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0. Introduction

The problem of finding good lower bounds on the size of the largest bipartite subgraph

of a given graph has received a fair amount of attention. In particular, improving a result

of Erdős ([10]; see also [11] for related problems), Edwards [9] proved the essentially best

possible assertion that every graph with n vertices and m edges has a bipartite subgraph

with at least m/2 + (n − 1)/4 edges. More recently, Andersen et al [1] and Erdős et al

[12] gave lower bounds for the size of the largest k-partite subgraph of a given graph, and

Shearer [18] and Ngoc and Tuza [15] gave bounds for the lowest bipartite subgraph of a

triangle free graph. Various algorithms for finding large k-partite subgraphs have been

considered in [16], [17] and [15].

In this paper we consider a naturally related question. Given a graph G, we again

consider partitions V1, . . . , Vk of V (G) into k sets. We ask, however, for the minimal value

of max1≤i≤k e(G[Vi]). Thus we seek a partition of V (G) in which every class induces

relatively few edges, in contrast to the problem of finding the largest k-partite subgraph

of a given graph G, which asks for a partition in which the total number of edges induced

by the classes is small.

As we shall see, the nature of the problem depends on the size of the graph. Our

first aim in this paper is to prove a bound valid for all graphs: although the bound is best

possible, the only graphs on which it is attained are very small. Our other aim is to prove

a much better and essentially best possible bound for graphs with many edges.

In §1 we shall give our exact result: for any k, and for any graph G, there is a partition

V (G) =
⋃k

i=1 Vi such that e(G[Vi]) ≤ e(G)/
(
k+1
2

)
for i = 1, . . . , k. For a given value of k.

this inequality is best possible. The improvement for graphs with many edges will be given

in §2: as we shall see, the upper bound can almost be halved. In fact, we can even demand
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that e(G[Vi]) be fairly close to e(G)/k2, for i = 1, . . . , k, and that e(Vi, Vj) be fairly close

to 2e(G)/k2, for 1 ≤ i < j ≤ k. The section also contains sharper results in the case when

G is regular and in the case when we restrict only e(G[Vi]), for i = 1, . . . , k.

We use standard notation, as in [5], say. For a graph G and a set W ⊂ V (G) we

write G[W ] for the subgraph of G induced by W and, when it is unambiguous, e(W ) for

e(G[W ]). For disjoint sets W1,W2 ⊂ V (G) we write e(W1,W2) for |{xy : x ∈ W1, y ∈
W2, xy ∈ E(G)}|.

1. A universal bound

Given a graph G, it is easy to find a bipartition V (G) = V1 ∪ V2 for which both

e(V1) and e(V2) are small. Indeed every graph G has a so-called unfriendly partition ,that

is a partition of V (G) into sets V1 and V2 so that |Γ(x) ∩ V2| ≥ |Γ(x) ∩ V1| for x ∈ V1

and |Γ(x) ∩ V1| ≥ |Γ(x) ∩ V2| for x ∈ V2. As we shall note below, such a partition

has max{e(V1), e(V2)} ≤ e(G)/3. More general restrictions for bipartitions have been

considered in [8] and [4], and the analogous problem for infinite graphs has been studied

in [2] and [19].

The aim of this section is to prove the following result.

Theorem. For any positive integer k and any graph G, we can partition the vertex set

of G into k sets V1, . . . , Vk so that

e(Vi) ≤
2

k(k + 1)
e(G)

for i = 1, . . . , k. This is best possible for all values of k.

Proof. The bound is easily seen to be best possible by considering Kk+1, the complete

graph on k+ 1 vertices. Any partition of this into k parts gives one part with at least two

vertices and thus at least one edge, which is 2
k(k+1)e(G).

We prove that any graph G can be partitioned into k sets, each inducing a subgraph

with at most 2
k(k+1)e(G) edges, by induction on k.

For k = 1 the theorem is trivial. If k = 2, then let V (G) = V1 ∪ V2 be a partition

with e(V1, V2) maximal. We may assume e(V1) ≥ e(V2). Now if x ∈ V1 then |Γ(x) ∩ V1| ≤
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|Γ(x) ∩ V2|, since otherwise (V1 \ {x}, V2 ∪ {x}) contradicts our choice of (V1, V2). Thus

e(V1, V2) =
∑
x∈V1

|Γ(x) ∩ V2| ≥
∑
x∈V1

|Γ(x) ∩ V1| = 2e(V1).

Therefore

e(G) ≥ e(V1) + e(V1, V2) ≥ 3e(V1). (1)

Since e(V1) ≥ e(V2) we have e(Vi) ≤ e(G)/3 for i = 1, 2, as required. Note that we have

e(V1) + e(V2) ≤ e(V1, V2), so e(V1) + e(V2) ≤ e(G)/2.

Now let k ≥ 3, and assume that the theorem is true for smaller values of k. Let

V (G) = V1 ∪ · · · ∪ Vk be a partition minimizing
∑k

i=1 e(Vi). We assume e(V1) ≥ e(V2) ≥
· · · ≥ e(Vk). If x ∈ V1 then |Γ(x)∩ V1| ≤ |Γ(x)∩ Vi| for i = 2, . . . , k, or else moving x from

V1 to Vi gives a better partition. Thus, as before, for 1 = 2, . . . , k, we must have

e(V1, Vi) ≥ 2e(V1). (2)

Let G′ = G[V2 ∪ · · · ∪ Vk]. We are done if

e(G) ≥
(
k + 1

2

)
e(V1),

which is true if

e(G′) ≥
(
k + 1

2

)
e(V1)− e(V1)−

k∑
i=2

e(V1, Vi).

Now, by (2),

(
k + 1

2

)
e(V1)− e(V1)−

k∑
i=2

e(V1, Vi) ≤
k(k + 1)

2
e(V1)− e(V1)− 2(k − 1)e(V1)

=
(
k − 1

2

)
e(V1).

Thus we are done if

e(G′) ≥
(
k − 1

2

)
e(V1),

and so we may assume that

e(G′) <
(
k − 1

2

)
e(V1). (3)
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Since the theorem holds for k = 2, we can partition V1 into V ′1 ∪ V ′2 so that

max{e(V ′1), e(V ′2)} ≤ e(V1)/3;

furthermore, by our inductive hypothesis, we can partition G′ into k− 2 sets V ′3 , . . . , V
′
k in

such a way that, for i = 3, . . . , k,

e(V ′i ) ≤ e(G′)/
(
k − 1

2

)
.

We claim that this partition will do.

To see this, note that (3) implies that, i = 3, . . . , k,

e(V ′i ) < e(V1), (4)

and so, by (2)-(4), we have

e(G) = e(V1) +
k∑

i=2

e(V1, Vk) + e(G′)

> e(V ′i ) + 2(k − 1)e(V ′i ) +
(
k − 1

2

)
e(V ′i )

=
(
k + 1

2

)
e(V ′i ).

It remains only to check that max{e(V ′1), e(V ′2)} ≤ 2
k(k+1)e(G). Now e(V ′i ) ≤ e(Vi)/3, for

i = 1, 2, so it is enough to prove that

e(V1) ≤ 6
k(k + 1)

e(G). (5)

We claim that, for 1 < i < j,

e(Vi, Vj) ≥ e(V1)/2. (6)

Indeed, otherwise we can partition V1 into V ′1 ∪V ′i so that e(V ′1) + e(V ′i ) ≤ e(V1)/2 and by

setting V ′j = Vi ∪Vj , and V ′l = Vl for l 6= 1, i, j we get a better partition. Therefore, by (2)

and (6),

e(G) ≥ e(V1) +
k∑

i=2

e(V1, Vi) +
∑

1<i<j

e(Vi, Vj)

≥ e(V1) + 2(k − 1)e(V1) +
1
2

(
k − 1

2

)
e(V1)

=
k2 − 5k + 2

4
e(V1).
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This implies (5), since
k2 − 5k + 2

4
>
k(k + 1)

6

for all positive integers k. Thus the partition (V ′1 , . . . , V
′
k) will do, as claimed.

Although the bound in Theorem 1 is best possible, it can be improved for every graph

other than Kk+1. Indeed, for k = 2, it is clear that we have equality in (1) only for G = K3;

for larger values of k we can work through the rest of the proof inductively. In fact, if G

has many edges then one can do considerably better than Theorem 1; this will be done in

the next section.

2. Bounds for large graphs

What can one hope to prove as an upper bound for the number of edges in each of

the k vertex classes of our partition, if our graph has many edges?

Given a graph G, let us pick a random partition V1, . . . , Vk of V (G). Clearly we have

E(
∑k

i=1 e(Vi)) = e(G)/k, and so
∑k

i=1 e(Vi) ≤ e(G)/k for some V1, . . . , Vk. Bounding

max1≤i≤k e(Vi) is more difficult. Ideally, we would like e(Vi) to be close to e(G)/k2 for

i = 1, . . . , k. We cannot in general hope for more, as can be seen by considering the

complete graph on n vertices for n large, or by making use of random regular graphs. In

fact, for a given value of k, and r sufficiently large, almost every r-regular graph is such

that we cannot improve the bound in Theorem 1 by more than about a factor of 2. As we

shall see, this can in fact be achieved if the graph has many edges.

The proofs of our results in this section will be based on the following immediate

consequence of the Azuma-Hoeffding inequality ([3], [13]; see also [6], [7], [14]).

Theorem 2. Let G be a graph with vertex set V (G) = {v1, . . . , vk}, let X1, . . . , Xn be

independent random variables taking values in [k] = {1, . . . , k}, and let X = (X1, . . . , Xn).

Suppose f : [k]n → N satisfies

|f(Y )− f(Y ′)| ≤ d(vi) (7)
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whenever the vectors Y and Y ′ differ only in the ith coordinate. Then for any t > 0,

P(X − E(X) ≥ t) ≤ exp(−2t2/
k∑

i=1

d(vi)2)

P(X − E(X) ≤ −t) ≤ exp(−2t2/
k∑

i=1

d(vi)2).

Note that in Theorem 2 the random variable X is just a random k-colouring of V (G),

and f is a function defined on the set of k-colourings of G. In our applications below, the

Xi will all be uniformly distributed unless otherwise stated.

Our first result guarantees a partition V (G) =
⋃k

i=1 Vi in which the e(Vi) and e(Vi, Vj)

are neither too small nor too large, i.e. they are all close to their expectations in a random

partition.

Theorem 3. Let G be a graph with n vertices, m edges and maximal degree ∆. Then

we can partition the vertex set of G into k sets V1, . . . , Vk so that∣∣∣e(Vi)−
m

k2

∣∣∣ ≤ R (8)

and ∣∣∣∣e(Vi, Vj)− 2m
k2

∣∣∣∣ ≤ R (9)

for i 6= j, where

R = min
{

(∆m log(2k2))1/2,
2∆
k

+ (6m)4/5(log(2k2))2/5

}
.

Proof. We prove first that we may take R ≤ (∆m log(2k2))1/2. Let X = (X1, . . . , Xn) be

a random k-colouring of V (G) = {v1, . . . , vn}, and let Cr = {vj : Xj = r}, for r = 1, . . . , k.

We define functions

fi = e(Ci),

for i = 1, . . . , k, and

gij = e(Ci, Cj),

for 1 ≤ i < j ≤ k. Note that Efi = m/k2 for i = 1, . . . , k and Egij = 2m/k2 for

1 ≤ i < j ≤ k, and all these functions satisfy the condition (7) of Theorem 2. Then in
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order to prove the first part of the theorem, it is enough to show that, for some X, all the

fi and gij are within (∆m log(2k2))1/2 of their expectation. Indeed, applying Theorem 2,

P
(
|fi − Efi| ≥ (∆m log(2k2))1/2

)
< 2 exp

(
−2(∆m log(2k2))

/ n∑
i=1

d(vi)2
)

≤ 2 exp

(
−2∆m log(2k2)

/
∆

n∑
i=1

d(vi)

)

=
1
k2
.

for i = 1, . . . , k. Similarly,

P
(
|gij − Egij | ≥ (∆m log(2k2))1/2

)
<

1
k2
.

Thus a random k-colouring X fails (8) for a given colour with probability strictly less than

1/k2, and fails (9) for a given pair of colours with probability strictly less than 1/k2, so

the probability that X fails at all is strictly less than k(1/k2) +
(
k
2

)
(1/k2) = 1. Therefore,

there some colouring that works for all colours and pairs of colours.

For the second part, we prove a slightly stronger bound, namely that we may take

R ≤ 2∆
k

+ (2m)4/5(log(2k2))2/5 + 2(2m)2/5(log(2k2))1/5 + 1.

We may assume that V (G) = {v1, . . . vn} satisfies d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

Let r be minimal such that

r2

2
≥
(

1
2

log(2k2)
)1/2

(
n∑

i=r+1

d(vi)2
)1/2

. (10)

Note that

(r − 1)4 ≤ 2 log(2k2)
n∑

i=r

d(vi)2

≤ 2 log(2k2)d(vr)
n∑

i=r

d(vi)

≤ 2(log(2k2))2m2/r,

since d(vr) ≤ 2m/r. Thus

r − 1 ≤ (2m)2/5(log(2k2))1/5.
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Let S1 be the r vertices of highest degree, and S2 = V (G) \ S1. Then e(S1) ≤
(
r
2

)
: let

m0 = m− e(S1). We can partition S1 into classes C1, . . . , Ck in such a way that

max
i 6=j

∣∣∣∣∣∣
∑
v∈Ci

|Γ(v) ∩ S2| −
∑

v∈Cj

|Γ(v) ∩ S2|

∣∣∣∣∣∣ ≤ ∆.

Let X = (Xr+1, . . . , Xn) be a random k-colouring of {vr+1, . . . , vn}, and Dj = {vi : Xi =

j}, for j = 1, . . . , k. We define functions

fi = e(Ci, Di) + e(Di)

for i = 1, . . . , k and

gij = e(Ci ∪Di, Cj ∪Dj)− e(Ci, Cj)

for 1 ≤ i < j ≤ k. It is easily seen that∣∣∣E(fi)−
m0

k2

∣∣∣ ≤ ∆
k

for i = 1, . . . , k, and ∣∣∣∣E(gij)− 2m0

k2

∣∣∣∣ ≤ 2∆
k
.

for 1 ≤ i < j ≤ k, and that all the fi and gij satisfy condition (7) in Theorem 2. Therefore,

applying the theorem, we get

P
(
|fi − Efi)| >

r2

2

)
< 2 exp

(
−2(r2/2)2

/ n∑
i=r+1

d(vi)2
)
≤ 1
k2
,

and, similarly,

P
(
|gi,j − E(gij)| > r2

2

)
<

1
k2
.

Thus some colouring must satisfy∣∣∣e(Ci ∪Di)−
m

k2

∣∣∣ ≤ ∆
k

+ r2,

for i = 1, . . . , k, and ∣∣∣∣e(Ci ∪Di, Cj ∪Dj)− 2m
k2

∣∣∣∣ ≤ 2∆
k

+ r2,

for 1 ≤ i < j ≤ k.
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If G is a regular graph then we can prove a somewhat stronger assertion.

Theorem 4. If G is a regular graph, say every vertex has degree d, then we may take

R =
(

1
2
nd log(2k2)

)1/2

in Theorem 3.

Proof. Using the notation of the first part of the proof of Theorem 3, we have

P

(
|fi −

m

k2
| ≥

(
1
2
nd log(2k2)

)1/2
)
< 2 exp

(
−2(

1
2
nd log(2k2))1/2

/ n∑
i=1

d(vi)2
)

= 2 exp(−nd log(2k2)1/2/nd)

= 1/k2,

for each fi. The argument is similar for gij .

Finally, we can prove a sharper result when we bound e(Vi), i = 1, . . . , k, only from

above.

Theorem 5. Let G be a graph with n vertices, m edges and maximal degree ∆. Then

we can partition the vertex set of G into k sets V1, . . . , Vk so that

e(Vi) ≤
m

k2
+R

for i = 1, . . . , k, where

R = min
{

(∆m log k)1/2, (3m)4/5(log k)2/5
}
.

Proof. We prove first that we may take R ≤ (∆m log k)1/2. Let X = (X1, . . . , Xn) be a

random k-colouring of V (G) = {v1, . . . , vn} and let Ci = {vj :Xj = i}, for i = 1, . . . , k. We

define

fi = e(Ci)
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for i = 1, . . . , k. Then applying Theorem 2, we get

P(fi ≥
m

k2
+ (∆m log k)1/2) < exp

(
−2(∆m log k)

/ n∑
i=1

d(vi)2
)

≤ exp

(
−∆m log k

/
∆

n∑
i=1

d(vi)

)
= 1/k.

The probability that a random colouring will fail for a given class is smaller than 1/k, so

some colouring must work for every class.

As in Theorem 3, we prove a slightly stronger result for the second part, namely that

we may take

R ≤ (2m)4/5(log k)2/5 + 2(2m)2/5(log k)1/5 + 1.

This is sharper than the bound above, except for small values of m, when we can apply

Theorem 1. Let r be minimal so that

r2

2
≥ (

1
2

log k)1/2

(
n∑

i=r+1

d(vi)2
)1/2

. (11)

Let S1 be the r vertices of highest degree and S2 = V (G) \ S1. We k-colour S2 randomly

by giving each vertex colour 1 with probability p and colour i with probability q, for

i = 2, . . . , k, where p+ (k − 1)q = 1. Let X = (Xr+1, . . . , Xn) be our random k-colouring

and C1, . . . , Ck be the colour classes. Define

f1 = e(C1) + e(S1, C1)

and

fi = e(Ci),

for i = 2, . . . , k. Note that fi satisfies condition (7) in Theorem 2, for i = 1, . . . , k. Let

m0 = m− e(S1) and A = e(S1, S2). Then

E(f1) = p2(m0 −A) + pA

and

E(fi) = q2(m0 −A),
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for i = 2, . . . , k. From (11) we know that

P
(
fi > E(fi) +

r2

2

)
< exp

(
−2(r2/2)2

/ n∑
i=r+1

d(vi)2
)

≤ 1
k

Hence, in order to prove the theorem, it suffices to show that with an appropriate choice

of p and q, the expectation E(fi) is at most m/k2, for i = 1, . . . , k. In fact, we shall show

that, with suitable p and q,

E(fi) ≤ m0/k
2,

where m0 = m− e(S1). We choose p and q to satisfy

p2(m0 −A) + pA = q2(m0 −A). (12)

Then in order to have E(fi) ≤ m0/k
2 for i = 1, . . . , k, it is enough that

q2(m0 −A) ≤ m0/k
2. (13)

Setting a = A/m0, we can rewrite (12) and (13) as

p2(1− a) + pa = q2(1− a) (14)

k2q2(1− a) ≤ 1. (15)

Relation (14) is satisfied by

q =
(k − 1)(2− a)− α
2(k2 − 2k)(1− a)

,

where α = [(k−1)2(2−a)2−4(k2−2k)(1−a)]1/2. Then from (15) we see that it is enough

to prove that

2(k − 1)2(2− a)2 − 2(k − 1)(2− a)α− 4(k2 − 2k)(1− a)
4(k − 2)2(1− a)

≤ 1;

in other words, that

(k − 1)(2− a)2 − 4(k − 2)(1− a) ≤ (2− a)α.

Squaring this, we get that it suffices to have

4(2− a)2(k2 − 2k)(1− a) + 16(k − 2)2(1− a)2 ≤ 8(k − 1)(k − 2)(2− a)2(1− a);
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that is

(2− a)2k + 4(k − 2)(1− a) ≤ 2(k − 1)(2− a)2,

which is equivalent to

4(k − 2)(1− a) ≤ (k − 2)(2− a)2,

which is always true for k ≥ 2.

Therefore there is some k-colouring C1 ∪ S1, C2, . . . , Cp of V (G) with at most(
r

2

)
+
(

E(fi) +
r2

2

)
<
m

k2
+ r2

edges in each colour class.

This will do, since from (11) we get

r ≤ (2m)2/5(log k)1/5 + 1.

Let us note that in Theorems 3, 4 and 5, we could also demand that the vertex classes

in our partition V (G) = V1∪ · · ·∪Vk all be roughly the same size. This would change only

the constants in the error term R.

With more work, it would be easy to improve all the constants in this section. It

should also be possible to improve the bounds for graphs of medium size: at present,

Theorem 1 gives a good bound for graphs with few edges, and the theorems in this section

give good bounds for graphs with many edges. It seems likely, for instance, that for any i,

and for large enough k, for any graph G with more than
(
k+1
2

)
+ i edges, we could ask for

a partition V (G) = V1 ∪ · · · ∪ Vk with

e(Vi) ≤
e(G)(

k+1
2

)
+ i

,

for i = 1, . . . , k.

It should also be possible to produce weighted versions of all the above theorems.

For k = 2, it is easily proved that if a, b > 0, then for any graph G there is a partition

V (G) = V1∪V2 such that e(V1) ≤ ae(G)/(a+2b) and e(v2) ≤ be(G)/(2a+b). Higher values

of k are more complicated. We also have the following weighted analogue of Theorem 5.
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Let p1, . . . , pk be positive reals satisfying
∑k

i=1 pi = 1. Let G be a graph with n vertices,

m edges and maximal degree ∆. Then we can partition the vertex set of G into k sets

V1, . . . , Vk so that e(Vi) ≤ (pim/k)+R, where R is an error term similar to that in Theorem

5. This assertion can be proved by slightly modifying the proof of that theorem; the details

are left to the reader.
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