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Abstract

Let G and H be two graphs of order n. If we place copies of G
and H on a common vertex set, how much or little can they be made
to overlap? The aim of this paper is to provide some answers to this
question, and to pose a number of related problems. Along the way,
we solve a conjecture of Erdős, Goldberg, Pach and Spencer.

1 Introduction

Let G and H be two graphs of order n, with e(G) = p
(

n
2

)

and e(H) = q
(

n
2

)

. If
we place G and H at random onto the same vertex set, then we expect them
to overlap in pq

(

n
2

)

edges. How much or little can we make them overlap? Let
us write disc+(G,H) for the largest amount by which we can exceed pq

(

n
2

)

,
and disc−(G,H) for the largest amount less than pq

(

n
2

)

that we can achieve
(more formal definitions are given below). We shall refer to these quantities
as the positive and negative discrepancy of G with respect to H, and write
disc(G,H) = max{disc+(G,H), disc−(G,H)}.
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The main aim of this paper is to prove a result (Theorem 1) of form

disc+(G,H)disc−(G,H) ≥ c(p, q)n3.

In particular, this implies immediately that disc(G,H) ≥ c′(p, q)n3/2.
By taking H to belong to specific families of graphs, we obtain results

on the distribution of edges in G. For instance, taking H to be a complete
graph of order n/2 together with n/2 isolated vertices, we obtain results on
the discrepancy of G (see [10, 3], and the next two subsections). Taking
G = Kn/2,n/2 gives a bound on the bipartite discrepancy of G and (Corollary
3) proves a conjecture of Erdős, Goldberg, Pach and Spencer.

The rest of the paper is organized as follows. In Section 1.1, we discuss
the discrepancy of a single graph, while in Section 1.2, we talk about the
discrepancy of one graph with respect to another; we finish Section 1 with a
discussion of our notation and conventions. The proof of Theorem 1 depends
on results from the following four sections. In Section 2, we give a lower
bound on disc+(G,H)disc−(G,H) in terms of another parameter ∆abs of the
pair (G,H). In order to bound ∆abs, we look at certain subgraphs of G and
H that we shall refer to as good 4-cycles. We discuss good 4-cycles in Section
3, and in Section 4 we give a lower bound on ∆abs in terms of the number
of good 4-cycles in G and the number of good 4-cycles in H (thus bounding
a parameter of G and H jointly in terms of simple parameters of G and H
separately). In Section 5, we put these results together and prove our main
result, namely a lower bound on disc+(G,H)disc−(G,H). In the final section
we present a substantial number of conjectures and open questions.

We remark that there are various other notions of graph discrepancy. For
general accounts of discrepancy, see Sós [17], Beck and Sós [1], Matoušek [15]
and Chazelle [4]; for ideas related to negative discrepancy, see Erdős, Faudree,
Rousseau and Schelp [8], Krivelevich [14] and Keevash and Sudakov [13].

1.1 The discrepancy of a graph

For a graph G with n vertices and e(G) = p
(

n
2

)

, we define the discrepancy1

of G to be

disc(G) = max
S⊂V (G)

|e(S) − p

(|S|
2

)

|.

1The definition of discrepancy in [10], which we followed in [3], was maxS⊂V (G) |e(S)−
1
2

(

|S|
2

)

|. Here we follow [9], as it seems more natural for graphs with density p 6= 1/2.
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Thus the discrepancy is the maximum difference between the number of edges
in an induced subgraph and the average number of edges in subgraphs of that
order. Erdős and Spencer [10] proved that every graph G of order n has a
set S ⊂ V (G) with |e(S) − 1

2

(|S|
2

)

| ≥ cn3/2; more generally, they showed that
if H is a k-uniform hypergraph of order n then there is S ⊂ V (H) with
|e(S) − 1

2

(|S|
k

)

| ≥ cn(k+1)/2. Thus every graph of density 1/2 has discrepancy

at least cn3/2. Erdős, Goldberg, Pach and Spencer [9] extended this to graphs
of arbitrary density, showing that if e(G) = p

(

n
2

)

, where 2/(n − 1) < p <
1 − 2/(n− 1), then

disc(G) ≥ c
√
rn3/2,

where r = min{p, 1 − p} and c is an absolute constant.
A subset S of vertices with large discrepancy can have either more or

fewer edges than p
(|S|

2

)

. Let us define the positive discrepancy of a graph G
with n vertices and p

(

n
2

)

edges by

disc+(G) = max
S⊂V (G)

(

e(S) − p

(|S|
2

))

and the negative discrepancy by

disc−(G) = max
S⊂V (G)

(

p

(|S|
2

)

− e(S)

)

,

so disc(G) = max{disc−(G), disc+(G)}. Note that disc+ and disc− are both
nonnegative, since (for any k) choosing S uniformly at random from all k-sets
we have E e(S) = p

(|S|
2

)

.
By considering random graphs G ∈ G(n, 1/2), it can be seen that disc(G)

can be as small as O(n3/2). However, it is possible to have smaller one-sided
discrepancies: Kn/2,n/2 and its complement 2Kn/2 each have discrepancy O(n)
on one side, although we pay by having discrepancy Ω(n2) on the other
side (see [3] and [9] for further discussion, and extremal results on one-sided
discrepancy). The trade-off was quantified in [3], where it was shown that
for every graph G with n vertices and p

(

n
2

)

edges, with p(1 − p) ≥ 1/n,

disc+(G)disc−(G) ≥ cp(1 − p)n3. (1)

A similar result holds for k-uniform hypergraphs (see [3] and section 6.1
below). Note that this extends the results of Erdős and Spencer [10] and of
Erdős, Goldberg, Pach and Spencer [9] mentioned above.
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1.2 Discrepancy of G with respect to H

In this paper, we consider the discrepancy of a pair of graphs G, H. Given
graphs G and H of order n, with e(G) = p

(

n
2

)

and e(H) = q
(

n
2

)

, a random
placement of both graphs onto the same vertex set has an overlap of expected
size pq

(

n
2

)

. We define the positive discrepancy of G with respect to H by

disc+(G,H) = max
G′∼=G

|E(G′) ∩ E(H)| − pq

(

n

2

)

(2)

and the negative discrepancy of G with respect to H by

disc−(G,H) = pq

(

n

2

)

− min
G′∼=G

|E(G′) ∩ E(H)|, (3)

where in both cases the maximum/minimum is taken over graphs G′ isomor-
phic to G and with the same vertex set as H. Clearly both discrepancies are
nonnegative, and are symmetric in G and H. We define

disc(G,H) = max{disc+(G,H), disc−(G,H)}. (4)

The discrepancy measures the maximum and minimum overlap of edges that
we can get by defining G and H on a common vertex set. If G and H are
graphs with mG and mH edges respectively, then the maximum possible value
of disc+(G,H) is attained when one of the graphs is isomorphic to a subgraph
of the other, while the maximum possible value of disc−(G,H) is attained
when the two graphs have an edge-disjoint packing into the complete graph
or can cover its edges (equivalently, one of G and H is a subgraph of the
other).

By restricting H to particular families we can pick out various parameters
of G. For instance, if H is a clique of order αn together with (1−α)n isolated
vertices and G has p

(

n
2

)

edges, then pq
(

n
2

)

= p
(

αn
2

)

and so disc(G,H) is related
to the discrepancy of G, as

disc+(G,H) = max
S∈V (G)(αn)

(

eG(S) − p

(

αn

2

))

≤ disc+(G)

and

disc−(G,H) = max
S∈V (G)(αn)

(

p

(

αn

2

)

− eG(S)

)

≤ disc−(G).

4



Indeed,
disc(G) = max

i
disc(G,Ki ∪ En−i),

where Ki ∪ En−i is the graph obtained by adding n − i isolated vertices to
Ki.

The main aim of this paper is to prove a lower bound in the product form
(1) for the discrepancy of pairs of graphs. We shall show the following.

Theorem 1. Let G and H be graphs of order n, and suppose that e(G) = p
(

n
2

)

and e(H) = q
(

n
2

)

, where 16/n ≤ p, q ≤ 1 − 16/n. Then

disc+(G,H)disc−(G,H) ≥ p4(1 − p)4q4(1 − q)4n3/1020.

By taking H to be a complete graph of order n/2 together with n/2
isolated vertices and G to be a random graph we see that (as in (1)) the
n3 bound is sharp, although the dependence on p and q can probably be
improved (see Section 6.2 below for further discussion). Some upper and
lower bound on p and q is necessary, however: if we take H = K1,n−1 and
G to be any regular graph of order n, then disc+(G,H) = disc−(G,H) =
disc(G,H) = 0.

The following corollary of Theorem 1 is immediate.

Corollary 2. Let G and H be graphs of order n, and suppose that e(G) =
p
(

n
2

)

and e(H) = q
(

n
2

)

, where 16/n ≤ p, q ≤ 1 − 16/n. Then

disc(G,H) ≥ p2(1 − p)2q2(1 − q)2n3/2/1010.

If H = K⌈n/2⌉,⌊n/2⌋ then disc(G,H) is the bipartite discrepancy bdis(G)
defined by Erdős, Goldberg, Pach and Spencer [9], who conjectured that if
1
2

(

n
2

)

≤ e(G) ≤ (1 − ǫ)
(

n
2

)

then the bipartite discrepancy of G

bdisc(G) ≥ δn3/2 (5)

for some δ = δ(ǫ). The conjecture of Erdős, Goldberg, Pach and Spencer
follows as an immediate consequence of Theorem 1

Corollary 3. Let G be a graph of order n. Then suppose that e(G) = p
(

n
2

)

where 16/n ≤ p ≤ 1 − 16/n. Then

bdis(G) ≥ p2(1 − p)2n3/2/1012.
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1.3 Definitions and notation

Throughout the rest of the paper, we will assume that G and H are graphs
of order n with vertex set V = [n]. We define an action of the symmetric
group Sn on G by

π(G) ≡ Gπ = (V,Eπ), (6)

where
Eπ = {π(i)π(j) : ij ∈ E(G)}. (7)

Consider the vector space R
(n
2), where standard coordinate directions are

indexed by elements of V (2) = [n](2) (in any canonical manner). We identify

G with the vector g ∈ R
(n
2) with coordinates

g(ij) = 1G(ij) − e(G)/

(

n

2

)

, (8)

where 1G(ij) = 1 if ij ∈ E(G) and 0 otherwise. Similarly, we identify Gπ

with the corresponding vector gπ. Writing 1 = (1, 1, . . . , 1) = 1Kn , we get

〈gπ,1〉 = 〈g,1〉 =
∑

1≤i<j≤n

g(ij) = 0, (9)

which is the reason for the second term on the right of the definition (8).

Note that this implicitly defines an action of Sn on R
(n
2), by π(v)(ij) =

v(π−1(i)π−1(j)). In particular, gπ(e) = g(π−1(e)).

For φ ∈ R
(n
2) and π ∈ Sn, we can consider the inner product 〈gπ,φ〉. If

π is chosen uniformly at random from Sn, it follows from (9) that, we have

E 〈gπ,φ〉 = 0. (10)

We define the positive discrepancy of G with respect to φ by

disc+(G,φ) = max
π∈Sn

〈gπ,φ〉

and the negative discrepancy of G with respect to φ

disc+(G,φ) = max
π∈Sn

〈−gπ,φ〉 = − min
π∈Sn

〈gπ,φ〉.

We also define the discrepancy of G with respect to φ by

disc(G,φ) = max{disc+(G,φ), disc−(G,φ)}.
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Note that both positive and negative discrepancies are nonnegative, by (10).

For a graph H, with corresponding vector h in R
(n
2), we have

〈gπ,h〉 = 〈1E(Gπ) − e(Gπ)1/

(

n

2

)

,1E(H) − e(H)1/

(

n

2

)

〉

= 〈1E(Gπ),1E(H)〉 − e(G)e(H)/

(

n

2

)

= |E(Gπ) ∩ E(H)| − e(G)e(H)/

(

n

2

)

,

where we have used the fact that 〈1E(Gπ),1〉 = e(G) and 〈1,1E(H)〉 = e(H).
In particular,

disc+(G,h) = max
π∈Sn

(

|E(Gπ) ∩ E(H)| − e(G)e(H)/

(

n

2

))

= disc+(G,H)

and

disc−(G,h) = max
π∈Sn

(

e(G)e(H)/

(

n

2

)

− |E(Gπ) ∩ E(H)|
)

= disc−(G,H).

Thus our two definitions of discrepancy are consistent.
It will be useful later to consider inner products on certain subspaces of

R
(n
2). Given vectors u and v, and a subset E ⊂ V (2), we define

〈g,h〉E =
∑

e∈E
g(e)h(e). (11)

Similarly, for S ⊂ V , we write

〈g,h〉S =
∑

e∈S(2)

g(e)h(e). (12)

Note that for permutations π and σ, 〈gπ,h〉 = 〈g,hπ−1〉, and gσπ = (gπ)σ.

2 A bound on discrepancy

In this section we give a bound on disc(G,φ) in terms of another parameter
∆abs of G and φ. The most important case is when φ corresponds to a graph
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H as in (8); however, it costs nothing to prove a more general result for

arbitrary vectors φ ∈ R
(n
2).

Let us fix φ ∈ R
(n
2), and recall that the coordinates of φ are indexed

by V (2), where V = V (G) = [n]. In particular, G and φ are defined with
reference to the same vertex set V , and V has a canonical ordering.

We will consider 〈gπ,φ〉 for different permutations π ∈ Sn. Our aim is
to prove that 〈gπ,φ〉 varies quite a lot, taking both relatively large positive
values and relatively large negative values. In order to do this, we consider a
more restricted family of permutations, generated by a set of disjoint trans-
positions.

Let v1, w1, . . . , v⌊n/2⌋, w⌊n/2⌋ be the first 2⌊n/2⌋ vertices in V = V (G). For
1 ≤ i ≤ ⌊n/2⌋, let ti = (viwi) be the transposition that switches the ith pair
of vertices. For a permutation π, and I = {i1, . . . , ir} ⊂ {1, . . . , ⌊n/2⌋}, we
write

πI = tIπ = ti1 · · · tirπ
for the permutation obtained by switching the r pairs of vertices correspond-
ing to I. If I = {i} we sometimes write πi for πI . Note that

gπI (e) = g((πI)−1e) = g(π−1tIe) = gπ(tIe).

We will consider the effect of individual transpositions ti on 〈gπ,φ〉. We
therefore define

∆i
π = 〈gπi ,φ〉 − 〈gπ,φ〉. (13)

We set

∆+
π =

⌊n/2⌋
∑

i=1

max{∆i
π, 0}, (14)

∆−
π =

⌊n/2⌋
∑

i=1

−min{∆i
π, 0},

and

∆abs
π =

⌊n/2⌋
∑

i=1

|∆i
π| = ∆+

π + ∆−
π . (15)

Note that ∆+
π and ∆−

π are both nonnegative. Finally, we define

∆abs(G,φ) = E∆abs
π , (16)
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where the expectation is taken over π chosen uniformly at random from Sn.
Note that ∆abs

π depends on the canonical ordering of V : although π acts
on G, so that its position is symmetrized in (16), the transpositions ti and
the placement of φ are fixed, so that ∆abs(G,φ) is not symmetric in the
coordinates of φ (this will be apparent in (21) below).

Theorem 4. For any G and any φ,

disc+(G,φ)disc−(G,φ) ≥ ∆abs(G,φ)2/100. (17)

Proof. Let ∆ = ∆abs(G,φ). We may clearly assume that disc+(G,φ) ≤
disc−(G,φ), or else replace φ by −φ. (This leaves both sides of (17) un-
changed, except that positive and negative discrepancies are exchanged.) If
(17) is false, then we have

disc+(G,φ) =
∆

5α
, (18)

for some α ≥ 2. It is therefore enough to show that

disc−(G,φ) ≥ α∆

20
, (19)

and (17) will follow immediately.
How can we prove (19)? Suppose that there is a permutation π for which

〈gπ,φ〉 and ∆+
π are both close to their expectation, so (as we shall see)

〈gπ,φ〉 is close to 0 and ∆+
π is about ∆/2. If the effects of applying individ-

ual transpositions were independent, then we could take I = {i : ∆i
π > 0}

and get 〈gπI ,φ〉 = 〈gπ,φ〉 + ∆+
π ≈ ∆/2, which would contradict (18). But

the transpositions do not behave independently: for instance, comparing the
effects of performing ti and tj separately with the effect of performing them
together shows that the edges between {vi, wi} and {vj, wj} can make differ-
ent contributions in the two cases. In order to satisfy (18), the interactions
between transpositions must therefore tend to decrease the inner product.
In fact, we will show that performing the set of all transpositions {ti : i ∈ I}
simultaneously must decrease the inner product enough to satisfy (19).

Of course, in order to make such an argument work, we must find a suit-
able permutation π. However, we cannot expect to find π such that 〈gπ,φ〉
and ∆+

π are both close to their expected values simultaneously. Instead, we
will work with a linear combination of the two quantities. (A similar ap-
proach, in a rather simpler setting, is used in [3].) We now proceed with the
argument.
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Let π ∈ Sn be chosen uniformly at random. Then, for 1 ≤ i ≤ ⌊n/2⌋,

E∆i
π = E(〈gπi ,φ〉 − 〈gπ,φ〉) = 0,

as πi is also uniformly distributed over Sn. Summing over i, we get

E(∆+
π − ∆−

π ) = 0.

It follows from (15) and (16) that

E∆+
π = E∆−

π = ∆/2.

Since E〈gπ,φ〉 = 0, we have

E((α + 1)〈gπ,φ〉 + ∆+
π ) =

∆

2
,

and so we can choose π such that

(α + 1)〈gπ,φ〉 + ∆+
π ≥ ∆

2
. (20)

Let
I = {i : ∆i

π > 0}
and

V + =
⋃

i∈I
{vi, wi}.

Thus V + is the union of pairs of vertices whose reversal on their own increases
the inner product with φ.

We decompose ∆i
π by expanding the inner products on the right of (13)

and regrouping. Since ∆i
π =

∑

e(gπi(e) − gπ(e))φ(e) and gπi(e) = gπ(e)
unless e contains exactly one vertex from {π(vi), π(wi)}, we have

∆i
π =

∑

x 6∈{vi,wi}
y∈{vi,wi}

(gπi(xy) − gπ(xy))φ(xy)

=
∑

x 6∈{vi,wi}
y∈{vi,wi}

(gπ(xti(y)) − gπ(xy))φ(xy)

=
∑

x 6∈{vi,wi}
δi(x),
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where

δi(x) = (gπ(wix) − gπ(vix))φ(vix) + (gπ(vix) − gπ(wix))φ(wix)

= (gπ(wix) − gπ(vix))(φ(vix) − φ(wix)) (21)

is the contribution to ∆i
π of the pairs {x, vi} and {x, wi}. We write ∆i

π =
∆i

in + ∆i
out, where

∆i
in =

∑

x∈V +\{vi,wi}
δi(x)

and
∆i

out =
∑

x∈V \V +

δi(x).

We define the sum over I of these contributions to be

∆in =
∑

i∈I
∆i

in

and
∆out =

∑

i∈I
∆i

out.

So
∆+

π = ∆in + ∆out. (22)

Informally, ∆in measures the contribution to ∆+
π from edges inside V + and

∆out measures the contribution from edges between V + and V \ V + (note
that edges outside V + do not contribute anything).

We shall prove (19) by flipping a random subset of pairs from V +, so we
shall also have to consider the interactions when we perform more than one
transposition. Let

∆all = 〈gπI ,φ〉V + − 〈gπ,φ〉V + ,

where the inner product uses the notation defined at (12). Thus ∆all mea-
sures the effects (inside V +) of applying all the transpositions {ti : i ∈ I}
simultaneously, whereas ∆in measures the effect (inside V +) of applying them
individually. We have

∆all = 〈gπI ,φ〉 − 〈gπ,φ〉 − ∆out, (23)

since πI and π agree on vertices outside V +, and (a short calculation shows
that) ∆out is the sum of gπI (e)φ(e) − gπ(e)φ(e) over edges between V + and
its complement.
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After all this notation, we can now complete the argument. Let J ⊂ I be
a random subset, where each i ∈ I is chosen independently with probability
1/α. Note that if vw is an edge outside V + then πJ and π agree on vw; if vw
is an edge from V + to V \ V + then it is shifted with probability 1/α; if vw
is inside V + (and is not of form viwi) then it has each end shifted on its own
with probability 1

α
(1 − 1

α
) and both ends shifted (leading to an interaction

between transpositions) with probability 1/α2. Grouping terms together, we
get

E〈gπJ ,φ〉 = 〈gπ,φ〉 +
1

α

∑

i∈I
∆i

out +
1

α

(

1 − 1

α

)

∑

i∈I
∆i

in +
1

α2
∆all

= 〈gπ,φ〉 +
1

α
∆out +

1

α

(

1 − 1

α

)

∆in +
1

α2
∆all

= 〈gπ,φ〉 +
1

α
∆+

π +
1

α2
(∆all − ∆in). (24)

Since, by (18), 〈gπJ ,φ〉 ≤ ∆/5α for all π, we have E〈gπJ ,φ〉 ≤ ∆/5α and so,
by (24),

∆all ≤
α∆

5
− α2〈gπ,φ〉 − α∆+

π + ∆in. (25)

It follows from (23), (25) and (22) that

〈gπI ,φ〉 = 〈gπ,φ〉 + ∆out + ∆all

≤ α∆

5
+ (1 − α2)〈gπ,φ〉 − α∆+

π + ∆in + ∆out

=
α∆

5
+ (1 − α2)〈gπ,φ〉 − (α− 1)∆+

π . (26)

By (20) we have

(α2 − 1)〈gπ,φ〉 + (α− 1)∆+
π ≥ (α− 1)

∆

2

and so by (26)

〈gπI ,φ〉 ≤ α∆

5
− (α− 1)

∆

2
≤ −α∆

20
,

since α ≥ 2.

In order to apply Theorem 4, we need some lower bound on ∆abs(G,φ),
when φ corresponds to a graph H. This is our next task.
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3 Good 4-cycles

In order to give a bound on ∆abs(G,H), we will need a lemma about graphs.
Given a graph G with vertex set V , and a 4-cycle C in the complete

graph KV , we say that C is good (in G) if either |E(G) ∩ E(C)| is odd, or
E(G) ∩ E(C) is a pair of vertex-disjoint edges. (So the bad cases are when
E(C) ⊂ E(G) or E(C) ∩ E(G) = ∅ or E(G) ∩ E(C) is a path of length 2.)

Good 4-cycles

Lemma 5. Suppose that G has n vertices and p
(

n
2

)

edges, where min{p, 1 −
p} ≥ 16/n. Then the probability that a 4-cycle chosen uniformly at random
is good is at least p2(1 − p)2/5040.

Proof. Note that n ≥ 32 by the condition on p and 1 − p. We may as-
sume p ≤ 1/2, since goodness is invariant under taking complements. We
first consider a random 8-tuple X = {x1, . . . , x8}. Then with probability at
least p2(1 − p)2/24 we have x1x2, x3x4 ∈ E(G) and x5x6, x7x8 6∈ E(G) (since
x1x2 ∈ E(G) with probability p, and e(G − x1 − x2) ≥ e(G) − 2n + 3, so
P(x3x4 ∈ E(G)|x1x2 ∈ E(G) ≥ p − 5/n), and so on). If X does not con-
tain a good C4 then considering the 4-cycles x1x2x3x4 and x1x2x4x3 shows
that {x1, x2, x3, x4} induces a complete graph; similarly, considering x5x6x7x8

and x5x6x8x7 shows that {x5, x6, x7, x8} is an independent set. We can
now find two vertex-disjoint edges or two vertex-disjoint non-edges between
{x1, x2, x3, x4} and {x5, x6, x7, x8}, say x1x5 and x2x6. Then x1x5x6x2 is a
good C4. Thus X contains a good C4 with probability at least p2(1−p)2/24.

Since each good C4 is contained in
(

n−4
4

)

8-sets, the number of good C4s
must be at least

p2(1 − p)2

24
·

(

n
8

)

(

n−4
4

) =
p2(1 − p)2

8!
n(n− 1)(n− 2)(n− 3).

13



There are 3
(

n
4

)

copies of C4 in total, so a random C4 is good with probability
at least

p2(1 − p)2

8!
· 4!

3
= p2(1 − p)2/5040.

The constants in Lemma 5 could probably be substantially improved.
However, note that a lower bound on p of form Ω(1/n) is necessary, as the
star K1,n has p ∼ 2/n and no good cycles.

4 Inner products and good cycles

Let G and H be graphs, and g,h the associated vectors defined by (8). We are
interested in the inner product 〈gπ,h〉 for various choices of the permutation
π. In particular, in order to bound ∆abs in the next section, we shall want a
lower bound on expressions of form

E |〈gtπ,h〉 − 〈gπ,h〉|, (27)

where t is a given transposition and π is chosen uniformly at random. We
shall approach (27) by considering the effect of replacing h by hσ for various
permutations σ, and decomposing 〈gtπ,h〉 − 〈gπ,h〉 into a sum of simpler
quantities.

Given a 4-cycle C = uvwx, we define 〈g,h〉C = 〈g,h〉E(C), so

〈g,h〉C = g(uv)h(uv) + g(vw)h(vw) + g(wx)h(wx) + g(xu)h(xu).

The following lemma is crucial.

Lemma 6. If the 4-cycle C = vivjwiwj is good in both G and H, and ti and
tj are the transpositions (viwi) and (vjwj) respectively, then

|(〈gti ,h〉C − 〈g,h〉C) − (〈gti ,htj〉C − 〈g,htj〉C)| ≥ 1. (28)

Proof. This is a straightforward case analysis. For instance, consider the
example in the diagram.
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wi

vi

wj

vj

H

wi

vi

wj

vj

Htj

wi

vi

wj

vj

G

wi

vi

wj

vj

Gti

Then 〈g,h〉C , 〈gti ,h〉C and 〈g,htj〉C are all equal to

(1 − p)(−q) + (1 − q)(−p) + 2(−p)(−q) = 4pq − p− q,

and
〈gti ,htj〉C = (1 − p)(1 − q) + 3(−p)(−q) = 1 − p− q + 4pq,

so 〈gti ,h〉C − 〈g,h〉C = 0, while

〈gti ,htj〉C − 〈g,htj〉C = (1 − p− q + 4pq) − (4pq − p− q) = 1.

The other cases are similar.

We can now give a lower bound on (27) in terms of the numbers of good
cycles in G and H.

Lemma 7. Let G and H be graphs with vertex set V with |V | = n ≥ 15.
Suppose that the pair {v, w} belongs to rh ·

(

n−2
2

)

good 4-cycles vxwy in H
and that G contains rg · 3

(

n
4

)

good 4-cycles. Let τ be the transposition (vw),
and suppose that π ∈ Sn is chosen uniformly at random. Then

E|〈gτπ,h〉 − 〈gπ,h〉| ≥ rgrh
√
n/10.
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Proof. A 4-cycle vxwy containing v and w at distance 2, and with {x, y} ⊂
V \ {v, w} chosen uniformly at random, is good in H with probability rh.
Thus there is a sequence x1, y1, . . . , x⌊(n−2)/2⌋, y⌊(n−2)/2⌋ of distinct vertices in
V \ {v, w} such that at least rh⌊(n − 2)/2⌋ ≥ rh(n − 3)/2 of the 4-cycles
vxiwyi are good (consider a random choice).

We generate our random permutation π in two steps: let ρ ∈ Sn be
chosen uniformly at random, and let σ be the product of a random subset of
the transpositions {(xiyi) : 1 ≤ i ≤ ⌊(n − 2)/2⌋}, taking each transposition
independently with probability 1/2. Thus

σ = (x1y1)
ǫ1 · · · (x⌊n/2⌋, y⌊(n−2)/2⌋)

ǫ⌊(n−2)/2⌋ ,

where ǫi ∈ {0, 1} for each i. We let π = σρ, so that π has uniform distribution
in Sn as required.

For any g′, and any γ ∈ Sn, we have 〈g′
γ,hγ〉 = 〈g′,h〉. Since σ = σ−1,

we have 〈g′
σ,h〉 = 〈g′,h′

σ−1〉 = 〈g′,h′
σ〉. Furthermore, σ and τ commute, so

〈gτπ,h〉 − 〈gπ,h〉 = 〈gτσρ,h〉 − 〈gσρ,h〉 = 〈gτρ,hσ〉 − 〈gρ,hσ〉. (29)

(Note that gτσρ = gστρ = (gτρ)σ.)
Since τ is fixed, and π, ρ are both uniformly distributed,

E|〈gτπ,h〉 − 〈gπ,h〉| = E|〈gτρ,h〉 − 〈gρ,h〉|.

Thus the triangle inequality gives

E|〈gτπ,h〉 − 〈gπ,h〉| =
1

2
E (|〈gτπ,h〉 − 〈gπ,h〉| + E|〈gτρ,h〉 − 〈gρ,h〉|)

≥ 1

2
E|(〈gτπ,h〉 − 〈gπ,h〉) − (〈gτρ,h〉 − 〈gρ,h〉)|

=
1

2
E|〈gτρ,hσ〉 − 〈gρ,hσ〉 + 〈gρ,h〉 − 〈gτρ,h〉|,

where the last line follows from (29) (expectations are over both σ and ρ).
But 〈gτρ,hσ〉 − 〈gρ,hσ〉 + 〈gρ,h〉 − 〈gτρ,h〉 can be decomposed as

⌊(n−2)/2⌋
∑

i=1

(〈gτρ,hσ〉Ci
−〈gρ,hσ〉Ci

+〈gρ,h〉Ci
−〈gτρ,h〉Ci

) =

⌊(n−2)/2⌋
∑

i=1

ǫiλi, (30)

where Ci = vxiwyi, the λi depend only on ρ and, by Lemma 6, |λi| ≥ 1
whenever Ci is good in both Gρ and H. (Note that only edges between
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{v, w} and {x1, y1, . . . , x⌊(n−2)/2⌋, y⌊(n−2)/2⌋} contribute to the sum: the rest
are cancelled out.)

Let d = d(ρ) (≤ ⌊n/2⌋) be the number of Ci that are good in both G and
H. Each ǫi independently in (30) is 0 or 1 with probability 1/2. Using basic
facts about random sums (see, for instance, [3]) we get that, conditioning on
a fixed ρ,

Eσ|〈gτπ,h〉 − 〈gπ,h〉| ≥ 1

2
Eσ|

⌊(n−2)/2⌋
∑

i=1

ǫiλi|

≥ 1

2

√

d(ρ)

8

≥ d(ρ)

4
√
n
.

But then, by the tower law for expectation,

Eπ|〈gτπ,h〉 − 〈gπ,h〉|Eρ
d(ρ)

4
√
n
.

Since at least rh(n − 3)/2 of the Ci are good in H, by our initial choice
of x1, y1, . . ., and a (random) 4-cycle is good in G with probability rg, the
expected number of 4-cycles Ci that are good in both G and H is at least
rgrh(n− 3)/2. It follows that

Eπ|〈gτπ,h〉 − 〈gπ,h〉| ≥ rgrh(n− 3)/8
√
n ≥ rgrh

√
n/10.

5 The main result

In this short section, we put together the results we have proved in previous
sections to give our main result.

Given graphs G and H, we know from Theorem 4 that we can bound
disc+(G,H)disc−(G,H) in terms of the quantity ∆abs(G,H) (or, more pre-
cisely, ∆abs(G,h)) defined in (16). Because we defined this quantity by using
a restricted set of permutations, and then took an expectation over permuta-
tions applied to G, we have ∆abs(Gπ, H) = ∆abs(G,H) for any permutation
π. However, ∆abs(G,Hπ) may be different from ∆abs(G,H). The idea of
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the proof is therefore to show that there is a placement Hρ of H for which
∆abs(G,Hρ) is large and then apply Theorem 4.

We will use the following corollary of Lemma 7.

Corollary 8. Suppose G and H are graphs of order n ≥ 15, and that a
random 4-cycle in G is good with probability pg and a random 4-cycle in H
is good with probability ph. let ρ ∈ Sn be chosen uniformly at random. Then

E∆abs(G,Hρ) ≥ pgphn
3/2/22.

Proof. Let us begin by fixing a permutation ρ and consider the graph Hρ,

with associated vector hρ ∈ R
(n
2). Let v1, w1, . . . , v⌊n/2⌋, w⌊n/2⌋ be the first

2⌊n/2⌋ vertices of V (G) (recall that the vertex set has a canonical ordering),
and define r1, . . . , r⌊(n−2)/2⌋ so that ri

(

n−2
2

)

is the number of good 4-cycles of

form vixwiy in H. Set R =
∑⌊n/2⌋

i=1 ri. Note that R and the quantities ri
depend on ρ.

Writing ti = (viwi), Lemma 7 implies that

Eπ (|〈gtiπ,hρ〉 − 〈gπ,hρ〉|) ≥ pgri
√
n/10,

and so (using the notation defined at (15)),

∆abs(G,Hρ) = E(∆abs
π ) ≥

⌊n/2⌋
∑

i=1

pgri
√
n/10 = Rpg

√
n/10.

Now, choosing ρ uniformly at random, ER = ⌊n/2⌋Er1 = ⌊n/2⌋ph, so

E∆abs(G,Hρ) ≥
⌊n

2

⌋

pgph
√
n/10

≥ pgphn
3/2/22.

Lemma 5 allows us to convert this into an estimate in terms of e(G) and
e(H).

Theorem 9. Let G and H be graphs with a common vertex set of order n,
with e(G) = p

(

n
2

)

and e(H) = q
(

n
2

)

, where 16/n ≤ p, q ≤ 1 − 16/n. There is
a permutation ρ such that

∆abs(G,Hρ) ≥ p2(1 − p)2q2(1 − q)2n3/2/109. (31)
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Proof. Lemma 5 implies that pg ≥ p2(1−p)2/5040 and ph ≥ q2(1−q)2/5040.
We are done by Corollary 8.

We can now complete the proof of our main result.

Proof of Theorem 1. This follows immediately from (17) and (31).

6 Discussion and open problems

A number of open questions remain, and we gather a selection of these to-
gether under various headings.

6.1 Extensions to hypergraphs

The definition of discrepancy extends naturally to r-uniform hypergraphs. If
H is k-uniform, with n vertices and p

(

n
k

)

edges, we define

disc+(H) = max
S⊂V (H)

(

e(S) − p

(|S|
k

))

,

disc−(H) = max
S⊂V (H)

(

p

(|S|
k

)

− e(S)

)

and
disc(H) = max{disc−(H), disc+(H)}.

It was shown in [3] that if p(1 − p) ≥ 1/n then

disc+(H)disc−(H) ≥ ckp(1 − p)nk+1.

Similarly, we can define disc+(G,H), disc−(G,H) and disc(G,H) for k-
uniform hypergraphs G and H (just replace

(

n
2

)

by
(

n
k

)

in (2) and (3); (4) is
unchanged).

An obvious question is whether Theorem 1 has an extension to hyper-
graphs. We conjecture that it does.

Conjecture 10. Let G and H be k-uniform hypergraphs with vertex set [n],
and suppose e(G) = p

(

n
k

)

and e(H) = q
(

n
k

)

, where 1/n ≤ p, q ≤ 1 − 1/n.
Then

disc+(G,H)disc−(G,H) ≥ c(p, q)nk+1.
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It seems likely that it should be possible to take c(p, q) to be a polynomial
in p and q.

More generally, it may be possible to let r grow with n. As a first step in
this direction, we raise the following question.

Problem 11. Consider the family X of (n/2)-uniform hypergraphs on n
vertices, with 1

2

(

n
n/2

)

edges. What is

min
G∈X

disc(G)?

Of course, there are many variants of this problem; and it would also be
desirable to answer the product form of the question, that is to determine

min
G∈X

disc+(G)disc−(G).

More ambitiously, it would be very interesting to know the values of

min
G,H∈X

disc+(G,H)disc−(G,H). (32)

6.2 Sharpness of constants and random graphs

How good is the constant p4(1− p)4q4(1− q)4 in Theorem 1, as a function of
p and q? For single graphs with density p, we know that disc+(G)disc−(G) ≥
cp(1−p)n3, which is much larger when p is small. A natural conjecture would
be that when we have two graphs with densities p and q we should have a
constant of form cp(1−p)q(1− q). However, this is not correct. For p < 1/2,
consider the graphs G = Kpn,(1−p)n and H = Kn/2,n/2, so e(G) = p(1 − p)n2

and e(H) = n2/4. The maximum overlap between G and H is obtained by
putting the smaller vertex class from G on one side of H, while the minimum
overlap is obtained by splitting it equally between the two sides. Thus

max
π

|E(Gπ ∩ E(H)| = pn · n
2

and
min
π

|E(Gπ ∩ E(H)| = 2
pn

2

(n

2
− pn

2

)

= p(1 − p)n2/2.

Since

E|E(Gπ) ∩ E(H)| = p(1 − p)n2 · n
2

4

/

(

n

2

)

=
1

2
p(1 − p)n3/(n− 1)

= p(1 − p)n2/2 + p(1 − p)n/2 + O(1),
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we have
disc+(G,H) ∼ p2n2/2

and
disc−(G,H) ∼ p(1 − p)n/2,

which gives
disc+(G,H)disc−(G,H) ∼ p3(1 − p)n3/4.

So with p ≤ 1/2, noting that (1 − p)3 ≥ 1/8, we obtain an upper bound of
form cp3(1 − p)3.

A different upper bound comes from considering random graphs. Fixing
p and q, let G ∈ G(n, p) be a random graph and let H be a clique of order√
qn (plus some isolated vertices), so e(H) ∼ q

(

n
2

)

. We shall use a version
of Chernoff’s inequality (see Janson,  Luczak and Rucinski [12]): if X ∼
B(N, p) and t > 0, then P(|X − Np| ≥ t) ≤ 2e−t2/(2Np+2t/3). For a random
permutation π, and N =

(
√
qn
2

)

∼ qn2/2, |E(Gπ) ∩ E(H)| has distribution
B(N, p). Since E |E(Gπ) ∩ E(H)| = pN ∼ pqn2/2, and there are

(

n√
qn

)

= O

(

n−1/2
(√

q
√
q(1 −√

q)1−
√
q
)−n

)

distinct ways for Gπ to overlap with H, we have P(disc(G,H) > λ) < 1/n
provided

(

n√
qn

)

P(|B(N, p) −Np| > λ) <
1

n
. (33)

The left hand side of (33) is at most

cn−1/2
(√

q
√
q(1 −√

q)1−
√
q
)−n

e−λ2/(2Np+2λ/3),

which, assuming λ = o(n2) and q < 1/2, is smaller than 1/n provided

λ2 > (2Np + 2λ/3) · n(−√
q log(

√
q) − (1 −√

q) log(1 −√
q)) + O(log n)

= Θ(pqn2 · n · √q log(1/
√
q)).

Since e(G) = p
(

n
2

)

with probability at least 1/n (provided p
(

n
2

)

is an inte-
ger), we deduce that (for q ≤ 1/2) there is some G with p

(

n
2

)

edges and

disc+(G,H)disc−(G,H) < c′pq3/2 log(1/q)n3.
We can also try working with both G and H random graphs. However,

there is an additional problem. When we want to bound disc(G) for a single
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random graph G, and H is a clique plus isolated vertices, we only need to
consider O(2n) ways of superimposing the two graphs (as H has a large
automorphism group). But when considering a pair G, H of random graphs,
there are n! ways of placing the two graphs together, leading to a bound of
form c(p)n3/2

√
log n rather than c(p)n3/2 (we have to avoid n! bad events

rather than 2n, so we want the probability of each bad event to be at most
1/n! rather than at most 2−n; the bound then follows by considering the tail
of the binomial distribution). It would be interesting to know the correct
value.

Problem 12. Let G and H be random graphs chosen independently from
G(n, p). What is

E disc(G,H)?

From the remarks above, it is clear that c(p)n3/2 < E disc(G,H) <
c′(p)n3/2

√
log n. However, it is not obvious where in this range the correct

value lies, and it is equally unclear when G and H are random graphs with
different densities.

What about E disc+(G,H)disc−(G,H)? It turns out that this is closely
related to disc(G,H). Indeed, consider the edge-exposure martingale ob-
tained by revealing the edges of G and H one at a time, and taking the con-
ditional expectation of disc+(G,H). There are 2

(

n
2

)

edges, and differences
are bounded by 1, so by the Azuma-Hoeffding inequality the probability we
are more than λ from expectation is at most 2 exp(−λ2/2n2). It follows that
the discrepancy is concentrated close to some value. If ω(n) → ∞ as n → ∞
then, with high probability, |disc+(G,H)−E disc+(G,H)| ≤ nω(n) and, with
probability 1−O(1/n5), |disc+(G,H)−E disc+(G,H)| ≤ n

√
10 log n. Apply-

ing the same argument to disc−(G,H) and noting that disc(G,H) = O(n2),
we see that E disc+(G,H)disc−(G,H) = (1 + o(1))(E disc(G,H))2. However,
this does not help with finding the value of E disc(G,H).

It would also be interesting to look at graphs (and hypergraphs) with low
discrepancy. Graphs G with density 1/2 and disc(G) = o(n2) are known to
be quasi-random, and therefore share certain properties with random graphs
(see Thomason [18], Chung, Graham and Wilson [5] and Chung and Graham
[6, 7]; for related results see Mubayi and Rödl [16]). What can we say about
graphs for which disc+(G)disc−(G) is small? For instance, we know from
[3] that if G has density 1/2 then disc+(G)disc−(G) ≥ cn3. This bound is
achieved by random graphs in G(n, 1/2), as well as the complete bipartite
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graph Kn/2,n/2 and its complement. Must graphs that are close to extremal
look like these examples?

Problem 13. Let G be a graph with density 1/2 and disc+(G)disc−(G) =
O(n3). Must G be close to one of Kn/2,n/2, 2Kn/2 or a quasi-random graph?

Of course, as stated the problem is a little imprecise, as a suitable mea-
sure of “closeness” needs to be specified. However, it seems likely that
there should be some sort of “stability theory”, saying that graphs that
are “close” to extremal should also be “close” to graphs of one of a few
different types. We could also demand a very small one-sided discrepancy:
what do graphs G with disc(G) = O(n3/2) look like? Is there a stability
theory for these? Perhaps there is a small family of examples that, together
with graphs satisfying strong quasi-random properties, essentially character-
ize graphs with disc+(G)disc−(G) = O(n3). Or there may be a decomposi-
tion of G into a small number of such graphs. The weaker condition that
disc+(G)disc−(G) = o(n4) is also interesting in this context. Does this imply
that the graph is in some sense quasi-random? The focus here is on graphs
with small one-sided discrepancy: do graphs G with disc+(G) = o(n2) have
nice properties like quasirandomness? These questions, and the ones above,
also arise for graphs (and hypergraphs) with densities p 6= 1/2. Of course, it
could also be very interesting to understand the structure of pairs of graphs
G and H for which disc(G,H) or disc+(G,H) is small.

In a similar vein, it would be interesting to understand the relationship
between disc(G) and the eigenvalues of G. For instance, what bounds can
be given for disc(G) in terms of the density and spectral gap of G?

6.3 Other norms

Given graphs G and H, we can consider the vector

vG,H = (〈gπ,h〉)π∈Sn ∈ R
n!.

Then disc+(G,H) is the maximum entry of vG,H and disc−(G,H) is the
minimum entry, while

disc(G,H) = ||vG,H ||∞.

It would be interesting to look at other norms. For instance,

||vG,H ||1 = n!E|〈gπ,h〉|,
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where π ∈ Sn is chosen with the uniform distribution. How large is ||vG,H ||1?
For random graphs it can be calculated precisely, but the extremal question
seems to be less trivial.

Problem 14. Let G and H be graphs with e(G) = p
(

n
2

)

and e(H) = q
(

n
2

)

,
and let π ∈ Sn be chosen uniformly at random. What is the minimum possible
value of

E

∣

∣

∣

∣

|E(Gπ) ∩ E(H)| − pq

(

n

2

)∣

∣

∣

∣

?

Similarly, what happens if we consider the l2 norm?
Another interesting problem is to find a fractional version of Theorem 1.

Suppose that G is a real-valued edge-weighting of Kn with total weight zero
and ||g||1 = p

(

n
2

)

. For a graph H with q
(

n
2

)

edges, what can we say about
disc(G,H)? What if H is also edge-weighted? Note that Theorem 4 goes
through in this context; and perhaps there is a fractional version of Theorem
9. Of course, the same problem arises for pairs of hypergraphs (results for
disc(H), where H is an edge-weighted hypergraph can be found in [3]).

6.4 Group actions and set systems

Finally, let us note that these problems can be raised in the more general
context of a group G acting transitively on a set X. Given A,B ⊂ X, we
define

disc+G(A,B) = max
g∈G

(

|g(A) ∩B| − |A| · |B|
|X|

)

and

disc−G(A,B) = max
g∈G

( |A| · |B|
|X| − |g(A) ∩ B|

)

.

There are many interesting examples of this, and we would expect bounds in
general to involve both the size of G and X and the number of automorphisms
of A and B.

The problem can also be stated in the infinite context, with an appropriate
probability measures on G and on X. For instance, given subsets A,B ⊂ Sn,
taking normalized Lebesgue measure on Sn and letting G be the group of
isometries of Sn with normalized Haar measure, what can we say about
disc+(A,B) and disc−(A,B)? If λ(A) = 1/2 or λB = 1/2, then we could
have zero discrepancy: for instance, if one set is a half-sphere and the other
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set is symmetric in the origin. Similarly, in S1 we can construct pairs of sets
with λ(A) = r/s, any λ(B) and zero discrepancy by taking A to be an interval
and demanding that B has a rotational symmetry of order s. More generally,
we can generate pairs of sets in Sn with arbitrarily low discrepancy by taking
A to be a spherical cap (or any reasonably nice set) and B to be a subset of
spherical cap obtained by dividing it into sets of small diameter and throwing
away half of each set. These examples suggest that the symmetry group of Sn

is too small (or that the class of sets is too large) for us to generate atypical
overlaps. However, it may be possible to obtain more interesting results if
we restrict the sets A and B to be sufficiently “nice”.

Returning to the finite context, we consider actions of Sn. There appears
to be a trade-off between discrepancy and the size of the set on which Sn

acts: when Sn acts on the singletons in [n], we get the maximum possible
discrepancy, as any two sets can be shifted to overlap as much or as little
as possible. On the other hand, if we allow Sn to act on itself, we get very
small discrepancy: let H be a subgroup of Sn and choose A to be a union
of left cosets of H and B to be a set of left coset representatives. Then
|π(A)∩B| takes the same value for every π ∈ Sn. There is a similar problem
when we allow Sn to act on the cube {0, 1}n by permuting coordinates. As
in the case of Sn acting on itself, it is easy to construct pairs of sets with
small discrepancy: for instance, let A be a face of the cube and let B be
closed under pointwise complementation. However, the question becomes
more challenging if we enlarge the group to the full isometry group Tn of the
cube {0, 1}n, which has 2nn! elements.

Problem 15. For p ∈ [0, 1], let Qp,n be the collection of subsets of {0, 1}n
with p2n elements. What is

min
A∈Qp,n,B∈Qq,n

discTn(A,B)?

Interesting questions arise if we consider the action of Sn on {0, 1}n by
permuting coordinates, and restrict our sets to be upsets. By the Harris-
Kleitman inequality [11], if A and B are upsets then

|A ∩ B| ≥ |A| · |B|
2n

.

How much better than this can we do if we can permute coordinates?

Problem 16. What is the minimum of maxπ∈Sn |π(A) ∩ B| over upsets
A,B ⊂ {0, 1}n with |A| = p2n and |B| = q2n?
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Could the pair (A,B) with A = {x ∈ {0, 1}n : xi = 1 for i ≤ k} and
B = {x ∈ {0, 1}n :

∑

xi ≥ l} be extremal for this problem?
The same question arises for the discrepancy.

Problem 17. What is the minimum of discSn(A,B) over upsets A,B ⊂
{0, 1}n with |A| = p2n and |B| = q2n?

In all the questions above, it is also natural to ask about bounds on the
product form (32).
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[9] P. Erdős, M. Goldberg, J. Pach and J. Spencer, Cutting a graph into
two dissimilar halves, J. Graph Theory 12 (1988), 121–131
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