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Abstract. We prove that there exists a constant C so that, for all s, k ∈ N, if G has average degree at least
kCs

3
and does not contain Ks,s as a subgraph then it contains an induced subgraph which is C4-free and

has average degree at least k. It was known that some function of s and k suffices, but this is the first explicit

bound. We give several applications of this result, including short and streamlined proofs of the following

two corollaries.

We show that there exists a constant C so that, for all s, k ∈ N, if G has average degree at least kCs3

and does not contain Ks,s as a subgraph then it contains an induced subdivision of Kk. This is the first

quantitative improvement on a well-known theorem of Kühn and Osthus; their proof gives a bound that is

triply exponential in both k and s.

We also show that for any hereditary degree-bounded class F , there exists a constant C = CF so that
Cs
3
is a degree-bounding function for F . This is the first bound of any type on the rate of growth of such

functions.

1. Introduction

A longstanding conjecture from 1983 due to Thomassen [31] states that for all g, k ­ 2, there exists f(g, k)
such that every graph G with average degree at least f(g, k) contains a subgraph with girth at least g and
average degree at least k. It is a standard exercise to show that every graph has a bipartite subgraph with at
least half of its edges. So the first nontrivial open case is when g = 5 and we wish to find a C4-free subgraph
in a bipartite graph G. (A graph is H-free, for some graph H, if it has no subgraph isomorphic to H.) This
case of g = 5 was resolved in a remarkable paper by Kühn and Osthus [21] in 2004. However, since then no
further progress has been made, and the conjecture remains wide open for all g ­ 7.

A straightforward probabilistic argument shows that Thomassen’s conjecture holds for every “almost-
regular” graph G. Therefore a natural strategy is to pass to an almost-regular subgraph of G which preserves
some of its average degree. Unfortunately, this strategy is bound to fail: Pyber, Rödl, and Szemerédi [26]
proved that there exist n-vertex graphs with average degree Ω(log log n) which do not contain a k-regular
subgraph for any k ­ 3. We remark that, very recently, Janzer and Sudakov [17] proved via an ingenious
argument that Ω(log log n) is indeed the correct barrier. (Formally, they proved that for each k there exists a
constant ck so that every n-vertex graph with average degree at least ck log log n has a k-regular subgraph.)
This fully resolved the Erdős-Sauer problem from [9].

Since Kühn and Osthus [21] first resolved the case of g = 6, two additional proofs of their theorem
have been discovered. The first proof, which is due to Dellamonica, Koubek, Martin, and Rödl [7], uses a
surprising result of Füredi [12] on hypergraphs. The second proof, which is due to Montgomery, Pokrovskiy,
and Sudakov [25], is more recent and gives the best bounds currently known. In particular, they proved that
there exists a constant C so that for all k ∈ N, every graph with average degree at least kCk2 contains a
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subgraph which is C4-free and has average degree at least k. The same paper also gives a lower bound of
k3−o(1), and it is a very interesting problem to determine whether a polynomial in k suffices.

In 2021, the fourth author of this paper proved that it is possible to ask for a much stronger property [24]:
for all s, k ∈ N, there exists an integer f(s, k) so that every Ks,s-free bipartite graph of average degree at
least f(s, k) contains an induced C4-free subgraph of average degree at least k. The paper does not determine
an explicit bound; however, with some unwrapping, we believe that the proof yields a function which is triply
exponential in s, for fixed k. Moreover, the assumption about bipartiteness can be removed, at the cost of
another exponent, using a theorem of Kwan, Letzter, Sudakov, and Tran [23]. Their theorem says that for
all s, k ∈ N, there exists an integer g(s, k) so that every Ks-free graph with average degree at least g(s, k)
contains an induced bipartite subgraph with average degree at least k. (More precisely, they proved that
there exists a constant C so that the function g(s, k) = exp

(
Cs log s · k log k

)
suffices.)

In our main theorem, we prove that this stronger induced theorem for Ks,s-free graphs holds with bounds
that essentially match the singly exponential bounds of [25] from the non-induced setting.

Theorem 1.1. There exists a constant C so that for all s, k ∈ N, every Ks,s-free graph with average degree
at least kCs

3
contains an induced subgraph which is C4-free and has average degree at least k.

First, we note that the assumption of Ks,s-freeness is essential, as any C4-free induced subgraph of Ks,s
has average degree less than 2 (thus by taking G = Ks,s for larger and larger s, one could make the average
degree of G arbitrarily large without obtaining induced C4-free subgraphs with average degree at least 2).
Moreover, we remark that if a graph G contains a K4k2,4k2-subgraph, then it contains a bipartite C4-free
subgraph with average degree at least k; see [25, Lemma 2.2]. (In fact, we can just take this subgraph to be
the incidence graph of the projective plane of order q, where q is the smallest prime which is at least k − 1.)
Therefore we obtain the following as a simple corollary of Theorem 1.1.

Corollary 1.2. There exists a constant C so that for all k ∈ N, every graph with average degree at least
kCk

6
contains a bipartite C4-free subgraph with average degree at least k.

Corollary 1.2 nearly recovers the result of [25], only with the exponent ‘k2’ replaced by ‘k6’.

We also prove some corresponding lower bounds for Theorem 1.1. So, let fInd(s, k) denote the least integer
D such that if G is a Ks,s-free graph with average degree at least D, then G contains an induced C4-free
subgraph with average degree at least k. Theorem 1.1 establishes that fInd(s, k) ¬ kCs

3
for some absolute

constant C. By considering random graphs, one can obtain some lower bounds for this quantity as well.
Specifically, in Section 6 we prove the following.

Theorem 1.3. The following bounds hold.

(a) There exists a constant c > 0 so that for all k ­ 2, we have that fInd(k, k) ­ kck.
(b) For each fixed k ­ 2, we have that fInd(s, k) ­ s(1/4−o(1))(k

2−3k−2).
(c) For each fixed s ­ 2, we have that fInd(s, k) ­ k(1/2−o(1))s−1.

1.1. Further applications. Now we discuss two additional corollaries of Theorem 1.1 which are motivated
by χ-boundedness. A family of graphs F is hereditary if for every G ∈ F , every induced subgraph of G is
also in F . A hereditary family of graphs F is χ-bounded if there exists a function f : N→ N such that for
every G ∈ F , we have χ(G) ¬ f(ω(G)), where we write χ(G) for the chromatic number of G and ω(G) for
the clique number of G. These classes have been widely studied, after an influential paper of Gyárfás [15]
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raised a number of well-known conjectures (many of these have now been solved: see, for example, [6, 28] and
[29] for a survey).

A similar notion to χ-boundedness, but for average degree instead of chromatic number, has recently been
receiving attention. Intuitively, a class is χ-bounded if large chromatic number forces the existence of large
cliques; and it is “degree-bounded” if large average degree forces large balanced bicliques. Formally, we say
that a hereditary family F is degree-bounded if there exists a function g : N→ N such that for every G ∈ F ,
we have d(G) ¬ g(τ(G)), where we write d(G) for the average degree of G and τ(G) for the biclique number
of G, which is the largest integer s such that G contains a (not necessarily induced) copy of Ks,s. Any such
function g is called a degree-bounding function for the class.

Strengthening an unpublished theorem of Hajnal and Rödl (see [16]), Kierstead and Penrice [19] showed
that for every tree T , the class of graphs without an induced copy of T is degree-bounded. Recently, Scott,
Seymour and Spirkl [30] established a quantitative strengthening of the result from [19], by showing that the
class of T -induced-free graphs is polynomially degree bounded (that is, the function g can be a polynomial
in s, for fixed T ). This improved upon another recent theorem of Bonamy, Bousquet, Pilipczuk, Rzążewski,
Thomassé and Walczak [2], who proved the same result when T is a path.

A rephrasing of Theorem 1.1 immediately gives the following corollary, which says that every hereditary
degree-bounded class is essentially exponentially bounded.

Corollary 1.4. For any hereditary degree-bounded class of graphs F , there exists a constant C = CF so that
Cs

3
is a degree-bounding function for F .

This corollary is surprising since the analogous statement for χ-boundedness is false: Briański, Davies, and
Walczak [4] recently constructed hereditary χ-bounded classes where the optimal χ-bounding function grows
arbitrarily quickly. This disproved the popular conjecture of Esperet [11] that every hereditary χ-bounded
class is polynomially χ-bounded. It could still be true, however, that every hereditary degree-bounded class is
polynomially degree-bounded. We note that, informally, Theorem 1.1 also tells us that the value of g(1) can
be used to “efficiently control” the rate of growth of g. Again the analogous statement for χ-boundedness is
very false: Carbonero, Hompe, Moore, and Spirkl [5] recently proved that there exist graphs of arbitrarily
large chromatic number where every triangle-free induced subgraph has chromatic number at most 4 (for
more general results see [14]).

Our final corollary obtains improved bounds for classes with a forbidden induced subdivision. A subdivision
of a graph H is any graph which can be obtained from H by replacing the edges uv of H by internally-disjoint
paths between u and v. A beautiful result of Kühn and Osthus [22] states that for every graph H, the class
of graphs which do not contain an induced subdivision of H is degree-bounded.

Theorem 1.5 (Kühn and Osthus). For every graph H and integer s, there is an integer p(s,H) such that
every Ks,s-free graph G with average degree at least p(s,H) contains an induced subdivision of H.

Their bounds for p(s,H) are roughly triply exponential in s, for fixed H. A conjecture raised by Bonamy
et al. [2, Conjecture 33] claims that actually p(s,H) could be taken to be a polynomial in s. In Section 7, we
give a short and streamlined proof that a single exponential is enough.

Corollary 1.6. There exists a constant C so that for all k, s ∈ N, every Ks,s-free graph G with average
degree at least kCs

3
contains an induced proper subdivision of Kk.

This implies that p(s,H) ¬ |H|Cs3 for every graph H.

3



Our proof will use Theorem 5.3 (which is a technical strengthening of our main theorem, Theorem 1.1) and
a theorem about (non-induced) subdivisions which was proved independently by Bollobás and Thomason [1]
and Komlós and Szemerédi [20].

The rest of this paper is organized as follows: after giving some notation in the next section, we prove
some preliminary lemmas in Sections 3 and 4. Theorem 1.1 is proved in Section 5, Theorem 1.3 in Section 6,
and Corollary 1.6 in Section 7. We conclude with some discussion in Section 8.

2. Notation

We mostly use standard notation, and we consider all graphs to be finite, simple, and loopless. Let G be
a graph. We denote the vertex set of G by V (G) and the edge set of G by E(G). We write |G| := |V (G)|
and e(G) := |E(G)|. We write d(G) for the average degree of G (so that d(G) = 2e(G)/|G|), δ(G) for the
minimum degree of G, and ∆(G) for the maximum degree of G. Given a vertex v of G, we write dG(v) for
the degree of v and NG(v) for the neighborhood of v.

As usual, we say that a graph H is an induced subgraph of G if there is an injective map f : V (H)→ V (G)
so that f(x)f(y) ∈ E(G) if and only if xy ∈ E(H). We say that G is d-degenerate if every non-empty
subgraph G′ of G contains a vertex of degree at most d. We say that G is H-free if G does not contain H as
a subgraph. We say that G is H-induced-free if G does not contain H as an induced subgraph.

Finally, given two disjoint sets of vertices A,B ⊂ V (G), we write G[A,B] for the induced bipartite
graph with parts A and B. That is, the vertex set of G[A,B] is A ∪ B, and the edge set of G[A,B] is
{xy ∈ E(G) : x ∈ A, y ∈ B}. We view bipartite graphs as being equipped with a fixed bipartition; typically
we denote a bipartite graph G with sides A and B and edge set E by G = (A,B,E).

3. Preliminary lemmas

Recall from the introduction that a straightforward probabilistic argument shows that Thomassen’s
conjecture holds for graphs which are almost regular; this is done by including edges independently at random
and deleting one edge from each short cycle. It turns out that we can similarly use the Kővári-Sós-Turán
Theorem [18] to prove Theorem 1.1 for graphs which are almost regular, by including vertices independently
at random and deleting one vertex from each short cycle. We will take care of this step in Lemma 3.3.

For now, we recall the classical result of Kővári, Sós, and Turán. (We note that this can be formulated
either for graphs or for bipartite graphs. There is a standard reduction to the bipartite case: for a Ks,s-free
graph G, we create a new graph with two vertices u1 and u2 for each vertex u of G, where ui and vj are
adjacent in the new graph if i ̸= j and uv is an edge of G.)

Theorem 3.1 ([18]). For all s ­ 2 and n ­ 1, every Ks,s-free graph on n vertices has O((s−1)1/sn2−1/s+sn)
edges. Thus, there exists an absolute constant C such that for all n, s ­ 1, every Ks,s-free graph on n vertices
has at most Cn2−1/s edges (note however this is trivial unless n > Cs).

Since we will be able to take care of the nearly regular case easily, it is helpful to have configurations
which guarantee a nearly-regular induced subgraph of large average degree. Our first lemma says that it is
enough to find a bipartite graph of large average degree where each side individually is nearly regular (but
the average degrees of the two sides can be quite different from each other). This lemma is due to Janzer and
Sudakov [17, Lemma 3.7], but we restate the proof since we will need to state a slightly stronger conclusion.
We say that a bipartite graph Γ = (A,B,E) is L-almost-biregular if dΓ(a) ¬ L|E|/|A| for all a ∈ A, and
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dΓ(b) ¬ L|E|/|B| for all b ∈ B. Thus, informally, each vertex in A has degree at most a factor of L larger
than the average degree of all vertices in A, and likewise for B.

Lemma 3.2. Each L-almost-biregular graph Γ has an induced subgraph Γ′ with d(Γ′) ­ d(Γ)/4 and ∆(Γ′) ¬
6Ld(Γ′).

Proof. Suppose Γ = (A,B,E). If E = ∅, there is nothing to prove (we may take Γ′ = Γ). Otherwise, as both
A and B have vertices of nonzero degree, we have L |E||A| , L

|E|
|B| ­ 1.

We may assume |A| ¬ |B|. Let p = |A|/|B|. We take a random subset B′ ⊂ B by adding each b ∈ B
independently with probability p. Let A′ ⊂ A be the set of a ∈ A such that |NΓ(a) ∩B′| ¬ 1 + 2p(dΓ(a)− 1).
We shall take Γ′ = Γ[A′, B′], and show this works with positive probability.

By construction, we have ∆(Γ′) ¬ 1 + 2L |E||B| ¬ 3L
|E|
|B| . Indeed, each vertex a ∈ A

′ has degree at most
1 + 2pL|E|/|A| ¬ 3L|E|/|B|, and each vertex b ∈ B′ has degree at most dΓ(b) ¬ L|E|/|B|.

Consider any e = ab ∈ E, and let U = (NΓ(a) \ {b}) ∩B′. Applying Markov’s inequality, we see that

P(a ∈ A′|b ∈ B′) = P(|U | ¬ 2E[|U |]) > 1/2.

Then E[|A′|+ |B′|] ¬ |A|+ E[|B′|] = 2|A| and

E[e(Γ′)] =
∑
e=ab∈E

P(b ∈ B′)P(a ∈ A′|b ∈ B′) > p|E|/2.

Thus we have

E[4e(Γ′)− |E|
|B|
(|A′|+ |B′|)] > 4(p|E|/2)− |E|

|B|
2|A| = 0.

Consequently, we can choose A′, B′ such that

4e(Γ′)− |E|
|B|
(|A′|+ |B′|)

is positive. Then Γ′ is non-empty and, dividing by |Γ′| = |A′|+ |B′|, we get

d(Γ′) ­ 2 |E|
4|B|

­ d(Γ)/4.

Since ∆(Γ′) ¬ 3L|E|/|B|,

12Le(Γ′) ­ ∆(Γ′)(|A′|+ |B′|)

which implies that ∆(Γ′) ¬ 6Ld(Γ′) as desired. □

We can now use Theorem 3.1 to deal with the case of nearly regular graphs, as discussed.

Lemma 3.3. There exists an absolute constant κ > 0 so that the following holds for all s ­ 2, δ ∈ (0, 1/10)
and d ­ κs/δ.

Let G be a Ks,s-free graph with ∆(G) ¬ d and average degree d(G) ­ d1−δ/s. Then, G contains an induced
{C3, C4}-free subgraph H with average degree at least d(1−10δ)/5s and ∆(H) ¬ d(H)1/(1−10δ).

Remark. We will need the upper bound on ∆(H) to derive a more technical version of Theorem 1.1 (namely
Theorem 5.3), which will be useful in Section 7 and future applications.
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Proof. Let C4 be the set of 4-cycles C in G. Let S4 be the set of pairs (e, C) ∈ E(G)×C4 such that e contains
exactly one vertex of C (and so e ∪ E(C) spans 5 vertices).

By Kővári-Sós-Turán (Theorem 3.1), for each edge xy there are at most O(d2−1/s) edges between N(x)
and N(y) and so at most O(d2−1/s) 4-cycles passing through xy. As there are at most nd edges, we have
|C4| = O(nd3−1/s). Thus |S4| ¬ 4d|C4| = O(nd4−1/s).

Similarly, let C3 be the set of 3-cycles C ⊂ G and S3 be the set of pairs (e, C) ∈ E(G)× C3 such that e
contains exactly one vertex of C. By Kővári-Sós-Turán, for each vertex x there are at most O(d2−1/s) edges
in G[N(x)], and so each vertex belongs to at most O(d2−1/s) triangles. We conclude that |C3| = O(nd2−1/s),
and |S3| ¬ 3d|C3| = O(nd3−1/s).

We will take p = d(1/5s)−1. Let U be a random subset of V (G) with each vertex independently included
with probability p. Let C′ ⊂ C3 ∪ C4 be the set of C such that V (C) ⊂ U , and define

U ′ :=
⋃
C∈C′
V (C)

and
U∗ := {u ∈ U : |NG(u) ∩ U | ­ 1 + 4pdG(u)}.

We shall consider H := G[U − (U ′ ∪ U∗)], which clearly lacks 3-cycles and 4-cycles, and also has ∆(H) ¬
1 + 4pd ¬ 5d1/5s.

Let

X = e(G[U ]),

X∗ =
∑
u∈U∗
|NG(u) ∩ U |,

Y = |C′|,

and

Z = #{(e, C) ∈ S3 ∪ S4 : e ∈ E(G[U ]) and C ∈ C′}.

We observe that e(H) ­ X −X∗ − 6Y − Z (indeed, for each u ∈ U∗, we lose at most |NG(u) ∩ U | edges
by deleting u; and for each C ∈ C′, and any set U ′ ⊂ V (G), we have that e(G[U ′]) − e(G[U ′ − V (C)]) ¬(|V (C)|
2

)
+ e(V (C), U ′ \ V (C)) (here the first term counts internal edges, and the second term counts the rest).

Now
E[X] = p2e(G) ­ 1

2
nd1−δ/sp2 =

1
2
npd(1/5−δ)/s.

Applying Markov’s inequality (as in Lemma 3.2), we get

E[X∗] =
∑
u∈V (G)

∑
v∈NG(u)

p2P(|NG(u) ∩ U | ­ 1 + 4pdG(u)|{u, v} ⊂ U)

¬
∑
u∈V (G)

d(u)p2/4

¬ p2e(G)/2.

Also, using our upper bounds on |C3| and |C4|,

E[Y ] = p4|C4|+ p3|C3| = O(nd−1−1/5s) = O(npd−2/5s),

and
E[Z] = p5|S4|+ p4|S3| = O(nd−1) = O(npd−1/5s).
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Now, using the assumption that d is sufficiently large with respect to s, δ, we get

E[X −X∗ − 5d(1/5−2δ)/s|U | − 6Y − Z] ­ np
(
d(1/5−δ)/s/4− 5d(1/5−2δ)/s −O(d−1/5s)

)
­ 0.

Choosing U such that

X −X∗ − 5d(1/5−2δ)/s|U | − 6Y − Z > 0,

we have that (G[U \ (U ′ ∪ U∗)]) ­ 5d(1/5−2δ)/s|U | so H = G[U \ (U ′ ∪ U∗)] has average degree at least
d′ := 5d(1/5−2δ)/s and is {C3, C4}-free with ∆(H) ¬ 5d1/5s ¬ d′1/(1−10δ), as desired. □

We now need the following lemma. Roughly speaking, it states that every graph G with sufficiently large
average degree either contains an induced subgraph G′ ⊆ G which is almost-regular with still high average
degree or we can find a very unbalanced bipartite (not necessarily induced) subgraph which still preserves
many edges.

Lemma 3.4. There exists an absolute constant κ so that the following holds for all d ­ 2 and δ ∈ (0, 1/5)
with d ­ (1/δ)κ/δ.

Let G0 be an n-vertex graph with d(G0) = d which is d-degenerate. Then either G0 contains an induced
subgraph G∗ of average degree d(G∗) ­ 6d1−5δ and maximum degree ∆(G∗) ¬ 6d1+3δ, or we can find a
partition V (G0) = A ∪B such that e(G0[A,B]) ­ nd/4 and |B| ¬ 4|A|/2d

δ

.

Remark. In the proofs of Lemma 3.4 and Lemma 3.5 below, we include the size assumption d ­ xκx

(respectively with x = 1/δ and x = s/δ) so that various inequalities of the form “C1 log d ¬ d1/C2x” hold.
These will be useful later, and also imply that dδ is at least a large constant.

Proof. Let V = V (G0), and let R ⊂ V be the vertices with degree greater than d2d
δ

. Note that e(G0) =
nd/2 ¬ nd and so |R| < n21−dδ . If e(G0[R, V \R]) ­ nd/4 then we can simply take B = R,A = V \R. So
we may assume that e(G0[R, V \R]) ¬ nd/4.

Since G0[R] is d-degenerate (and we may assume that κ is not too small), e(G0[R]) ¬ d|R| < nd/8, and so
e(G0[V \R]) ­ nd/8. Let G be an induced subgraph of G0[V \R] with maximal average degree: so d(G) ­ d/4
and δ(G) ­ d(G)/2 ­ d/8. Note that ∆(G) ¬ d2dδ as it contains no vertices from R.

We split V (G) dyadically, according to the degree of the vertices. For −3 ¬ i ¬ dδ, take Ci := {x ∈
V (G) : 2id ¬ dG(x) < 2i+1d}; set di := 2id and Ei :=

∑
v∈Ci dG(v). By our bounds on δ(G),∆(G), the sets

C−3, C−2, . . . , Cdδ partition V (G).

By the pigeonhole principle, we can find j so that Ej ­ 2e(G)/d2δ. We now take a random subset C ′ ⊂ Cj
where each vertex v ∈ Cj is included independently with probability 1/4. Let C ′′ ⊂ C ′ be the set of v ∈ C ′

such that |NG(v) ∩ C ′| ¬ dG(v)/2. By Markov’s inequality, for v ∈ Cj , we have that

P(v ∈ C ′′|v ∈ C ′) ­ P(|NG(v) ∩ C ′| ¬ 2E[|NG(v) ∩ C ′|]) ­ 1/2.

Consequently, we have

E[|C ′′|] =
∑
v∈Cj

P(v ∈ C ′)P(v ∈ C ′′|v ∈ C ′) ­ |Cj |/8.

Fix some choice of C ′ such that |C ′′| ­ |Cj |/8. Note that for all v ∈ C ′′ and any S ⊂ C ′′, we have that
|NG(v)\S| ∈ [dj/2, 2dj ]. Indeed, v ∈ C ′′ ⊂ Cj implies |NG(v)| ∈ [dj , 2dj ], giving the upper bound; meanwhile
S ⊂ C ′′ ⊂ C ′ implies |NG(v) ∩ S| ¬ |NG(v) ∩ C ′| ¬ |NG(v)|/2 by the definition of C ′′, giving the upper
bound. Since G[C ′′] is d-degenerate, we have e(G[C ′′]) ¬ d|C ′′|. Thus R′ := {v ∈ C ′′ : |NG(v) ∩ C ′′| ­ 4d}
satisfies |R′| ¬ |C ′′|/2. Let C ′′′ := C ′′ \R′.
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It follows that |C ′′′| ­ |C ′′|/2, and thus e(G[C ′′′, V (G) \ C ′′′]) ­ |C ′′′|dj/2 ­ dj |Cj |/32 ­ Ej/64.

Now consider V (G)\C ′′′: we partition this set dyadically, now according to neighbors in C ′′′. Specifically, for
− log d ¬ i ¬ dδ, let C∗i := {z ∈ V (G) \ C ′′′ : 2id ¬ |NG(z) ∩ C ′′′| < 2i+1d} and E∗i :=

∑
v∈C∗

i
|NG(v) ∩ C ′′′|.

The sets C∗i partition V (G) \ (C ′′′ ∪ {v : |NG(v) ∩ C ′′′| = 0}).

By pigeonhole, there exists some k such that e(G[C ′′′, C∗k ]) ­ e(G[C ′′′, V (G) \ C ′′′])/d2δ. For v ∈ C∗k , we
have |NG(v) ∩ C ′′′| ∈ [2kd, 2k+1d]. Let R∗ := {v ∈ C∗k : |NG(v) ∩ C∗k | ­ 4d}. By d-degeneracy, we have that
|R∗| ¬ |C∗k |/2. Thus, taking C∗∗ := C∗k \R∗, we have that e(G[C ′′′, C∗∗]) ­ e(G[C ′′′, C∗k ])/4 ­ e(G)/128d4δ.

For convenience, write A := C ′′′, B := C∗∗k and consider Γ := G[A,B]. Since ∆(G[A]),∆(G[B]) ¬ 4d,
we have ∆(G[S]) ¬ ∆(Γ[S]) + 4d for every S ⊂ A ∪ B. Thus we will be done by finding S ⊂ A ∪ B such
that d(Γ[S]) ­ 6d1−5δ and ∆(Γ[S]) ¬ d3δd(Γ[S]) ¬ 2d1+3δ (note that G0 ⊃ Γ being d-degenerate implies
d(Γ[S]) ¬ 2d).

We now show that Γ is 16d2δ-almost-biregular. Since d(Γ) ­ d1−4δ/128, we are then done by an application
of Lemma 3.2. To verify almost-biregularity, we first note

max
b∈B

{
dΓ(b)|B|
e(Γ)

}
¬ maxb∈B{dΓ(b)}
minb∈B{dΓ(b)}

¬ 2

(where the last inequality is because dΓ(b) = |NG(b) ∩ C ′′′| ∈ [2kd, 2k+1d] for all b ∈ B). Meanwhile, writing
Γ′ := G[A, V (G) \A] we similarly have that

max
a∈A

{
dΓ′(a)|A|
e(Γ′)

}
¬ maxa∈A{dΓ

′(a)}
mina∈A{dΓ′(a)}

¬ 4,

and so maxa∈A
{
dΓ(a)|A|
e(Γ)

}
¬ maxa∈A

{
dΓ′ (a)|A|
e(Γ)

}
¬ 4 e(Γ

′)
e(Γ) ¬ 16d

2δ. □

Lemma 3.5. There exists an absolute constant κ so that the following holds for all s ­ 2, δ ∈ (0, 1/2) and
d ­ (s/δ)κs/δ.

Let G0 be a d-degenerate, Ks,s-free graph with V (G0) = A0 ⊔ B. Suppose that |A0| ­ 2d
δ |B| and

e(G0[A0, B]) ­ 3d1/2|A0|.

Then, for any r ¬ dmin{δ/4,1/3s}, we can find subsets A′ ⊂ A0, B′ ⊂ B such that G0[A′], G0[B′] are
independent sets, |A′| ­ 2dδ/2 |B′|, and |N(a) ∩B′| = r for a ∈ A′.

Remark. In our applications, we will only need the special case where e(G0[A0, B]) ­ d|A0|/104.

Proof. First, we clean G0 so that our larger part has reasonably bounded degree. Let A∗ := {a ∈ A0 :
|NG0(a) ∩ B| ­ 10d}. We have that e(A∗, B) ­ 10d|A∗| and since G0 is d-degenerate we must also have
e(A∗, B) ¬ d(|A∗|+|B|), implying |A∗| ¬ |B| and e(A∗, B) ¬ 2d|B|. Next let A∗∗ := {a ∈ A0 : dG0(a) ¬ d1/2}.
We have that e(A∗∗, B) ¬ d1/2|A0|.

Let A1 := A0 \ (A∗ ∪ A∗∗). Then e(G0[A1, B]) ­ (3d1/2 − 2d|B|/|A0| − d1/2)|A0| ­ d1/2|A0| and so
|A1| ­ e(G0[A1, B])/10d ­ |A0|/10d1/2.

As G0 is d-degenerate, it has chromatic number at most d + 1. So we can find A ⊂ A1 with |A| ­
|A1|/2d ­ |A0|/20d3/2 ­ |B|22d

δ/2
, such that G0[A] is an independent set. Let G = G0[A ∪ B]. Note that

dG(a) ∈ [d1/2, 10d] for a ∈ A1.

Now let D be an orientation of G[B] such that |N+D (b)| ¬ d for each b ∈ B (this can be done as G is
d-degenerate). Let B′0 ⊂ B be a random subset where each b ∈ B is kept with probability p = 1/d2. Let B′

be the set of b ∈ B′0 where |N+D (b) ∩B′0| = 0.
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Consider any a ∈ A. Since G[NG(a)] is Ks,s-free and has at least d1/2 vertices, we can fix an independent
set I ⊂ NG(a) of size r (as r ¬ d1/3s) by Kővári-Sós-Turán (Theorem 3.1). Let Ea be the event that
NG(a) ∩ B′ = NG(a) ∩ B′0 = I. Let X = (NG(a) \ I) ∪

⋃
b∈I N

+
D (b). Then |X| ¬ d(10 + r) ¬ d2/2 ⊂ B.

Consequently,

P(Ea) = p|I|(1− p)|X| ­ 2−2r log d(1/2) ­ 2−d
δ/3
.

We set A′ := {a ∈ A : Ea holds}. We have that E[|A′|] ­ |A|2−d
δ/3 ­ 2dδ/2 |B| ­ 2dδ/2 |B′|. Thus, there is

some outcome of A′, B′ where this inequality holds (i.e., so that |A′| ­ 2dδ/2 |B′|). Fixing such an outcome,
we are done. □

We will also need the following slight variant of a result of Füredi ([12, Theorem 1′]; see also [8]). We say a
hypergraph H is s-bounded if |e| ¬ s for each e ∈ E(H).

Theorem 3.6. Let s, r, t be positive integers, and let T =
∑s
k=0

(
r
k

)
. Let F = (V,E) be an r-uniform

hypergraph. There exist E∗ ⊂ E with |E∗| ­ (tr22r+2)−T−1|E| and c : V → [r] such that:

• c(F ) = [r] for all F ∈ E∗ (i.e. F∗ := (V,E∗) is r-partite with vertex classes given by the sets c−1(i));
• there is an s-bounded hypergraph H on vertex set [r], such that, for e ∈

( [r]
¬s
)
:

– if e ∈ E(H), then for every F ∈ E∗, there are distinct F1, . . . , Ft ∈ E∗ such that c(F ∩ Fi) ⊃ e
for each i ∈ [t];
– if e ̸∈ E(H), then for all distinct F, F ′ ∈ E∗, we have c(F ∩ F ′) ̸⊃ e.

Thus if F0 is contained in an edge of F∗, then F0 extends to an edge of F∗ in at least t different ways
if c(F0) is an edge of H, and otherwise it has a unique extension.

Proof. Considering a random coloring c : V → [r], we have that P(c(F ) = [r]) = r!
rr ­ exp(−r) for each

F ∈ E. Thus, we can choose some c such that E0 := {F ∈ E : c(F ) = [r]} satisfies |E0| ­ exp(−r)|E|.

We run an iterative cleaning process, giving E0 ⊃ E1 ⊃ · · · ⊃ Eτ (where ⊃ denotes non-strict containment).
For i = 0, . . . , τ , let Si be the set of e ∈

( [r]
¬s
)
such that there exist distinct F, F ′ ∈ Ei with c(F ∩ F ′) ⊃ e.

Note that S0 ⊃ S1 ⊃ · · · ⊃ Sτ , and |S0| ¬ T . We will ensure that:

(1) for all e ∈ Sτ and F ∈ Eτ , there exist distinct F1, . . . , Ft ∈ Eτ such that c(F ∩Fi) ⊃ e for each i ∈ [t];
(2) for i < τ , we have |Ei+1| ­ (2tT 2)−1|Ei|;
(3) for i < τ − 1, we have |Si+1| < |Si|.

By Items 3 and 2, we see that τ ¬ T + 1 and thus |Eτ | ­ (2tT 2)−T−1|E0|. Considering Item 1, we see that
we can take E∗ = Eτ , and that the size condition follows because |E0| ­ exp(−r)|E| ­ (2r)−T−1|E| and
2T 2 ¬ 22r+1.

It remains to describe our cleaning process and confirm that Items 2-3 hold.

Suppose we have defined Ei. Create a bipartite graph Γ where one part is A := Ei, and the other part is
B := {F ∩ c−1(e) : F ∈ Ei, e ∈ Si}. For F ∈ A,U ∈ B, we say F ∼ U if F ⊃ U . Note that dΓ(F ) = |Si| ¬ T
for F ∈ A. If |B| ¬ |A|/(2tT ), then we can iteratively delete {U} ∪NΓ(U) for any U with degree < t. At the
end, we will be left with a graph Γ′ with e(Γ′) ­ e(Γ)/2. We stop the process and take Eτ = A(Γ′).

Otherwise, |B| ­ |A|/(2tT ). In which case, by pigeonhole, we can find ei ∈ Si such such that |B∩c−1(ei)| ­
|B|/|Si| ­ |A|/(2tT 2). Let Ei+1 ⊂ Ei to be a maximal set where c−1(ei) ∩ F ̸= c−1(ei) ∩ F ′ for distinct
F, F ′ ∈ Ei+1, we have that |Ei+1| = |B ∩ c−1(ei)| ­ |Ei|/(2tT 2) and ei ̸∈ Si+1. □
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4. An extremal hypergraph problem

We will need some terminology for hypergraphs, some of which is non-standard.

We say a hypergraph H = (V,E) is covered if for every v ∈ V there is some e ∈ E where v ∈ e. Recall
that we say H is ℓ-bounded if |e| ¬ ℓ for e ∈ E.

For A,B ⊂ V , we say (A,B) is an induced pair of order k if |B| = k and for each b ∈ B, there exists e ∈ E
such that A∪ {b} ⊂ e, but there is no e ∈ E with e ⊃ A and |e∩B| > 1. We define α(H) to be the maximum
k such that there exists an induced pair (A,B) of order k.

Let F (ℓ, k) denote the minimum n such that every covered ℓ-bounded hypergraph H on at least n vertices
has α(H) ­ k. The following lemma tells us this quantity is always finite.

Lemma 4.1. For ℓ ­ 0, we have that F (ℓ, k) ¬
∑ℓ
l=0(k − 1)l.

Proof. We argue by induction on ℓ. For ℓ = 0, it is vacuously true that F (0, k) = 1, as any covered hypergraph
H with |V (H)| > 0 has an edge e with |e| > 0 (and hence is not 0-bounded). So we may assume ℓ ­ 1.

Given a covered hypergraph H = (V,E), we consider the graph G = GH with V (G) = V (H) where u, v
are adjacent if there is some e ∈ E(H) containing both u and v. We note that if B ⊂ V is an independent
set in G, then (∅, B) is an induced pair in H. Indeed, since H is covered, every vertex of B is contained in
some edge of H; and no edge meets B in more than one element, as B is an independent set in G. Thus
α(H) ­ |B|.

Now suppose α(H) < k. Let I ⊂ V be a maximal independent set in G = GH. We must have |I| ¬ k − 1,
and so there must be some x ∈ I such that dG(x) ­ |V |−|I||I| ­

|V |
k−1 − 1.

Let H′ = (V ′, E′), where V ′ = NG(x) and E′ = {e ∩ V ′ : e ∈ E, x ∈ e}. Then α(H′) ¬ α(H), as
if (A,B) is an induced pair of H′, then (A ∪ {x}, B) is an induced pair of H. Also, H′ is covered and
max{|e′| : e′ ∈ E′} < max{|e| : e ∈ E} ¬ ℓ. So |V ′| < F (ℓ− 1, k), and the result follows by induction. □

It appears to be an interesting problem to understand how F (ℓ, k) grows. We comment on a few different
regimes below.

Letting R(Ka,Kb) denote the Ramsey number for a clique of size a or independent set of size b, we observe
that F (ℓ, k) ­ R(Kℓ+1,Kk). Indeed, given a graph G with no cliques of size ℓ+1 or independent sets of size k,
we can define HG = (V (G), {e ⊂ V (G) : G[e] is a clique}), which is covered, ℓ-bounded, and has α(HG) < k.
It follows that F (k, k) ­ R(Kk,Kk) ­ exp(Ω(k)). Meanwhile, Lemma 4.1 tells us F (k, k) ¬ kk. So in this
regime, our upper bound (roughly) has the right asymptotic shape.

When k = 2, Lemma 4.1 tells us that F (ℓ, 2) ¬ ℓ+ 1. It is easy to see that equality holds here (consider a
hypergraph with ℓ vertices, which are all contained in one edge). However, for fixed k ­ 3, Lemma 4.1 only
gives an exponential upper bound (i.e., that F (ℓ, k) ¬ exp(Ok(ℓ))). Here it seems that a much better upper
bound should hold. In fact, we conjecture F (ℓ, k) ¬ ℓOk(1). But already for k = 3, we do not know how to
prove F (ℓ, 3) ¬ exp(o(ℓ)).

5. Proof of main theorem

We begin in the first subsection by handling a ‘model’ case in Proposition 5.1; in the following subsection,
we prove Theorem 1.1 by using the various cleaning lemmas from Section 3 to reduce to the model case
covered by Proposition 5.1.
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5.1. The model case. Consider s, k ­ 2. We want to argue that if G is a Ks,s-free graph with large average
degree, that it contains a C4-free induced subgraph G′ with d(G′) ­ k. either In our proof, all the main
difficulties arise when G = (A,B,E) is a bipartite graph that is ‘lopsided’, meaning |A|/|B| is very large
compared to d(G). By applying Theorem 3.6 and Lemma 4.1, we shall prove the following ‘model case’.

Proposition 5.1. The exists some absolute constant C so that the following holds for all s, k ­ 2 and
r ­ kCs, and |A| ­ 2rCs |B|.

Let G = (A,B,E) be a bipartite graph, with dG(a) = r for each a ∈ A. Then either G contains a Ks,s, or
an induced subgraph G′, which is C4-free and has d(G′) ­ k.

Proof. We may assume G is Ks,s-free. Let ρ := |A|/|B| ­ 2r
Cs

.

Consider the r-uniform hypergraph F , where V (F) = B and e ∈ E(F) if there is x ∈ A such that
NG(x) = e. Since G is Ks,s-free and r ­ s, we have that |E(F)| ­ |A|/s (because we can’t have s different
vertices in A corresponding to the same hyperedge of F); very crudely we have

|E(F)| ­ |A|/s = (ρ/s)|V (F)| ­ ρ1/2|V (F)|.

Fix an injection φ : E(F)→ A so that f = NG(φ(f)) for each f ∈ E(F).

We apply Theorem 3.6 with parameters r∗ = r, t∗ = max{k, s} and s∗ = s to get an r-partite sub-
hypergraph F ′ ⊂ F satisfying the required properties and with |E(F ′)| ­ (t∗r22r+1)−

∑s

i=0
(ri)−1|E(F)|; very

crudely we have

t∗r22r+1 ¬ 23r and
s∑
i=0

(
r

i

)
+ 1 ¬ rs,

and so

|E(F ′)| ­ 2−r
s+3
|E(F)| ­ ρ1/4|V (F)| = ρ1/4|V (F ′)|.

Note that, as ρ > 1, this implies

|E(F ′)| > |V (F ′)|.

Let c : B → [r] be the r-partite coloring associated with F ′, and H be the hypergraph on [r] as in the last
bullet of Theorem 3.6.

By Lemma 4.1, we have |V (H)| = r ­ kCs ­ F (s− 1, k). If E(H) has an edge of size s, then G contains a
Ks,s which is a contradiction. ThusH is (s−1)-bounded. It is also clear thatH is covered, as |E(F ′)| > |V (F ′)|.
(Indeed, consider i ∈ [r] = V (H). If the singleton {i} does not belong to E(H) then no vertex in the color
class c−1(i) is contained in two edges f, f ′ ∈ E(F ′), by definition of H. Recalling each f ∈ E(F ′) intersects
the color class c−1(i), and noting |c−1(i)| ¬ |V (F ′)| < |E(F ′)|, we get a contradiction due to pigeonhole.)

By definition of F (s− 1, k), H must have an induced pair of order k, say (X,Y ).

Fix some f ∈ E(F ′), and take S := f ∩ c−1(X) (i.e., its intersection with the parts corresponding to X).
Now, we consider the common neighborhood

A′ := φ(E(F ′)) ∩
⋂
v∈S
NG(v),

which is nonempty (as it contains φ(f)). Next, take

B′ := c−1(Y ) ∩
⋃
a∈A′
NG(a).

Finally, let G′ be the induced subgraph G[A′ ∪B′].
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Claim 5.2. G′ is C4-free and d(G′) ­ k.

Proof. Suppose G′ contained a C4. This implies that there are distinct f1, f2 ∈ E(F ′) such that c(f1 ∩ f2) ⊃
X ∪ {y1, y2} for some distinct y1, y2 ∈ Y . But this would imply X ∪ {y1, y2} ∈ E(H), contradicting the fact
that (X,Y ) is an induced pair within H. It follows that G′ must be C4-free as desired.

Meanwhile, for every b ∈ B′, there are at least t∗ ­ k hyperedges f1, . . . , ft∗ ∈ F ′ containing b and S (by
the definitions of F ′,H, and the fact that (X,Y ) is an induced pair) so b has degree at least k within G′.
Also, for a ∈ A′, we have that NG′(a) = NG(a) ∩ c−1(Y ) implying dG′(a) = k (as |Y | = k). Thus d(G′) ­ k
as desired. □

We see that G′ has the desired properties, completing the proof. □

Remark. Inspecting the above proof, one can get the same conclusion as long as r ­ F (s − 1, k), and
ρ := |A|/|B| satisfies ρ > skrs+3 .

5.2. The details for general graphs.

Let G be a graph with average degree d ­ kCs3 (where C is some large absolute constant). We assume G is
Ks,s-free, and wish to deduce that G contains an induced C4-free subgraph, G′, with d(G′) ­ k. We may
assume that G is d-degenerate, or else pass to some induced subgraph G∗ of G with larger average degree
d∗ > d ­ kCs3 . Thus the assumptions of Lemma 3.4 are satisfied.

Let δ0 := 1/200s, and for i > 0 set δi := δ0/2i. These quantities will be used throughout the proof.

We now apply Lemma 3.4 with parameters d := d, δ := δ0. There are two cases.

Case 1: G contains an induced subgraph G∗ with d(G∗) ­ 6d1−5δ0 and ∆(G∗) ¬ 6d1+3δ0 . In this case,
we use Lemma 3.3. Indeed, we have ∆(G∗) ­ d1/2 and d(G∗) ­ ∆(G∗)1−8δ0 = ∆(G∗)1−1/25s. Assuming C
is large, we are guaranteed that ∆(G∗) ­ κ25s with room to spare (where κ is the absolute constant from
Lemma 3.3).

We apply Lemma 3.3 with parameters d := ∆(G∗), s := s and δ := 1/25 (as noted above, the necessary
assumptions hold). We obtain an induced subgraph G′ of G, which is C4-free, and has average degree
d(G′) ­ d(G∗)1/10s ­ d(G)1/20s = k(C/20)s2 ­ k.

Case 2: There is a partition V (G) = A0 ∪B such that e(G[A0, B]) ­ nd/4 and |A0| ­ 2d
δ1 |B|. Here, we

will pass to some induced subgraph where we can apply Proposition 5.1.

Let C0 be the absolute constant from that proposition. We assume that C is large enough so that
C/1600 ­ C20 (note that 1/1600 = sδ1/4 ¬ sδ2). For any r ¬ dmin{δ1/4,1/3s} = dδ1/4, we can apply Lemma 3.5
to G[A0 ∪B] to obtain A′ ⊂ A0 and B′ ⊂ B, where:

• G[A′], G[B′] are both independent sets;
• |A′| ­ 2dδ2 |B′| ­ 2k

C20s
2

|B| (recalling d ­ kCs3); and
• |N(a) ∩B′| = r for a ∈ A′.

Because C is sufficiently large, we can apply this with r := kC0s and obtain A′ ⊂ A0 and B′ ⊂ B such that
|A′| ­ 2rC0s |B′|. Writing G∗ := G[A′ ∪ B′], we can now apply Proposition 5.1 to find the desired induced
subgraph G′ inside G∗. This completes the proof. □

Inspecting our proof, one obtains the following technical strengthening of Theorem 1.1.
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Theorem 5.3. There exists an absolute constant C such that the following holds for all d, s, k ­ 2 and
δ ∈ (0, 1/20) such that d ­ (k/δ)Cs3/δ.

Let G be a graph with average degree d(G) ­ d without a Ks,s. Then G has an induced subgraph G′ which
is {C3, C4}-free with d(G′) ­ k and either

• d(G′) ­ ∆(G′)1−δ; or
• G′ is bipartite.

Furthermore, we can ensure the first outcome if ∆(G) ¬ d2dδ/(1000s) .

Proof. Repeating the argument above with δ0 = δ
1000s , we will obtain G

′ satisfying one of the two bullets. In
Case 1, it is easy to check that the first outcome holds, by looking at the full statement of Lemma 3.3. And
in Case 2, we end up passing to a bipartite graph, causing the second outcome to hold.

Under the assumption that ∆(G) ¬ d2dδ/(1000s) , the set R from the proof of Lemma 3.4 will be empty, so
we can find an induced subgraph G∗ with d(G∗) ­ 6d1−5δ0 ,∆(G∗) ¬ 6d1+3δ0 . In this case, we reach Case 1,
and thus can ensure the first outcome. □

6. Lower bounds

We require the following well-known extremal bound of Reiman [27] (which slightly improved the bounds
of Kővári-Sós-Turán [18]).

Proposition 6.1 ([27, Equation 1.4]). Any n-vertex C4-free graph G has at most 12n
3/2 + n/4 + 1 edges.

Corollary 6.2. Any C4-free graph G with average degree d(G) ­ k ­ 1 must have |V (G)| ­ (k − 1)2.

Given an integer K and p ∈ [0, 1], let q(K, p) be the probability that G ∼ G(K, p) is C4-free. (We write
G(K, p) for the Erdős-Rényi random graph where each edge of the K-vertex complete graph is included
independently at random with probability p.)

Proposition 6.3. We have that

q(K, p) ¬ (1− p4)(
⌊K/2⌋
2 ) ¬ exp

(
−p4
(
⌊K/2⌋
2

))
.

Proof. Sample G ∼ G(K, p). For i < j ∈ [⌊K/2⌋], let Ei,j be the event that G[{2i− 1, 2i}, {2j − 1, 2j}] is not
a C4. Then P(Ei,j) = 1− p4 ¬ exp(−p4), and these events are independent. The result follows. □

Theorem 6.4. Let k ­ 4, s ­ 2. Choose p, n such that

max{n2ps, n(1− p4)(k
2−3k−2)/8, exp(−

(
n

2

)
p/8)} < 1/2.

Then there exists an n-vertex graph G with d(G) ­ n−12 p, such that G is Ks,s-free, and every C4-free induced
subgraph G′ ⊂ G has d(G′) < k.

Proof. Consider G ∼ G(n, p) and fix K := k2− 3k (which is always even); as we assume k ­ 4, we get K > 0.
Let X count the number of K-subsets S ∈

([n]
K

)
such that G[S] is C4-free. By Corollary 6.2, if X = 0, then G

does not contain an induced C4-free subgraph G′ with d(G′) ­ k. We note that (by Proposition 6.3)

E[X] =
(
n

K

)
q(K, p) ¬ nK(1− p4)(

K/2
2 ) =

(
n(1− p4)(k

2−3k−2)/8
)K
.
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Now let Y count the number of copies of Ks,s in G. Then E[Y ] ¬ n2sps
2
= (n2ps)s.

By assumption, k ­ 4, s ­ 2 (and so K ­ 2). Since max{n(1− p4)(k2−3k−2)/8, n2ps} ¬ 1/2, we get

P(X = Y = 0) ­ 1− E[X]− E[Y ] ­ 1/2.

Meanwhile, a Chernoff bound tells us that P(e(G) ¬
(
n
2

)
p/2) < exp(−

(
n
2

)
p/8) < 1/2.

It follows by our assumptions on n, p that with positive probability, we will have X = Y = 0 and
e(G) ­ p

(
n
2

)
/2. Taking such a G gives our result. □

Recall that fInd(s, k) denotes the smallest D such that for any Ks,s-free graph G with d(G) ­ D, there
exists a C4-free induced subgraph G′ ⊂ G with d(G) ­ k. We will use Theorem 6.4 to get some lower bounds
for this function.

Corollary 6.5 (Theorem 1.3 (a)). For sufficiently large k, we have that fInd(k, k) ­ kk/21.

Proof. Assuming k is sufficiently large, we may apply Theorem 6.4 with n = kk/20, s = k and p = k−1/5.

It is trivial to verify that the first and third terms in the statement of Theorem 6.4 are appropriately
bounded, so we only discuss the second condition. Here (for k ­ 10), the crude bound (1− p4)(k2−3k−2)/8 ¬
exp(−p4(k2 − 3k − 2)/8) ¬ exp(−k6/5/16) gives us what we need (as log n ¬ k log k ¬ k6/5/16− 1 for large
k, the final term is smaller than n/2). □

Remark. It is not hard to prove that the probabilistic constructions in this section are almost-regular with
high probability. Thus, Corollary 6.5 (along with Corollary 6.9, detailed later below) tell us that Lemma 3.3
is essentially tight (up to the constant in our exponent) when we are looking for subgraphs with large average
degree. This is rather surprising since in the non-induced setting one gets much better (i.e., polynomial)
bounds when G is almost-regular.

Corollary 6.6 (Theorem 1.3 (b)). Fix k ­ 2. We have that fInd(s, k) ­ s(1/8−o(1))(k
2−3k−2).

Proof. Note that this result is trivial for k = 2, 3, as then k2 − 3k − 2 < 0. So now assume k ­ 4.

We use Theorem 6.4 again, with n = s(1/8−ϵ)(k
2−3k−2), p = 1− k2 log s/s where ϵ = ϵ(s) tends to zero as

s → ∞. Crudely, we have that n2ps ¬ exp(log s(k2 − 3k − 2) − k2 log s) < 1/2. Meanwhile, we have that
(1− p4)(k2−3k−2)/8 ¬ (4k2 log s/s)(k2−3k−2)/8 ¬ s(o(1)−1/8)(k2−3k−2) < 1/2n (assuming ϵ(s) does not tend to
zero too fast). The third condition holds as s→∞, because n→∞ and p→ 1. □

Our final lower bound does not require Theorem 6.4. Instead, we need a basic observation. Here we write
α(G) for the maximum size of an independent set of a graph G.

Proposition 6.7. Any n-vertex C4-free graph G has an independent set of size ­ n
3+
√
n
.

Proof. This follows from Proposition 6.1, and the fact that α(G) ­ |V (G)|
1+d(G) for any graph G (a well-known

corollary of Turán’s Theorem). □

Combined with Corollary 6.2, we get the following.

Corollary 6.8. Any C4-free graph G with average degree d(G) ­ k ­ 1 must have α(G) ­ (k−1)
2

k+2 ­ k − 4.

Corollary 6.9 (Theorem 1.3 (c)). Fix s ­ 2. Then fInd(s, k) ­ k(1/2−o(1))s−1.
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Proof. Let k′ = k − 4. We consider G ∼ G(n, p), where n, p will be chosen later. Let X count the number of
k′-subsets S ∈

([n]
k′

)
such that G[S] is an independent set. By Corollary 6.8, if X = 0, then G will not contain

an induced C4-free subgraph G′ with d(G′) ­ k. We note that E[X] =
(
n
k′

)
(1 − p)(

k′
2 ) ¬ (n(1 − p)k/4)k′

(assuming k ­ 10).

Let Y count the number of copies of Ks,s in G. We have E[Y ] ¬ n2sps
2 ¬ (n2ps)s.

Finally, let E be the event that e(G) ¬
(
n
2

)
p/2. A Chernoff bound tells us P(E) < exp(−

(
n
2

)
p/8).

If E[X]+E[Y ]+P(E) < 1, a union bound tells us that fInd(s, k) ­ (n−1)p2 . Taking p = n−(2+ε)/s, n = k
1−ε
2+ε s

so that p = kε−1, one can check that this holds for sufficiently large k. □

Remark. To provide lower bounds for fInd(s, k), we found Ks,s-free graphs G with the stronger property that
every set of (k− 1)2 vertices contains a C4. We note that one cannot hope to do better with such an approach
(beyond improving the constants in the exponents). Indeed, such G must not contain a clique on 2s vertices,
nor an independent set on (k− 1)2 vertices. Thus, the average degree of G (which is at most |V (G)| − 1), will
be bounded by the off-diagonal Ramsey number R(K2s,Kk2). A classical bound of Erdős-Szekeres [10] tells us

R(Ka,Kb) ¬
(
a+ b− 2
b− 1

)
¬ (a+ b)min{a,b},

and in particular we get

R(K2k,Kk2) ¬ k(4+o(1))k and R(K2s,Kk2) ¬ min{s(1+o(1))k
2
, k(4+o(1))s}.

7. Corollary on subdivisions

In this section we prove Corollary 1.6, which improves the bounds in the theorem of Kühn and Osthus [22]
(Theorem 1.5) from triply exponential to singly exponential. We restate the result for convenience.

Corollary 1.6. There exists a constant C so that for all k, s ∈ N, every Ks,s-free graph G with average
degree at least kCs

3
contains an induced proper subdivision of Kk.

We require the following result, which was proved independently by Bollobás and Thomason [1] and
Komlós and Szemerédi [20].

Theorem 7.1. There exists an absolute constant C > 0 such that for all k ∈ N, if G is a graph with
d(G) ­ Ck2, then G contains a (not necessarily induced) subdivision of Kk.

We can now proceed with the proof of the corollary.

Proof of Corollary 1.6. Let G be a Ks,s-free graph with d(G) ­ kCs
3
(where C is a large constant). Applying

Theorem 5.3 with δ = 1/100, we can find an induced {C3, C4}-free subgraph G′ with average degree
C ′k5 (we may assume C ′ is arbitrarily large, by changing the constant C), where either G′ is bipartite or
d(G′) ­ ∆(G′)1−1/100. We handle these in separate cases.

Case 1 G′ is bipartite. We pass to an induced subgraph H ⊂ G′ with maximum average degree, say d.
Then d ­ C ′k2 and H is d-degenerate with δ(H) ­ d/2. Let H have bipartition (A,B) where |A| ­ |B|. Let
A′ = {x ∈ A : dH(x) ­ 4d}.

We have |A′| ¬ |A|/2 (by counting edges), and by maximality of average degree, we see that e(H[A′, B]) ¬
(3/4)e(H).
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Now, let A∗ = A \ A′ and F = G[A∗, B]. We note e(F ) ­ e(H)/4 and |A∗| ­ |B|/2. Furthermore, as
δ(H) ­ d/2, we have dF (a) = dH(a) ∈ [d/2, 4d] for all a ∈ A∗

Let W be a random subset of B, where each vertex is included independently in W with probability
p = 1/8d. Let U = {x ∈ A∗ : |NF (x) ∩W | = 2}. For x ∈ A∗, we have

P[x ∈ U ] = p2(1− p)dF (x)−2
(
dF (x)
2

)
­ p2(1− p)4d

(
d/2
2

)
­ p2d2/20 ­ 1/2000.

Then E[|U | − d|W |/1000] ­ |A∗|/2000 − |B|/8000 > 0 (as |A∗| ­ |B|/2) and hence there is a choice
of W such that |U | > d|W |/1000. Fix such a W and define an auxiliary graph J with vertex set W and
E(J) = {N(z) : z ∈ U}.

Note that e(J) = |U |, as F was C4-free (and so the edges coming from different z are distinct). Thus, we
have d(J) = C ′′k2 for some C ′′ ­ C ′/1000. Taking C (and thus C ′′) sufficiently large, it follows that J must
contain a subdivision of a Kk by Theoren 7.1. By construction, this corresponds to an induced subdivision
of Kk in G. We note in passing that the subdivision this finds will be proper, meaning that each edge is
subdivided at least once.

Case 2 d(G′) ­ ∆(G′)1−1/100. As in the first case, it is enough to find U,W ⊂ V (G′) such that:

• U and W are disjoint independent sets;
• |NG′(u) ∩W | = 2 for each u ∈ U ; and
• |U | ­ C ′′k2|W | for some appropriately large constant C ′′ > 0.

Theorem 7.1 then gives our induced subdivision of Kk, as desired.

We first pass to a subgraphH ⊂ G′ of maximal average degree. Then d := d(H) ­ max{C ′k5,∆(H)1−1/100}
and also δ(H) ­ d/2. Let W0 be a random subset of V (H) where each vertex v ∈ V (H) is included in W0
with probability p = 1/(10d8/5). Let W ⊂ W0 be the set {w ∈ W0 : |NH(w) ∩W0| = 0}. Finally define
U0 := {u ∈ V (H) : |NH(u)∩W | = |NH(u)∩W0| = 2} and let U ⊂ U0 \W0 be the set of u ∈ U0 with u ̸∈W0
and |NH(u) ∩ U0| = 0.

So for x ∈ V (G), a union bound tells us

P(x ∈ U) ­ P(x ̸∈W0)P(x ∈ U0|x ̸∈W0)

1− ∑
y∈NH(x)

P(y ∈ U0|x ∈ U0 \W0)

.
We note that x ∈ U0 already implies x ̸∈ W0, since otherwise x would have no neighbors in W . So we are
only including this redundant assumption to avoid saying certain things are positively correlated (like the
events x ∈ U0 and x ̸∈W0); but some readers may find it more natural to write the above a bit differently.

Now P(x ̸∈W0) = 1− p ­ 1/2, and

P(x ∈ U0|x ̸∈W0) =
∑

{y,y′}∈(NH (x)2 )

P(W0 ∩NH(x) =W ∩NH(x) = {y, y′}|x ̸∈W0).

Now, for each {y, y′} ∈
(
NH(x)
2

)
, we have y, y′ are not adjacent because H ⊂ G′ is C3-free (and x ∈

NH(y) ∩NH(y′)), thus the corresponding summand is at least

(1− p)dH(x)−2p2(1−E[|W0 ∩ (NH(y) \ {x})|+ |W0 ∩ (NH(y′) \ {x})|]) ­ p2(1− p∆(H))(1− 2p∆(H)) ­ p2/2.

Consequently, P(x ∈ U0|x ̸∈W0) ­
(
dH(x)
2

)
p2/2 ­ d2p2/10 (since δ(H) ­ d/2).
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Finally, for y ∈ NH(x), we have NH(y) ∩NH(x) = ∅ because H ⊂ G′ is C3-free, whence (as we explain
below)

P(y ∈ U0|x ∈ U0 \W0) ¬ P(y ∈ U0|x ∈ U0 \W0 and y ̸∈W0)

¬ p2
(
dH(y)− 1
2

)
¬ (p∆(H))2.

Here the first line uses that y ∈ U0 implies y ̸∈ W0, whence conditioning on this event only increases the
probability. For the second inequality first note that the event x ∈ U0 \W0 ∧ y /∈ W0 just depends on the
intersection ofW0 with S := {x}∪NH(x)∪{z : NH(x)∩NH(z)\{y} ≠ ∅}. And so, observing S∩NH(y) = {x}
(since H is C3-free and C4-free), we get P(y ∈ U0|x ∈ U0 \W0 and y ̸∈ W0) ¬ P(|W0 ∩NH(y) \ {x}| = 2),
and this can be upper bounded by the second line.

Putting these together, we get

P(x ∈ U) ­ (1/2)p
2d2

10
(1−∆(H)(p∆(H))2) ­ p

2d2

40

(where in the last step we use d(G′) ­ ∆(G′)1−1/100 and 2(1− 1/100)8/5 > 3 to deduce p2∆(H)3 ¬ 1/2).

Consequently, E[|U |] ­ pd
2

40 E[|W0|] ­
d2/5

400 E[|W |]. Thus, there is some choice ofW0 such that |U | ­ C
′′k2|W |

(where C ′′ = Ω(C ′2/5)). Taking C (and thus C ′′) sufficiently large, we are done. □

8. Concluding remarks

• It is still very interesting to improve the bounds in the non-induced case. Let f(k, 6) denote the least
integer d such that if G is a graph with d(G) ­ d, then G contains a (not-necessarily induced) C4-free
subgraph G′ ⊂ G with d(G) ­ k.
The best known bounds are

k3−o(1) ¬ f(k, 6) ¬ kO(k
2),

which were both established in [25]. It would be very interesting if one could show that a polynomial
upper bound held (i.e., that f(k, 6) ¬ kO(1)).
• Building on the methods of this paper, two independent groups of authors (Bourneuf, Bucić, Cook
and Davies [3] and Girão and Hunter [13]) have shown that for every graph H, there is a polynomial
pH(s) so that every Ks,s-free graph G with d(G) ­ pH(s) contains an induced subdivision of H.
• Girão and Hunter [13] have also shown that for every k, there is a polynomial pk(s) so that every
Ks,s-free graph G with d(G) ­ pk(s) contains an induced C4-free subgraph with average degree at
least k and therefore shown that every degree-bounded hereditary family of graphs is polynomially
bounded. This is in clear constrast to a recent result of Briański, Davies, and Walczak [4] who showed
that there are χ-bounded hereditary families of graphs whose chromatic number can grow arbitrarily
fast compared with the clique number.
• Finally, it would be very nice to better understand the behaviour of the function F (ℓ, k) introduced
in Section 4. Already for k = 3 and large ℓ, we only know

ℓ2−o(1) ¬ F (ℓ, 3) ¬ O(2ℓ),
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and improving either of these bounds would be quite interesting. We tentatively expect a polynomial
upper bound when k = O(1).
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[12] Z. Füredi. On finite set-systems whose every intersection is: a kernel of a star. Discrete Math., 47:129–132,
1983. 1, 9

[13] A. Girão and Z. Hunter. Induced subdivisions in Ks,s-free graphs with polynomial average degree.
ArXiv:2310.18452v2, 2023. 17

[14] A. Girão, F. Illingworth, E. Powierski, M. Savery, A. Scott, Y. Tamitegama, and J. Tan. Induced
subgraphs of induced subgraphs of large chromatic number. Combinatorica, 44:37–62, 2024. 3
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