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Abstract. Gyárfás and Sumner independently conjectured that for every tree T and

integer k there is an integer f(k, T ) such that every graph G with χ(G) > f(k, T )

contains either Kk or an induced copy of T . We prove a ‘topological’ version of the

conjecture: for every tree T and integer k there is g(k, T ) such that every graph G with

χ(G) > g(k, T ) contains either Kk or an induced copy of a subdivision of T .
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§1. Introduction

What can we say about the induced subgraphs of a graph G with large chromatic

number? Of course, one way for a graph to have large chromatic number is if

it contains a large complete subgraph. However, if we consider graphs with large

chromatic number and small clique number then we can ask what other subgraphs

must occur. We can avoid any graph H that contains a cycle since, as Erdős

and Hajnal ([3], [1], [2]) showed, there are graphs with arbitrarily high girth and

chromatic number; but what can we say about trees? Gyárfás [5] and Sumner [17]

independently made the following beautiful and difficult conjecture.

Conjecture A. For every integer k and tree T there is an integer f(k, T ) such

that every graph G with

cl(G) ≤ k

and

χ(G) ≥ f(k, T )

contains an induced copy of T .

Let us rephrase this, using the notation of Gyárfás [6]. We call a class G of graphs

χ-bounded if there is a function f such that χ(G) ≤ f(cl(G)) for every G ∈ G; we

call f a χ-binding function. For instance, the class of perfect graphs is χ-bounded

with f(k) = k as a χ-binding function.

For a graph H, we write Forb(H) for the class of graphs that do not contain H

as an induced subgraph. For a family of graphs H, we write Forb(H) for the class

of graphs that contain no member of H as an induced subgraph. As we have

remarked, Forb(H) is not χ-bounded when H contains a cycle. The conjecture of

Gyárfás and Sumner asserts that Forb(T ) is χ-bounded for every tree T . In fact,

an easy argument shows that the conjecture is equivalent to the assertion that

Forb(H) is χ-bounded iff H is a forest.

If we do not demand that T be induced, then the problem becomes much easier.

Indeed, both Gyárfás, Szemerédi and Tuza [8] and Sumner [17] showed that if
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χ(G) = |T | = t and T is coloured with 1, . . . , t, then any proper t-colouring of G

contains a subgraph isomorphic to T and has the same labels.

It is also known that graphs with low clique number contain large induced trees.

Erdős, Saks and Sós [4] proved that, for k ≥ 3 and n ≥ 4, every connected graph

G of order n such that cl(G) ≤ k contains an induced tree of order at least

2 log n

(k − 2) log log n
− 3.

However, little can be said about the structure of such a tree.

Recently, attention has been given to the on-line version of the conjecture. Gyárfás

and Lehel [7] proved that Forb(P5) is on-line χ-bounded and noted that Forb(P6)

is not on-line χ-bounded; Kierstead, Penrice and Trotter [13] gave a better binding

function and further results. Finally, Kierstead, Penrice and Trotter [14] proved

the difficult result that, for any tree T , Forb(T ) is on-line χ-bounded iff T has

radius at most two. For a survey of these results, see Kierstead [9].

Returning to the conjecture, it follows easily from Ramsey’s Theorem that

Forb(K1,n) is χ-bounded for every n. (Indeed, suppose χ(G) > R(n, k) and

cl(G) ≤ k. Then G contains a vertex x of degree at least R(n, k), and so Γ(x)

must contain an independent set S of size at least n, since cl(G) ≤ k; then {x}∪S
induces K1,n.) Gyárfás [6] showed that Forb(Pn) is χ-bounded for every path Pn,

and Hajnal and Rödl (see [12], [15], [16]) proved that Forb(T,Kn,n) is χ-bounded

for every tree T and integer n. Significant progress was made by Gyárfás, Sze-

merédi and Tuza [8], who proved a special case of the conjecture for trees of radius

two: for every tree T of radius two there is a constant c(T ) such that every triangle-

free graph G such that χ(G) ≥ c(T ) contains an induced copy of T . Kierstead and

Penrice [12] succeeded in generalizing this argument to prove the following.

Theorem B. Forb(T ) is χ-bounded for every tree T of radius two.

Very little else is known, however (though some special cases of the conjecture

have been proved by Kierstead and Penrice [11] and Kierstead [10]; these results

are both special cases of Corollary 2 below), and it seems that the full conjecture is

rather difficult. Even partial results are therefore of interest. For instance, Sauer
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[16] notes that the conjecture is not even known to hold for subdivisions of stars;

this will follow as a special case of Theorem 1 below.

For a graph H, let us write Forb∗(H) for the class of graphs that contain no

subdivision of H as an induced subgraph. (For instance, Forb∗(C3) is the class of

forests.) The main result of this paper is the following.

Theorem 1. Forb∗(T ) is χ-bounded for every tree T .

Equivalently, for every tree T and positive integer k, every graph with sufficiently

large chromatic number contains either Kk or an induced copy of a subdivision of

T .

This can be seen as a ‘topological’ version of the Gyárfás-Sumner conjecture, and

allows us to demand trees with more structure than was previously possible (stars,

paths, trees of radius two and a few other trees).

Consider now a tree T that is a subdivision of a star (equivalently, T contains at

most one vertex of degree greater than two): whenever we subdivide T , we get a

tree that contains T as an induced subgraph. (In fact, subdivisions of stars are the

only connected graphs with this property.) We therefore get the following result

as an immediate corollary of Theorem 1.

Corollary 2. Let T be a subdivision of a star. Then Forb(T ) is χ-bounded.

This answers the question mentioned by Sauer (and solves Problem 2.13 from [6]).

In order to prove Theorem 1, we will in fact prove a rather stronger result, which

gives a bound on the extent to which our induced copy of T is subdivided.

Theorem 3. For every tree T there is an integer t(T ) such that the following

assertion holds. For every integer k there is an integer c(k, T ) such that every

graph G with

χ(G) ≥ c(k, T )
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either contains Kk or contains a subdivision of T as an induced subgraph, with

each edge of T subdivided at most t(T ) times.

Now for a fixed tree T , there are only finitely many subdivisions of T such that

each edge of T is subdivided at most t(T ) times. Theorem 3 can therefore be

reformulated as follows.

Corollary 4. For every tree T there is a finite family T1, . . . , Ts of subdivisions

of T such that
s⋂
i=1

Forb(Ti)

is χ-bounded.

In §2 we give a proof of the main result. After a technical lemma, the proof

is divided into two sections, depending on whether or not the ‘local’ chromatic

number of our graph G is large.

In §3 we make some remarks and suggest possible further applications of our

method.

We use standard notation. For a graph G and vertices v, w ∈ V (G), we write

dG(v, w) for the distance between v and w, i.e. the length of a shortest path

between them (dG(v, w) = ∞ if there is no such path). For v ∈ V (G) and a

positive integer d, we define

BG(v, d) = {x ∈ V (G) : dG(v, x) ≤ d}

and

SG(v, d) = {x ∈ V (G) : dG(v, x) = d}.

If there is no ambiguity we write d(v, w) for dG(v, w), etc.

For positive integers a and b, let T ba be the rooted tree of radius b in which the

root has degree a, every endvertex is distance b from the root and every vertex

that is not the root or an endvertex has degree a+ 1. Thus T 1
m
∼= K1,m.
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§2. The main result

In this section we prove Theorem 3. Our proof proceeds in several stages. We

begin with a technical lemma about subdivisions, which will be used several times

in the proof.

Lemma 5. For every triple of integers m, d, k there is an integer M(m, d, k) such

that the following is true. Let G be a graph with cl(G) ≤ k. Let x1, . . . , xM and

y1, . . . , yM be vertices in G such that, for i = 1, . . . ,M ,

Γ(yi) = {xi}

and

dG(x1, xi) ≤ d.

Then G contains an induced subdivision of the star K1,m with endvertices y1 and

m− 1 vertices from y2, . . . , yM such that each edge of K1,m is subdivided at most

d times.

Proof. We proceed by induction on d. If d = 1, then x1 is joined to x2, . . . , xM .

If M ≥ R(k,m − 1) + 1 then since cl(G) ≤ k, there must be an independent set

of size m− 1 among x2, . . . , xM , say {x2, . . . , xm}. Then G[{x1, . . . , xm}] is a star

K1,m−1 with centre x1, and G[{x1, . . . , xm, y1, . . . , ym}] is a subdivision of K1,m

with centre x1 and each edge subdivided once.

Now suppose d > 1 and the lemma is true for smaller values of d (and any m,

k). Let x1, . . . , xM , y1, . . . , yM be as in the statement of the lemma. If we have

dG(x1, xi) ≤ d− 1 for at least M(m, d− 1, k) values of i (from 2, . . . ,M), then by

the inductive hypothesis we can find the required subdivision of K1,m. Thus we

may assume that we have at least

M0 = M −M(m, d− 1, k) (1)

vertices xi with dG(x1, xi) = d, say x2, . . . , xM0+1. For i = 2, . . . ,M0 + 1, let Pi

be a path of length d from x1 to xi. Let

S =

M0+1⋃
i=2

V (Pi)
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and, for i = 0, . . . , d, let

Si = {x ∈ S : dG(x1, x) = i}.

Thus S0 = {x1} and Sd = {x2, . . . , xM0+1}. Now consider G[S]. If any x ∈ Sd−1
has R(k,m − 1) neighbours in Sd then we are done: since cl(G) ≤ k, there must

be an independent set of size m − 1 in Γ(x) ∩ Sd, say {x2, . . . , xm}. Let P be a

path of length d− 1 from x1 to x. Then

V (P ) ∪ {x2, . . . , xm} ∪ {y1, . . . , ym}

induces a subdivision of K1,m with centre x, endvertices y1, . . . , ym, and each edge

subdivided at most d times.

Otherwise, we have

|Γ(x) ∩ Sd| < R(k,m− 1) (2)

for every x ∈ Sd−1. Let Z = {z2, . . . , zM1
} ⊂ Sd−1 be a minimal set such that

every x ∈ Sd has a neighbour in Z. It is clear from (2) that

|Z| ≥ |Sd|/R(k,m− 1). (3)

Furthermore, for every zi ∈ Z we can find xzi ∈ Sd such that

Γ(xzi) ∩ Z = {zi},

or else we could replace Z by Z \ {zi}. Renumbering if necessary, we may assume

that xzi = xi for each i.

We now find a large independent set among x2, . . . , xM1 . Indeed, if

|Z| ≥ R(k + 1,M(m, d− 1, k)), (4)

then x2, . . . , xM1
contains an independent set of size r = M(m, d − 1, k) − 1, say

x2, . . . , xr. Consider the subgraph H of G induced by

{x1, . . . , xr} ∪ {z2, . . . , zr} ∪ {y1} ∪
d−2⋃
i=1

Si.
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We have dH(x1, zi) = d−1 and ΓH(xi) = {zi}, for i = 2, . . . , r, and ΓH(y1) = {x1}.
By the inductive hypothesis, H contains an induced subdivision of K1,m with

endvertices y1 and m − 1 vertices from {x2, . . . , xs}, say x2, . . . , xm, where each

edge of K1,m is subdivided at most d − 1 times. Adding y2, . . . , ym, we get an

induced subdivision of K1,m with endvertices y1, . . . , ym and each edge subdivided

at most d times.

From (1), (3) and (4), we deduce that

M(m, d, k) ≤ R(k + 1,M(m, d− 1, k)) ·R(k,m− 1) +M(m, d− 1, k).

We now turn to proving the main theorem. The proof is split into two lemmas:

in the first we consider graphs that have chromatic number much larger than

their ‘local’ chromatic number; in the second we consider graphs with large ‘local’

chromatic number. The main result will then follow by an easy argument.

Let us define a little notation. For any integer r and graph G, we define the r-local

chromatic number of G to be

χ(r)(G) = max
v∈V (G)

χ(G[B(v, d)]).

Clearly χ(0)(G) = 1, and χ(r)(G) = χ(G) whenever r ≥ diam(G).

We prove a lemma about graphs G for which χ(r)(G) is much smaller than χ(G),

for suitable r. In essence, the lemma states that for any tree T , every graph with

small clique number, small local chromatic number and sufficiently large chromatic

number contains a subdivision of T .

Lemma 6. For every tree T and integer k there exists a function g:N → N and

integers d, t such that for every integer c, every graph G satisfying

χ(d)(G) ≤ c

cl(G) ≤ k
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and

χ(G) ≥ g(c)

contains an induced subdivision T ∗ of T , in which every edge is subdivided at

most t times.

Proof. It is enough to prove the theorem for trees of form T ba , since every tree T

is contained in T ss for s sufficiently large. Note that T ba can be decomposed into

a copies of T b−1a , say T1, . . . , Ta, and an additional vertex x, where x is joined to

the root of Ti, for i = 1, . . . , a.

The idea of the proof is simple: arguing by induction on b = rad(T ba), we take

induced copies of a tree containing T b−1a and join a of them together to get T ba .

However, there are a couple of technical difficulties: a vertex in one copy of T b−1a

may be adjacent to vertices in another copy; and a vertex adjacent to one vertex

in a given copy of T b−1a may be adjacent to other vertices in that copy as well.

Thus we demand that our copies of T b−1a are not too close together, and that each

copy is ‘spread out’ in G, in the following sense.

We say that an induced subgraph T ∗ of G is a (T ba , t)-structure in G if the following

two conditions are satisfied.

1. T ∗ is a subdivision of T ba such that each edge is subdivided at most t times.

2. Let x∗ be the centre of T ∗, and let T ∗1 , . . . , T
∗
a be the induced subdivisions of T b−1a

corresponding to T1, . . . , Ta in the decomposition of T ba given above. Then, for

1 ≤ i ≤ a,

dG(x, T ∗i ) ≥ 3 (5)

and, for 1 ≤ i < j ≤ a,

dG(T ∗i , T
∗
j ) ≥ 3. (6)

Now fix k. We prove by induction on b that for every pair of integers a and b

there exists a function ga,b:N→ N and integers d, t such that, for every integer c,

whenever G is a graph such that

χ(d)(G) ≤ c
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and

cl(G) ≤ k,

and X ⊂ V (G) satisfies

χ(G[X]) ≥ ga,b(c),

then we can find an induced (T ba , t)-structure with all its endvertices in X. Note

that this is stronger than demanding an induced (T ba , t)-structure in G[X], since

we may have dG[X](x, y) < dG(x, y) for vertices x, y ∈ X.

For b = 0 the assertion is trivial. Suppose that b > 0 and that the assertion is true

for smaller values of b. By the inductive hypothesis, we may pick constants d, t

and a function g : N → N such that, for every integer c, whenever G is a graph

such that

χ(d)(G) ≤ c

and

cl(G) ≤ k

and X ⊂ V (G) satisfies

χ(G[X]) ≥ g(c)

then we can find a (T b−12a , t)-structure in G, with all its endvertices in X. Increasing

t if necessary, we may assume t ≥ d. Let us note that any (T b−12a , t)-structure has

radius at most

D = (t+ 1)(b− 1). (7)

We show that, for every integer c, if

χ(3D+10)(G) ≤ c (8)

and

cl(G) ≤ k,

and X ⊂ V (G) satisfies

χ(G[X]) ≥M(c+ g(c)) (9)

for sufficiently large M (depending on T and k), then G contains a (T ba , 14D+42)-

structure.
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Suppose that G and X satisfy (8) and (9). Let T1, . . . , Tp be a maximal set of

(T b−12a , t)-structures in G with centres, say, x1, . . . xp, such that each Ti has all

endvertices in X and, for i 6= j,

d(xi, xj) ≥ 2D + 10. (10)

Note that V (Ti) ⊂ B(xi, D) for each i, so for i 6= j we have

d(Ti, Tj) ≥ 10.

Now consider

W =

p⋃
i=1

B(xi, 3D + 10). (11)

There are no (T b−12a , t)-structures in G with endvertices in X \W , or else T1, . . . , Tp

would not be maximal. (If Tp+1 were another such (T b−12a , t)-structure, with centre

xp+1, say, then since all endvertices of Tp+1 are contained in X \ W and the

radius of Tp+1 is at most D, we would have d(xp+1, X \ W ) ≤ D. Therefore

d(xi, xp+1) ≥ d(xi, X \W ) − d(xp+1, X \W ) ≥ 2D + 10, and so we could take

T1, . . . , Tp+1 instead of T1, . . . , Tp.) Thus, by the inductive hypothesis, we must

have

χ(G[X \W ]) < g(c)

and so

χ(G[W ]) ≥ χ(G[X])− χ(G[X \W ])

≥ (M − 1)(c+ g(c)). (12)

We now try to join some of the (T b−12a , t)-structures T1, . . . , Tp together to get a

(T ba , 14D + 42)-structure. We begin by showing that some xi is not too far from

M other vertices amongst x1, . . . , xp. Let µ be the following colouring of W : for

each x ∈W let

j(x) = min
i=1,...,p

{d(x, xi)}

and define

µ(x) = min{i : d(x, xi) = j(x)}.
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(Note that it follows from (11) that j(x) and µ(x) do not depend on whether

we take the distance in G or the distance in G[W ].) Let the µ-colour classes be

C1, . . . , Cp. It is easily checked that G[Ci] is connected for each i: indeed, if x ∈ Ci
and P is a path of length d(x, xi) from xi to x then V (P ) ⊂ Ci. Now from (8)

and (11) we have

χ(G[Ci]) ≤ c

for i = 1, . . . , p, since Ci ⊂ B(xi, 3D + 10). Let λi : Ci → [c] be a colouring of

G[Ci], for i = 1, . . . , p, and for x ∈W define

λ(x) = λµ(x)(x).

Thus adjacent vertices in W have the same λ-colour only if they are in different

µ-colour classes.

Now consider the graph H with vertices 1, . . . , p and an edge between i and j iff

e(Ci, Cj) > 0. (13)

If χ(H) < M , then let ν be a colouring of H with M − 1 colours. We get a proper

colouring of X by colouring each x ∈ X with the ordered pair

〈λ(x), ν(µ(x))〉.

Thus χ(G[W ]) ≤ c(M − 1), which contradicts (12). Therefore, χ(H) ≥M and so

some Ci satisfies (13) for at least M − 1 values of j.

Let us suppose

e(C1, Cj) > 0 (14)

for j = 2, . . . ,M .

The idea now is to take the (T b−12a , t)-structures T2, . . . , TM in C2, . . . , CM and

connect them together through C1. We know that G[Ci] is connected for each i;

it follows from (14) that G[C1 ∪ Ci] is connected for i = 2, . . . ,M . It also follows

from (10) and the definition of the Ci that there are no edges between C1 and

B(xi, D+ 3). Let Pi be a shortest path in G[C1 ∪Ci] from x1 to B(xi, D+ 2); by

(11) we have

|Pi| ≤ 5D + 19. (15)
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Suppose

Pi = x1 . . . wivi,

where d(wi, xi) = D + 3, and d(vi, xi) = D + 2. Let

S =
M⋃
i=2

V (Pi). (16)

Now it is clear from (10) and the definition of the Ci that Γ(vi) ∩ S = {wi} for

i = 2, . . . ,M , and d(vi, vj) ≥ 6 for i 6= j. It follows from (15) and (16) that

dG[S](x1, vj) ≤ 5D + 19. Applying Lemma 5 to G[S] (with an extra pendant

vertex attached to x1), we see that if

M > M(a+ 2, 5D + 19, k)

then G[S] contains an induced subdivision of the star K1,a+2 with endvertices from

w, v2, . . . , vM , and thus an induced subdivision U of K1,a+1 with endvertices from

v2, . . . , vM , where each edge is subdivided at most 5D + 19 times. Let the centre

of U be v; we may assume that U has endvertices v2, . . . , va+2. Then d(v, vi) < 3

for at most one i (since d(vi, vj) ≥ 6 for i 6= j), so we may assume

d(v, vi) ≥ 3 (17)

for i = 2, . . . , a+ 1.

U will form the centre of our induced subdivision of T ba . Our aim now is to join U to

T2, . . . , Ta+1. Recall that, by definition, d(vi, xi) = D + 2 and d(wi, xi) = D + 3.

Let Qi be a shortest path of the form wivi · · · yiti, where every vertex after vi

belongs to B(xi, D + 1) and ti ∈ V (Ti).

Now, since Ti is a (T b−12a , t)-structure, it has subtrees T ∗1 , . . . , T
∗
2a, where T ∗j is

joined to xi by a path Rj = xi · · ·x∗l of length at least three. Let U1, . . . , U2a

be the components of Ti \ {xi}, where V (T ∗j ) ⊂ V (Uj), for each j. We construct

an induced subdivision of T b−1a with its root joined by a path to yi. If yi has

neighbours in at most one of the Uj , say in Us, then delete Us and join yi to xi by

a shortest path P in G[{xi, yi} ∪ V (Us)]; our subdivision is induced by V (P ) and

any b − 1 sets from {V (Uj) : j 6= s}. Otherwise, yi has neighbours in more than
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one Ui. In this case, it follows from (6) that yi can have neighbours in at most one

T ∗i ; we may suppose yi has no neighbours in T ∗1 , . . . , T
∗
2a−1. If y has neighbours in

at most a− 1 of the Ui, say among U1, . . . , Ua−1, then join yi to xi by a shortest

path P in G[{xi, yi}∪
⋃a−1
i=1 Ui]; our subdivision is induced by V (P )∪

⋃2a−1
j=a V (Uj).

Otherwise, we may assume that yi has neighbours in U1, . . . , Ua. In this case, join

yi to T ∗j by a shortest path Sj in {yi} ∪ Uj , and take
⋃a
j=1(V (Sj) ∪ V (T ∗j )). It

is easily checked that for each i we obtain an induced subdivision of T b−1a , joined

to U by a path; adding U , we obtain an induced subdivision of T ba . Furthermore,

it follows from (7) and (15) that this induced subdivision is a (T ba , 14D + 42)-

structure.

We have now dealt with graphs that have low ‘local’ chromatic number. How will

a more general proof of Theorem 3 proceed? Well, our aim is to argue by induction

on |T |. Suppose we have proved the theorem for smaller trees: let

N = max{c(k, S) : S is a tree and |S| < |T |},

where c(k, S) is the minimum c satisfying Theorem 3. Let g, k, d be as in Lemma

6, and let G be a graph with large chromatic number.

How can we find an induced subdivision of T? If we have some X ⊂ V (G) such

that χ(G[X]) > g(χ(d)(G[X])) then we are done immediately by Lemma 6. We

are also done, by the inductive hypothesis, if χ(G[Γ(x)]) > c(k − 1, T ).

What other structures guarantee an induced copy of T? Let us call a subset

X ⊂ V (G) well-covered in G if for each x ∈ X there exists x′ ∈ V (G) \ X such

that Γ(x′)∩X = {x}. If we can find a well-covered subset X of V (G) that induces

a graph with chromatic number at least N , then G[X] contains an induced copy

of T \ {t}, where t is an endvertex of T . However, since X is well-covered, we can

add a vertex from V (G) \X to get an induced copy of T .

What do we do if none of these structures can be found in G? The next lemma

says that, provided that a ball around some vertex has high enough chromatic

number, then we can build a tree from that vertex.
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Lemma 7. Let T be a tree, let g:N → N be an unbounded increasing function

and let N , L, d be constants. Let G be a graph such that

χ(G[B(x, 1)]) < N (18)

for every x ∈ G, such that no well-covered subset X ⊂ V (G) satisfies

χ(G[X]) > L (19)

and such that whenever H is an induced subgraph of G, we have

χ(H) < g(χ(d)(H)). (20)

Then there exist constants C(T,N,L, d) and t(T, d) such that if, for some x ∈
V (G),

χ(G[BG(x, d)]) > C,

then there exists an induced subdivision of T , or T with a pendant vertex, that

contains x, and in which each edge is subdivided at most t times.

Proof. We prove this for trees of form T ba by induction on b = rad(T ), with the

additional condition that x corresponds to the root of T ba or else corresponds to a

pendant vertex added to the root of T ba .

For b = 0 the result is trivial. Suppose b > 0, and we have proved the lemma for

smaller values of b. As in Lemma 6, we remark that T can be decomposed into

a copies of T b−1a with their centres joined to a central vertex y. The idea of the

proof is to take copies of T b−1a rooted in SG(x, i), for some i < d, and join them

together in BG(x, i− 1).

Let C0 = C(T b−1a , N, L, d+ 1), and let C be a large constant. Suppose

χ(G[BG(x, d)]) > C,

so for some d0 ≤ d,

χ(G[SG(x, d0)]) ≥ C/2, (21)
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since

χ(G[BG(x, d)]) ≤ max
i=1,...,d

(χ(G[SG(x, i)]) + χ(G[SG(x, i− 1)])).

Let X = SG(x, d0), and let T1 ⊂ SG(x, d0 − 1) be minimal such that

|Γ(x) ∩ T1| > 0

for all x ∈ X. By minimality of T1, for each s ∈ T1 we can find xs ∈ X such that

Γ(xs) ∩ T1 = {s}.

Define U1 = {xs : s ∈ T1}.

We define sets T1, . . . , Tp and U1, . . . , Up as follows. Given the sets T1, . . . , Tj and

U1, . . . , Uj , if
⋃j
i=1 Ui = X then set p = j and stop. Otherwise, let Xj = X \⋃j

i=1 Ui, and let Tj+1 ⊂ Tj be minimal such that |Γ(x)∩ Tj+1| > 0 for all x ∈ Xj .

As before, for each y ∈ Tj+1 we can find xy ∈ Xj such that Γ(xy) ∩ Tj+1 = {y}.
Define

Uj+1 = {xy : y ∈ Tj+1}.

Clearly, for each j, Uj is well-covered in G by Tj , so by (19) we have

χ(G[Uj ]) ≤ L. (22)

Furthermore, since Tj ⊃ Tj+1 ⊃ · · · it follows that every vertex x ∈ Uj has at

most one neighbour in Ti for i ≥ j. We know from (21) that

χ(G[

p⋃
j=1

Uj ]) = χ(G[X]) ≥ C/2,

and from (22) that, for each l,

χ(G[

l+1⋃
j=1

Uj ]) ≤ χ(G[

l⋃
i=1

Uj ]) + χ(G[Ul+1])

≤ χ(G[
l⋃

j=1

Uj ]) + L.
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Let s be minimal such that

χ(G[
s⋃
j=1

Uj ]) ≥ g(C0) (23)

(s is well-defined provided C is sufficiently large) and let

Y1 =
s⋃
j=1

Uj .

Our aim now is to find (a subdivision of) an induced copy of T b−1a with one vertex

(its root, or a pendant vertex attached to its root) in T1 and the remainder of its

vertices in Y1. Now from (22) and (23) it follows that

g(C0) ≤ χ(G[Y1]) ≤ g(C0) + L. (24)

By (20), we have χ(G[Y1]) < g(χ(d)(G[Y1])), and so, for some y ∈ Y1,

χ(BG[Y1](y, d)) > C0.

Pick z1 ∈ Γ(y) ∩ T1, and consider H = G[{z1} ∪ X]. Since BH(z1, d + 1) ⊃
BG[Y1](y, d) we have χ(BH(z1, d + 1)) > C0. Thus by our inductive hypothesis,

we can find an induced subdivision of T b−1a in H such that z1 corresponds to its

root, or an induced subdivision of T b−1a with a pendant vertex corresponding to

z1 added to its root, where each edge has been subdivided at most t(T b−1a ) times.

Call this H1. Note that H1 has at most

h = (|T b−1a |+ 1)(t(T b−1a ) + 1)

vertices.

We want now to define further induced trees H2, H3, . . ., with roots z2, z3, . . ., such

that there is no edge in G between Hi \ zi and Hj \ zj for i 6= j. Thus we will have

to avoid the vertices adjacent to H1 \ z1. With this in mind, we define

S1 =

V (H1) ∪
⋃

x∈V (H1)

Γ(x)

 ∩X
S2 = {x ∈ Ts+1 : |Γ(x) ∩ V (H1) \ {z1}| > 0} (25)

S3 =
⋃
x∈S2

Γ(x) ∩X.
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Clearly, by (18),

χ(G[S1]) ≤
∑

x∈V (H1)

χ(G[(Γ(x) ∩X) ∪ {x}])

≤
∑

x∈V (H1)

χ(G[B(x, 1)])

≤ hN.

Now |S2| ≤ h, since each x ∈ V (H1) \ {z1} belongs to Ul for some l ≤ s, and so

since (as remarked above) Tl ⊃ Ts+1 we have

|Γ(x) ∩ Ts+1| ≤ |Γ(x) ∩ Tl| = 1.

Thus |S2| ≤ |H1| = h, and so by (18) we have

χ(G[S3]) ≤
∑
x∈S2

χ(G[Γ(x) ∩X])

≤ hN.

Now define

X ′ = X \ (Y1 ∪ S1 ∪ S3)

and let T ′1 ⊂ Ts+1 \ S2 be a minimal cover for X ′. We have by (24) that

χ(G[X ′]) ≥ C

2
− χ(G[Y1])− χ(G[S1])− χ(G[S3])

≥ C

2
− g(C0)− L− 2hN.

Provided C ≥ 2M(a, d+1, k)(g(C0)+L+2hN), we can repeat the process M(a, d+

1, k) times, to get induced subdivisions H1, . . . ,HM(a,d+1,k) of T b−1a+1 rooted at

zi ∈ S(x, i− 1), or with root joined to zi by a path of length at most t(T b−1a+1 ), and

all remaining vertices in S(x, i). By the definition of (25), the only possible edge

between Hi and Hj , for i 6= j, is zizj . Applying Lemma 5 to the graph formed

by joining x to z1, . . . , zM(a,d+1,k) by shortest paths (and adding a pendant vertex

to the zi), we get the required induced subdivision of T ba , or T ba with a pendant

vertex, with each edge subdivided at most

2t(T b−1a+1 ) + 2d

times.
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Theorem 3 now follows easily by a double induction on k and T . Indeed, for k = 1

the result is immediate. Suppose k > 1 and we know the result for smaller values

of k (for all T ), and for k and smaller trees. As remarked above, if

χ(G[BG(x, 1)]) > c(k − 1, T )

for any x ∈ V (G), or we have a well-covered subset X ⊂ V (G) with

χ(G[X]) > c(k, T \ {x}),

where x is an endvertex of T , then we are done. By Lemma 6, there are constants

t and d, and a function g, such that if

χ(G[X]) ≥ g(χ(d)(G[X])) (26)

for any X ⊂ V (G), then G contains an induced subdivision of T with each edge

subdivided at most t times. If (26) is not satisfied for any X ⊂ V (G), and

χ(G) > g(C(T,N,L, d)), then

χ(G[BG(x, d)]) > C(T,N,L, d)

for some x ∈ V (G). But then Lemma 7 gives us the required induced subdivision

of T .

§3. Remarks

We can actually strengthen Theorem 3 slightly, in that we can take t to be de-

pendent only on the radius of T . In other words, for every integer r there is an

integer t(r) such that, for any tree T of radius r and any integer k, every graph

with sufficiently large chromatic number contains a copy of Kk or else an induced

copy of T in which each edge is subdivided at most t times. This follows with

fairly easy modifications to the proofs of Lemmas 5, 6 and 7.

The bounds for t that follow from the proof above are rather large, and grow

exponentially in |T |. It would be interesting to give a smaller bound.
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We believe that the methods we have developed here should have further applica-

tion. Motivated by the Strong Perfect Graph Conjecture, Gyárfás [6] has made a

number of conjectures about χ-bounded families of graphs. For any integer m, let

Hm = {C2m+1, C2m+3, . . .}

and

Cm = {Cm, Cm+1, . . .}.

Gyárfás conjectured that Forb(H2) is χ-bounded and that Forb(Cm) is χ-bounded

for m ≥ 4. (Forb(C4) is the family of triangulated graphs, which is known to be

perfect.) He also made the stronger conjecture that Forb(Hm) is χ-bounded for

m ≥ 2. We have so far been able to prove only that Forb(H2∪Cm) is χ-bounded for

every integer m, but hope that our methods can be exploited for further questions

of this type.

All the conjectures mentioned above ask whether, for some family F of graphs,

Forb(F) is χ-bounded; clearly, many similar questions can be asked. In particular,

the case when F consists of the subdivisions of a single graph H, so that Forb(F) =

Forb∗(H), seems interesting: Theorem 1 deals with the case when H is a tree, and

one of the conjectures of Gyárfás concerns Forb(Cm) = Forb∗(Cm). We make the

following stronger conjecture.

Conjecture 8. Forb∗(H) is χ-bounded for every graph H.
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