = 0. For
i = k − 1, . . . , 1, define polynomials ζi, δi : N→ N by

ζi(x) = 2xψ(x) + (1 + q)xζi+1(x) + xδi+1(x)

δi(x) = xζi+1(x) + x2δi+1(x).

Choose an integer c ≥ 2s such that

xc ≥ (x− 1)c + ζ1(x) + xδ1(x) + 2

xc ≥ (2s+ 1)(ζ1(x) + 1) + (k − 2)ζ1(x), and

xc ≥ kζ1(x) + σ(x)

for all integers x ≥ 2. We claim that c satisfies 4.3. To see this, let G be a graph with χ(G) > ω(G)c,
and suppose that G contains no (ψ, q)-scattering. We must show that G contains a (k, s)-broom
and a σ-nondominating k-vertex path. We show this by induction on |G|. If there is an induced
subgraph G′ of G with G′ 6= G and χ(G′) > ω(G′)c, then G′ contains no (ψ, q)-scattering, and
from the inductive hypothesis, G′ contains a (k, s)-broom and a σ-nondominating k-vertex path, and
hence so does G, as required. We may assume then that there is no such G′. Since χ(G) > ω(G)c,
it follows that ω(G) ≥ 2, and so the five displayed inequalities of 3.5 hold with z, d replaced by
ζ1(ω(G)), δ1(ω(G)) respectively. From 3.5, we may assume that G contains a (δ1(ω(G)), ζ1(ω(G)))-
horn, which is therefore 1-tall.

From 4.2, it follows that for i = 2, . . . , k, G contains an i-tall (δi(ω(G)), ζi(ω(G)))-horn, and so
contains a k-tall (0, z)-horn (v,A,B) say, where z = ζk(ω(G)). Since this horn is k-tall, there is a
k-vertex induced path P of G with one end v, such that V (P )\{v} is disjoint from and anticomplete
to A ∪ B. From the definition of a (0, z)-horn, χ(A), χ(B) > z. Since χ(A) > z ≥ ω(A)s, 3.1
implies that there is a stable set S ⊆ A with |S| = s, and so G[V (P ) ∪ S] is a (k, s)-broom. Since
χ(B) > z > σ(ω(B)), and V (P ) is anticomplete to B, P is σ-nondominating. This proves 4.3.
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