Proof of the Kalai-Meshulam conjecture

Maria Chudnovsky¹ Princeton University, Princeton, NJ 08544

 $\label{eq:Alex Scott} Alex \ Scott^2$ Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour³ Princeton University, Princeton, NJ 08544

Sophie Spirkl⁴ Princeton University, Princeton, NJ 08544

June 4, 2018; revised April 29, 2019

 $^1 \rm Supported$ by NSF Grant DMS-1763817. This material is based upon work supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant number W911NF-16-1-0404. $^2 \rm Supported$ by a Leverhulme Trust Research Fellowship.

³Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

⁴Current address: Rutgers University, New Brunswick, NJ 08901

Abstract

Let G be a graph, and let f_G be the sum of $(-1)^{|A|}$, over all stable sets A. If G is a cycle with length divisible by three, then $f_G = \pm 2$. Motivated by topological considerations, G. Kalai and R. Meshulam [8] made the conjecture that, if no induced cycle of a graph G has length divisible by three, then $|f_G| \leq 1$. We prove this conjecture.

1 Introduction

In the late 1990's, G. Kalai and R. Meshulam [8] made an intriguing sequence of conjectures about the connections between induced cycle lengths, chromatic number, and the number of stable sets of different parities in a graph.

A graph is *ternary* if no induced cycle has length a multiple of three; thus, ternary graphs have no triangles. (All graphs in this paper are finite and have no loops or parallel edges.) First, Kalai and Meshulam conjectured:

1.1 There exists c such that every ternary graph is c-colourable.

This was proved by Bonamy, Charbit and Thomassé [1], for some large constant c (although it may be that all ternary graphs are 3-colourable, and this remains open). A much stronger result was later proved by two of us [9]: that for all integers $p, q \ge 0$, every graph with bounded clique number and with no induced cycle of length p modulo q has bounded chromatic number.

Second, Kalai and Meshulam conjectured:

1.2 For every ternary graph, the number of stable sets with even cardinality and the number with odd cardinality differ by at most one.

This has remained open, and we prove it in this paper.

Two further conjectures of Kalai and Meshulam were proved in [9]. The stronger of these conjectures stated that for all k there exists c, such that, if for every induced subgraph of G the number of even stable sets and the number of odd ones differ by at most k, then G is c-colourable. This follows from a generalization of the strengthening of 1.1 mentioned above.

A final Kalai-Meshulam conjecture concerns Betti numbers and ternary graphs. The *independence* complex I(G) of a graph G is the simplicial complex whose faces are the stable sets of vertices of G. Let b_i denote the *i*th Betti number of I(G) and let b(G) denote the sum of the Betti numbers.

1.3 Conjecture: A graph G is ternary if and only if $|b(H)| \leq 1$ for every induced subgraph H.

Let $f_G(\emptyset)$ denote the number of even stable sets in G minus the number of odd ones. If $|b(H)| \leq 1$ for every induced subgraph H, then G has no induced cycle of length divisible by 3, since b(H) = 2for every cycle H of length divisible by three. For the converse, suppose G has no such induced cycle. Then by 1.2, $|f_G(\emptyset)| \leq 1$, but we need to prove that $b(G) \leq 1$. Now $f_G(\emptyset)$ is the Euler characteristic of I(G), and in particular there is a connection between $f_G(\emptyset)$ and b(G). It is a basic theorem from homology theory that the Euler characteristic of I(G) is the alternating sum of the Betti numbers of I(G) (see [6]). It follows that $|f_G(\emptyset)| \leq b(G)$; but this inequality is in the wrong direction for us, and the conjecture remains open.

We mention a few other related results:

- Chen and Saito [3] proved that every non-null graph with no cycle of length divisible by three (not just induced cycles) has a vertex of degree at most two (and so all such graphs are 3-colourable).
- G. Gauthier [5] found an explicit construction for all graphs with no cycle of length divisible by three.

- D. Král' asked (unpublished): is it true that in every ternary graph with an edge, there is an edge *e* such that the graph obtained by deleting *e* is also ternary? This would have implied that all ternary graphs are 3-colourable, but has very recently been disproved; a counterexample was found by M. Wrochna. (Take the disjoint union of a 5-cycle and a 10-cycle, and join each vertex of the 5-cycle to two opposite vertices of the 10-cycle, in order.)
- The difference between the numbers of odd and even stable sets has also appeared in statistical physics. Let us define the polynomial

$$I_G(z) = \sum_I z^{|I|},$$

where the sum is over stable sets I in G. This polynomial is known in combinatorics as the *independent set polynomial* and statistical physics as the *partition function of the hard-core lattice gas* (see, for instance, [10]). We see that $I_G(-1)$ is the number of even stable sets minus the number of odd stable sets. The question of when $|I_G(-1)| \leq 1$ has been the focus of considerable study, particularly on the square lattice (see [2, 4, 7]).

If G is a graph, and X, Y are disjoint subsets of V(G), let $f_G(X,Y)$ be the sum of $(-1)^{|A|}$, summed over all stable sets A in G that include X and are disjoint from Y. Our main theorem states:

1.4 If G is ternary then $|f_G(\emptyset, \emptyset)| \leq 1$.

The proof of 1.4 is by induction on |V(G)|, and it follows easily that if G is a minimum counterexample then $f_G(\emptyset, \emptyset) = \pm 2$. It is very helpful to know the value of $f_G(\emptyset, \emptyset)$, and so the proof breaks into two cases, depending whether this value is 2 or -2. The proof for the second is obtained from the first proof by negating f_G throughout, and we would like to say "we may assume that $f_G(\emptyset, \emptyset) = 2$ without loss of generality"; but this gives us a difficulty, because negating f_G does not give a function that equals f_H for some graph H. We overcome this as follows.

Let G be a graph, and with f_G as before, let us say the functions f_G and $-f_G$ are counters on G. We will prove that if G is ternary and g is a counter on G, then $|g(\emptyset, \emptyset)| \leq 1$. Now we are free to replace g by its negative if that is convenient.

We will frequently need to talk about g(X, Y) when $Y = \emptyset$; so often that it is worthwhile to make a special convention for it. We define $g(X) = g(X, \emptyset)$ (and the same for f_G).

If g is a counter on G, we say g is a good counter if for all disjoint $X, Y \subseteq V(G)$ with $X \cup Y \neq \emptyset$:

- $|g(X,Y)| \le 1$; and
- $|g(X \cup \{u\}, Y) g(X \cup \{v\}, Y)| \le 1$ for all $u, v \in V(G) \setminus (X \cup Y)$.

In section 3, we show that:

1.5 If g is a good counter on a graph G, then $|g(\{u\}) - g(\{v\})| \le 1$ for all $u, v \in V(G)$.

Then in section 4, we show that:

1.6 If g is a good counter on a ternary graph G, then $|g(\emptyset)| \leq 1$.

Proof of 1.4, assuming 1.5 and 1.6. We prove by induction on |V(G)| that for every ternary graph G, if g is a counter on G, then $|g(\{u\}) - g(\{v\})| \le 1$ for all $u, v \in V(G)$, and $|g(\emptyset)| \le 1$. Thus we may assume that these two statements hold for every proper induced subgraph of G. Now g is a counter on G, and so $g = \pm f_G$. If the result holds for -g then it holds for g; so we may assume that $g = f_G$, by replacing g by -g if necessary.

(1) If $X, Y \subseteq V(G)$ are disjoint, with $X \cup Y \neq \emptyset$, then $|f_G(X,Y)| \leq 1$.

We may assume that X is a stable set. Let H be the graph obtained from G by deleting $X \cup Y$ and deleting all vertices with a neighbour in X. Thus, if A is a stable set of G including X and disjoint from Y, then $A \setminus X$ is a stable set of H; and conversely, if B is a stable set of H, then $X \cup B$ is a stable set of G including X and disjoint from Y. In particular, $f_H(\emptyset) = (-1)^{|X|} f_G(X,Y)$; but from the inductive hypothesis, $|f_H(\emptyset)| \leq 1$, and so $|f_G(X,Y)| \leq 1$. This proves (1).

(2) If $X, Y \subseteq V(G)$ are disjoint, with $X \cup Y \neq \emptyset$, and $u, v \in V(G) \setminus (X \cup Y)$, then

$$|f_G(X \cup \{u\}, Y) - f_G(X \cup \{v\}, Y)| \le 1.$$

We may assume that X is stable. Suppose first that u has a neighbour in X. Then $f_G(X \cup \{u\}, Y) = 0$ (because $X \cup \{u\}$ is not a subset of any stable set). Also $|f_G(X \cup \{v\}, Y)| \leq 1$, by (1), and the claim follows. So we may assume that u and similarly v has no neighbour in X; and so $u, v \in V(H)$, if we define H as before. Thus $f_G(X \cup \{u\}, Y) = (-1)^{|X|} f_H(\{u\})$, and $f_G(X \cup \{v\}, Y) = (-1)^{|X|} f_H(\{v\})$; and from the inductive hypothesis, $|f_H(\{u\}) - f_H(\{v\})| \leq 1$. It follows that $|f_G(X \cup \{u\}, Y) - f_G(X \cup \{v\}, Y)| \leq 1$. This proves (2).

From (1) and (2), g is a good counter on G. From 1.6 and 1.5, it follows that $|g(\{u\}) - g(\{v\})| \le 1$ for all $u, v \in V(G)$, and $|g(\emptyset)| \le 1$. This completes the inductive proof; and 1.4 follows.

2 Some lemmas

Here are a few useful lemmas. First, we observe:

2.1 Let g be a counter on G, let $X, Y \subseteq V(G)$ be disjoint, and let $Y' \subseteq Y$. Then

$$g(X,Y) = \sum_{Z \subseteq Y \setminus Y'} (-1)^{|Z|} g(X \cup Z, Y').$$

Proof. We may assume that $g = f_G$, by replacing g by -g if necessary. If A is a stable set of G including X and disjoint from Y', define n_A to be

$$\sum_{Z \subseteq A \cap Y} (-1)^{|A| - |Z|}$$

Thus $n_A = 0$ unless $A \cap Y = \emptyset$, in which case $n_A = (-1)^{|A|}$. But $\sum_{Z \subseteq Y \setminus Y'} (-1)^{|Z|} f_G(X \cup Z, Y')$ is the sum of n_A , over all stable sets A of G including X and disjoint from Y'. It follows that $\sum_{Z \subseteq Y \setminus Y'} (-1)^{|Z|} f_G(X \cup Z, Y')$ is the sum of $(-1)^{|A|}$ over all stable sets of G that include X and are disjoint from Y. But this sum equals $f_G(X, Y)$. This proves 2.1.

In evaluating an expression given by 2.1, it often happens that for some number ℓ , $g(X \cup Z) = \ell$ for "most" subsets $Z \subseteq Y$, and if so the following is helpful:

2.2 Let g be a counter on G, let $X, Y \subseteq V(G)$ be disjoint, with $Y \neq \emptyset$, and let ℓ be some number. Then

$$g(X,Y) = \sum_{Z \subseteq Y} (-1)^{|Z|} (g(X \cup Z) - \ell).$$

Proof. By 2.1,

$$g(X,Y) = \sum_{Z \subseteq Y} (-1)^{|Z|} g(X \cup Z),$$

and $\sum_{Z \subseteq Y} (-1)^{|Z|} (-\ell) = 0$ since $Y \neq \emptyset$. This proves 2.2.

2.3 Let g be a good counter on G, let $X, Y \subseteq V(G)$ be disjoint, and let $v \in V(G) \setminus (X \cup Y)$. Then $|g(X,Y) - g(X \cup \{v\},Y)| \le 1$ and $|g(X,Y) - g(X,Y \cup \{v\})| \le 1$.

Proof. We may assume that $g = f_G$. Every stable set including X and disjoint from Y either includes $X \cup \{v\}$ or is disjoint from $Y \cup \{v\}$, and not both. Consequently

$$g(X,Y) = g(X \cup \{v\}, Y) + g(X, Y \cup \{v\}).$$

But $|g(Y \cup \{v\})| \le 1$ since g is a good counter, and therefore $|g(X, Y) - g(X \cup \{v\}, Y)| \le 1$; and the second claim follows similarly.

For $X \subseteq V(G)$, let N[X] denote the set of vertices in G that either belong to X or have a neighbour in X. We observe that

2.4 Let g be a counter on G. If $X, Y \subseteq V(G)$ are disjoint with $g(X, Y) \neq 0$, and $v \in V(G) \setminus (N[X] \cup Y)$, then v has a neighbour in $V(G) \setminus (N[X] \cup Y)$.

Proof. We may assume that $g = f_G$, by replacing g by -g if necessary. The stable sets of G that include X and are disjoint from Y are obtained from the stable sets of $G \setminus (N[X] \cup Y)$ (= H say) by adding the set X to each such stable set; and so $f_H(\emptyset) \neq 0$. But $f_K(\emptyset) = 0$ for every graph K with a vertex of degree zero, and so H has no vertex of degree zero. The result follows.

2.5 Let g be a good counter on G, let $X, Y \subseteq V(G)$ be disjoint, and let $u, v \in V(G) \setminus (X \cup Y)$. If $g(X,Y) = g(X \cup \{u,v\}, Y) \neq 0$, then $g(X,Y) = g(X \cup \{v\}, Y)$.

Proof. We proceed by induction on $|V(G) \setminus (X \cup Y)|$. By replacing g by -g if necessary we may assume that g(X,Y) > 0. For all disjoint $A, B \subseteq V(G) \setminus (X \cup Y)$, let $h(A, B) = g(X \cup A, Y \cup B)$ (and h(A) means $h(A, \emptyset)$). Since g is a good counter it follows that $|h(\{u, v\})| \leq 1$, and so $h(\{u, v\}) = h(\emptyset) = 1$. We suppose for a contradiction that $h(\{v\}) \neq 1$. Hence $u \neq v$, and $X \cup \{u, v\}$ is stable. By 2.3, it follows that $h(\{v\}) = 0$. Since $|h(\emptyset, \{u, v\})| \leq 1, 2.1$ implies that

$$h(\emptyset) - h(\{u\}) - h(\{v\}) + h(\{u, v\}) \le 1.$$

Consequently $h(\{u\}) \ge 1$, and so $h(\{u\}) = 1$. From 2.4, v has a neighbour w.

Now $h(\emptyset, \{v\}) = h(\emptyset) - h(\{v\}) = 1$, and $h(\{u\}, \{v\}) = h(\{u\}) - h(\{u, v\}) = 0$, and so from the inductive hypothesis, $h(\{u, w\}, \{v\}) \neq 1$. Consequently $h(\{u, w\}) - h(\{u, v, w\}) \neq 1$, and since $h(\{u, v, w\}) = 0$, it follows that $h(\{u, w\}) \neq 1$. By 2.3, $h(\{u, w\}) = 0$. Thus $h(\{u\}, \{w\}) = 1$ by 2.1, since $h(\{u\}) = 1$. Since $h(\{v\}, \{w\}) = 0$ and $h(\{u, v\}, \{w\}) = 1$ by 2.1 (the first since $h(\{v, w\}) = 0$ and $h(\{v\}) = 0$, and the second since $h(\{u, v, w\}) = 0$ and $h(\{u, v\}) = 1$), it follows from the inductive hypothesis that $h(\emptyset, \{w\}) \neq 1$, and so $h(\emptyset, \{w\}) = 0$ by 2.3. Hence $h(\emptyset) - h(\{w\}) = 0$ by 2.1, and so $h(\{w\}) = 1$. But then $h(\{w\}, \{u\}) = 1$, because $h(\{u, w\}) = 0$; and $h(\{v\}, \{u\}) = -1$, since $h(\{v\}) = 0$ and $h(\{u, v\}) = 1$. This contradicts that g is good, and so proves 2.5.

The next result has been independently discovered several times.

2.6 Let G be a nonnull graph and let A_1, A_2, A_3 be the classes of a 3-colouring of G. Suppose that for i = 1, 2, 3, every vertex in A_i has a neighbour in A_{i+1} , where A_4 means A_1 . Then G is not ternary.

Proof. Throughout we read subscripts modulo 3. For i = 1, 2, 3, direct each edge of G between A_i and A_{i+1} from A_i to A_{i+1} . Since each vertex has positive outdegree, the digraph we form has a directed cycle, and hence an induced directed cycle. But such a cycle is an induced cycle of G, and has length a multiple of three.

2.7 Let \mathcal{H} be a set of subsets of some set V, all of the same cardinality k; and suppose that for every subset $X \subseteq V$ with |X| = k + 1, if X includes a member of \mathcal{H} then it includes at least two such members. Then there is a partition P_1, \ldots, P_n of V with P_1, \ldots, P_n all nonempty, such that for all distinct $u, v \in V$, either there exists $i \in \{1, \ldots, n\}$ with $u, v \in P_i$, or there exists $B \in \mathcal{H}$ with $u, v \in B$, and not both.

Proof. Say two vertices $u, v \in V$ are *equivalent* if either u = v, or:

- there is no member of \mathcal{H} containing both u, v; and
- for each $C \subseteq V \setminus \{u, v\}, C \cup \{u\} \in \mathcal{H}$ if and only if $C \cup \{v\} \in \mathcal{H}$.

We claim that this is an equivalence relation. To see this, we may assume that $u, v, w \in V(G)$ are distinct, and v is equivalent to both u and w; and we must show that u, w are equivalent. If there exists $B \in \mathcal{H}$ containing u, w, then $v \notin B$ (since u, v are equivalent) and so $(B \setminus \{u\}) \cup \{v\} \in \mathcal{H}$ (since $(B \setminus \{u\}) \cup \{u\} \in \mathcal{H}$ and u, v are equivalent), and so this is a member of \mathcal{H} containing v, w, a contradiction. Thus there is no such B. Let $C \subseteq V \setminus \{u, w\}$, with $C \cup \{u\} \in \mathcal{H}$. Consequently $v \notin C$, and $C \cup \{v\} \in \mathcal{H}$ (because u, v are equivalent), and consequently $C \cup \{w\} \in \mathcal{H}$ (since v, ware equivalent). Similarly $C \cup \{u\} \in \mathcal{H}$ if and only if $C \cup \{w\} \in \mathcal{H}$. This proves that equivalence is indeed an equivalence relation.

We claim that for all distinct $u, v \in V$, if they do not belong to the same equivalence class then some member of \mathcal{H} contains both u, v. To see this, since u, v are not equivalent, if no member of \mathcal{H} contains both u and v, then we may assume (exchanging u, v if necessary) that there exists $C \subseteq V \setminus \{u, v\}$ such that $C \cup \{u\} \in \mathcal{H}$ and $C \cup \{v\} \notin \mathcal{H}$. Thus |C| = k - 1, and since $C \cup \{u, v\}$ includes a member of \mathcal{H} , by hypothesis it includes at least two members. But since no member of \mathcal{H} contains both u, v, and $C \cup \{v\} \notin \mathcal{H}$, this is impossible. This proves 2.7.

3 The value on distinct vertices

In this section we prove 1.5. Thus, throughout this section, let g be a good counter on a graph G. For i = -1, 0, 1 let A_i be the set of vertices v of G such that $g(\{v\}) = i$. Thus A_{-1}, A_0, A_1 are disjoint and have union V(G). We need to show that one of A_{-1}, A_1 is empty, and so we assume for a contradiction that they are both nonempty. We will prove a series of statements about G, g. We begin with:

- **3.1** The following hold:
 - $g(\emptyset) = 0;$
 - G is connected;
 - A_1, A_{-1} are both stable sets;
 - there is not both an edge between A_1, A_0 and an edge between A_{-1}, A_0 .

Proof. Since there exists $v \in A_1$, and hence with $g(\{v\}) = 1$, we deduce from 2.3 that $g(\emptyset) \ge 0$, and similarly $g(\emptyset) \le 0$. This proves the first statement.

For the second statement, we may assume (replacing g by -g if necessary) that $g = f_G$. By assumption, there exist $u_i \in V(G)$ with $g(\{u_i\}) = i$, for $i \in \{1, -1\}$. Suppose that G is not connected, and let G_1 be a component of G containing u_1 , and let G_2 be obtained from G by deleting G_1 . Write g_i for $f_{G_i}(i = 1, 2)$. Thus for disjoint $X, Y \subseteq V(G)$,

$$g(X,Y) = g_1(X \cap V(G_1), Y \cap V(G_1))g_2(X \cap V(G_2), Y \cap V(G_2)),$$

and in particular, $g_1(X) = g(X, V(G_2))$ for $X \subseteq V(G_1)$, and $g_2(X) = g(X, V(G_1))$ for $X \subseteq V(G_2)$. Since $0 = g(\emptyset) = g_1(\emptyset)g_2(\emptyset)$, one of $g_1(\emptyset), g_2(\emptyset)$ is zero.

Since $g(\{u_1\}) = g_1(\{u_1\})g_2(\emptyset)$, it follows that $g_2(\emptyset) \neq 0$, and so $g_1(\emptyset) = 0$. In particular, G_1 is the unique component C of G such that $f_C(\emptyset) = 0$, and so $u_{-1} \in V(G_1)$. Thus $g(\{u_{-1}\}) = g_1(\{u_{-1}\})g_2(\emptyset)$, and so one of $g_1(\{u_1\}), g_1(\{u_{-1}\})$ equals 1 and the other equals -1, contradicting that g is good. This proves the second statement.

For the third, suppose that $u, v \in A_1$ are adjacent. By 2.1,

$$g(\emptyset, \{u, v\}) = g(\emptyset) - g(\{u\}) - g(\{v\}) + g(\{u, v\});$$

but the last term is zero since u, v are adjacent, and since $u, v \in A_1$ and $g(\emptyset) = 0$, we deduce that $g(\emptyset, \{u, v\}) = -2$, contradicting that g is good.

For the fourth statement, suppose that $u_1 \in A_1$ is adjacent to $v_1 \in A_0$, and $u_{-1} \in A_{-1}$ is adjacent to $v_{-1} \in A_0$. Suppose first that $g(\{v_1, u_{-1}\}) = 0$. Then by two applications of 2.1, $g(\{u_{-1}\}, \{v_1\}) = g(\{u_{-1}\}) - g(\{u_{-1}, v_1\}) = -1$, and $g(\{u_1\}, \{v_1\}) = g(\{u_1\}) - g(\{u_1, v_1\}) = 1$ (since u_1, v_1 are adjacent), contradicting that g is good. This proves that $g(\{v_1, u_{-1}\}) \neq 0$, and so $g(\{v_1, u_{-1}\}) = -1$ by 2.3. Similarly $g(\{v_{-1}, u_1\}) = 1$ (and in particular, $v_1 \neq v_{-1}$). But by 2.1,

$$g(\{v_1\},\{u_1,u_{-1}\}) = g(\{v_1\}) - g(\{v_1,u_1\}) - g(\{v_1,u_{-1}\}) + g(\{v_1,u_1,u_{-1}\});$$

and since $g(\{v_1\}) = 0$ and $g(\{v_1, u_1\}) = g(\{v_1, u_1, u_{-1}\}) = 0$ (since u_1, v_1 are adjacent) it follows that $g(\{v_1\}, \{u_1, u_{-1}\}) = 1$. Similarly $g(\{v_{-1}\}, \{u_1, u_{-1}\}) = -1$, contradicting that g is good. This proves 3.1.

In the same notation, because of the third statement of 3.1, we may assume (replacing g by -g if necessary) that there are no edges between A_{-1} and A_0 . Let B_1 be the set of vertices $v \in A_0$ such that $g(\{u,v\}) = 1$ for each $u \in A_1$ and $g(\{u,v\}) = 0$ for each $u \in A_{-1}$; and let B_{-1} be the set of vertices $v \in A_0$ such that $g(\{u,v\}) = 0$ for each $u \in A_1$ and $g(\{u,v\}) = -1$ for each $u \in A_{-1}$.

3.2 Every vertex in A_0 belongs to one of B_1, B_{-1} .

Proof. Let $v \in A_0$, and for $i \in \{1, -1\}$ let $u_i \in A_i$. Not both $g(\{v, u_1\}) = 1$ and $g(\{v, u_{-1}\}) = -1$, since g is good. Suppose that neither of these holds. Then $g(\{v, u_1\}) = 0$ and $g(\{v, u_{-1}\}) = 0$, by 2.3. Then by two applications of 2.1, $g(\{u_1\}, \{v\}) = g(\{u_1\}) - g(\{u_1, v\}) = 1$, and $g(\{u_{-1}\}, \{v\}) = g(\{u_{-1}\}) - g(\{u_{-1}, v\}) = -1$, contradicting that g is good. It follows that either $g(\{v, u_1\}) = 1$ and $g(\{v, u_{-1}\}) = 0$ and $g(\{v, u_{-1}\}) = 0$ and $g(\{v, u_{-1}\}) = -1$. Since this holds for all u_1, u_{-1} , it follows that $v \in B_1 \cup B_{-1}$. This proves 3.2.

3.3 A_0 is empty.

Proof. Suppose that $A_0 \neq \emptyset$. Since G is conected by 3.1, and by assumption there are no edges between A_{-1} and A_0 , it follows that there is an edge between A_0 and A_1 , say between $b \in A_0$ and $a_1 \in A_1$. Consequently $g(\{a_1, b\}) = 0$, and so $b \notin B_1$ from the definition of B_1 ; and so $b \in B_{-1}$ by 3.2. Choose $a-1 \in A_{-1}$. By three applications of 2.1, $g(\emptyset, \{a_1\}) = g(\emptyset) - g(\{a_1\}) = -1$, $g(\{b\}, \{a_1\}) = g(\{b\}) - g(\{b, a_1\}) = 0$, and $g(\{b, a_{-1}\}, \{a_1\}) = g(\{b, a_{-1}\}) - g(\{b, a_1, a_{-1}\}) = -1$, contrary to 2.5. Thus $A_0 = \emptyset$. This proves 3.3.

Now we prove 1.5, which we restate:

3.4 If g is a good counter on a graph G, then $|g(\{u\}) - g(\{v\})| \le 1$ for all $u, v \in V(G)$.

Proof. As all through this section, we assume that G, g is a counterexample. In the previous notation, 3.3 and 3.1 imply that G is bipartite, and (A_1, A_{-1}) is a bipartition. We recall that $g(\emptyset) = 0$.

(1) Every vertex of G has degree at least two.

Since G is connected by 3.1, all vertices have degree at least one; suppose that $v \in A_1$ has only one neighbour $u \in A_{-1}$ say. Since G is connected and $|V(G)| \ge 3$, u has another neighbour $v' \in A_1$. Now $g(\{v'\}) = 1$, and since $v \in V(G) \setminus N[\{v'\}]$, 2.4 implies that v has a neighbour in $V(G) \setminus N[\{v'\}]$, a contradiction. This proves (1).

(2) There is a subset $X \subseteq A_1$ with g(X) = 0.

Choose $v \in A_1$, and let $X = A_1 \setminus \{v\}$. Since $v \in V(G) \setminus N[X]$, and v has no neighbour in $V(G) \setminus N[X]$ (by (1)), 2.4 implies that g(X) = 0. This proves (2).

For $i \in \{1, -1\}$ let $k_i > 0$ be minimum such that some subset B of A_i with cardinality k_i satisfies $g(B) \neq i$. Thus $k_i \geq 2$; and by 2.3, g(B) = 0 or i for each subset $B \subseteq A_i$ with $|B| = k_i$.

(3) For $i \in \{1, -1\}$, k_i is odd.

Choose $B \subseteq A_i$ with cardinality k_i such that $g(B) \neq i$, and hence g(B) = 0. Since g is good, $|g(\emptyset, B)| \leq 1$; and so by 2.2,

$$\sum_{Z \subseteq B} (-1)^{|Z|} (g(Z) - i) \bigg| \le 1.$$

But g(Z) = i for all $Z \subseteq B$ with $Z \neq B, \emptyset$, and g(Z) = 0 if $Z = B, \emptyset$; and consequently $|-i - i(-1)^{k_i}| \leq 1$, and so k_i is odd. This proves (3).

Let \mathcal{H}_i be the set of all subsets B of A_i such that $|B| = k_i$ and g(B) = 0.

(4) For every subset X of A_i with cardinality $k_i + 1$, if X includes a member of \mathcal{H}_i then it includes at least two such members.

Let $X = \{v_0, \ldots, v_{k_i}\}$, and suppose that $\{v_1, \ldots, v_{k_i}\}$ is the only member of \mathcal{H}_i included in X. Then $g(X) \neq i$, by 2.5, and $g(X) \neq -i$ by 2.3; so g(X) = 0. Let $Y = \{v_2, \ldots, v_{k_i}\}$. By 2.2 and (3):

$$\begin{split} g(\emptyset,Y) &= \sum_{Z \subseteq Y} (-1)^{|Z|} (g(Z)-i) = -i, \\ g(\{v_0\},Y) &= \sum_{Z \subseteq Y} (-1)^{|Z|} (g(Z \cup \{v_0\})-i) = 0, \\ g(\{v_0,v_1\},Y) &= \sum_{Z \subseteq Y} (-1)^{|Z|} (g(Z \cup \{v_0,v_1\})-i) = -(-1)^{|Y|} i = -i, \end{split}$$

contrary to 2.5. This proves (4).

(5) There exist $B_i \in \mathcal{H}_i$ for $i \in \{1, -1\}$, such that there are two edges of G between B_1 and B_{-1} with no end in common.

By (4) and 2.7, there is a partition P_1, \ldots, P_m of A_1 such that every two vertices in A_1 either belong to the same P_i or to some member of \mathcal{H}_1 , and not both; and let $Q_1, \ldots, Q_n \subseteq A_{-1}$ be defined analogously. Say P_i, Q_j are adjacent if there is an edge in G between a vertex in P_i and a vertex in Q_j . Since $m, n \ge 2$ and each P_i is adjacent to some Q_j and vice versa, there are distinct P_1, P_2 (say) and distinct Q_1, Q_2 such that P_1 is adjacent to Q_1 and P_2 to Q_2 . Choose $p_i \in P_i$ and $q_i \in Q_i (i = 1, 2)$ such that p_1q_1 and p_2q_2 are edges of G. Since p_1, p_2 do not belong to the same one of P_1, \ldots, P_m , there exists $B_1 \in \mathcal{H}_1$ containing p_1, p_2 ; and similarly there exists $B_{-1} \in \mathcal{H}_{-1}$ containing q_1, q_2 . This proves (5).

For $i \in \{1, -1\}$ choose B_i as in (5).

(6) For $i \in \{1, -1\}$, let $X_i \subseteq B_i$ with $\emptyset \neq X_i \neq B_i$. Then $g(X_1 \cup X_{-1}) = 0$.

Suppose not, and for $i \in \{1, -1\}$ choose $X_i \subseteq B_i$ with $\emptyset \neq X_i \neq B_i$, with $X_1 \cup X_{-1}$ minimal

such that $g(X_1 \cup X_{-1}) \neq 0$. We may assume that $g(X_1 \cup X_{-1}) = 1$, by replacing g by -g if necessary. By 2.1 and the minimality of $X_1 \cup X_{-1}$,

$$g(X_1, X_{-1}) = g(X_1) + (-1)^{|X_{-1}|} g(X_1 \cup X_{-1}) = 1 + (-1)^{|X_{-1}|},$$

and so $|X_{-1}|$ is odd; and similarly $|X_1|$ is even. Choose $u \in X_1$ and $v \in X_{-1}$. Then by three applications of 2.1,

$$g(X_1 \setminus \{u\}, X_{-1} \setminus \{v\}) = g(X_1 \setminus \{u\}) = 1,$$

$$g((X_1 \cup \{v\}) \setminus \{u\}, X_{-1} \setminus \{v\}) = 0,$$

$$g(X_1 \cup \{v\}, X_{-1} \setminus \{v\}) = (-1)^{|X_{-1} \setminus \{v\}|} g(X_1 \cup X_{-1}) = 1,$$

contrary to 2.5. This proves (6).

Choose $C_1 \subseteq B_1$ maximal such that either $C_1 = \emptyset$ or $g(C_1 \cup B_{-1}) \neq 0$, and choose $C_{-1} \subseteq B_{-1}$ maximal such that either $C_{-1} = \emptyset$ or $g(C_{-1} \cup B_1) \neq 0$. It follows that $|C_i| \leq k_i - 2$ for $i \in \{1, -1\}$, since there is a 2-edge matching between B_1, B_{-1} . For $i \in \{1, -1\}$ let $D_i = B_i \setminus C_i$, and let $C = C_1 \cup C_{-1}$ and $D = D_1 \cup D_{-1}$.

(7) If $C_1 \neq \emptyset$ then $g(C_1 \cup B_{-1}) = 1$; and if $C_{-1} \neq \emptyset$ then $g(C_{-1} \cup B_1) = -1$.

Since $g(C_1, B_{-1}) \neq 2$ (because g is good), and $g(C_1 \cup Z) = 0$ for all $Z \subseteq B_{-1}$ with $Z \neq \emptyset, B_{-1}$ by (6), 2.1 implies that $g(C_1) + (-1)^{|k_{-1}|} g(C_1 \cup B_{-1}) \leq 1$. But $g(C_1) = 1$ (since $C_1 \neq \emptyset$), and k_1 is odd, and so $g(C_1 \cup B_{-1}) = 1$. Similarly if $C_{-1} \neq \emptyset$ then $g(C_{-1} \cup B_1) = -1$. This proves (7).

(8) One of C_1, C_{-1} is empty.

Suppose they are both nonempty. By 2.1,

$$g(C,D) = \sum_{Z \subseteq D} (-1)^{|Z|} g(C \cup Z).$$

But for $Z \subseteq D$, $g(C \cup Z) \neq 0$ only if Z includes one of D_1, D_{-1} by (6), and only if one of $Z \cap B_1, Z \cap B_{-1}$ is empty (from the definition of C_1, C_{-1}); that is, only if Z is one of D_1, D_{-1} . These two sets are distinct, since they are nonempty. Consequently

$$g(C,D) = (-1)^{|D_1|} g(B_1 \cup C_{-1}) + (-1)^{|D_{-1}|} g(B_{-1} \cup C_1)$$

and so by (7), $g(C, D) = (-1)^{|D_1|+1} + (-1)^{|D_{-1}|}$. Since $|g(C, D)| \le 1$ (because g is good) it follows that $|D_1|, |D_{-1}|$ have the same parity.

Choose $u \in D_1$ and $v \in D_{-1}$. Then by 2.1,

$$g(C\cup\{u\},D\setminus\{u,v\})=\sum_{Z\subseteq D\setminus\{u,v\}}(-1)^{|Z|}g(C\cup\{u\}\cup Z)$$

But for $Z \subseteq D \setminus \{u, v\}$, $g(C \cup \{u\} \cup Z) \neq 0$ only if $Z = D_1 \setminus \{u\}$ (by (6) and the definition of C_1, C_{-1}) and so

$$g(C \cup \{u\}, D \setminus \{u, v\}) = (-1)^{|D_1 \setminus \{u\}|} g(B_1 \cup C_{-1}) = (-1)^{|D_1|}.$$

Similarly

$$g(C \cup \{v\}, D \setminus \{u, v\}) = (-1)^{|D_2 \setminus \{v\}|} g(B_{-1} \cup C_1) = (-1)^{|D_{-1}|+1}$$

Since $|D_1|, |D_{-1}|$ have the same parity, one of $g(C \cup \{u\}, D \setminus \{u, v\}), g(C \cup \{v\}, D \setminus \{u, v\})$ equals 1 and the other equals -1, contradicting that g is good. This proves (8).

From (8) we may assume that $C_{-1} = \emptyset$ (replacing g by -g if necessary).

(9) $|D_1|$ is odd.

To prove this, we may assume that $C_1 \neq \emptyset$, since $|B_1|$ is odd. By 2.1,

$$g(C_1, B_{-1} \cup D_1) = \sum_{Z \subseteq B_{-1} \cup D_1} (-1)^{|Z|} g(C_1 \cup Z).$$

But, by (6), for $Z \subseteq B_{-1} \cup D_1$, $g(C_1 \cup Z)$ is nonzero only if $Z \subseteq D_1$ or $Z = B_{-1}$; and then it has value 1 if $Z \subseteq D_1$ and $Z \neq D_1$; 0 if $Z = D_1$; and 1 if $Z = B_{-1}$. Thus $g(C_1, B_{-1} \cup D_1) = (-1)^{|D_1|+1} + (-1)^{|B_{-1}|}$ and since $|B_{-1}|$ is odd by (5), and $|g(C_1, B_{-1} \cup D_1)| \leq 1$ since g is good, it follows that $|D_1|$ is odd. This proves (9).

Now $|C_1| \leq |B_1| - 2$ as we saw. Choose $u \in D_1$ and $v \in B_{-1}$, and let $W = (D_1 \cup B_{-1}) \setminus \{u, v\}$. By 2.1,

$$g(C_1 \cup \{u\}, W) = \sum_{Z \subseteq W} (-1)^{|Z|} g(C_1 \cup \{u\} \cup Z).$$

But for $Z \subseteq W$, $g(C_1 \cup \{u\} \cup Z)$ is nonzero only if $Z \subseteq D_1$, and in that case it has value 1 if $Z \neq D_1 \setminus \{u\}$, and 0 if $Z = D_1 \setminus \{u\}$. Since $|D_1| \ge 2$, it follows that

$$g(C_1 \cup \{u\}, W) = (-1)^{|D_1|} = -1$$

since $|D_1|$ is odd by (9). On the other hand, by 2.1,

$$g(C_1 \cup \{v\}, W) = \sum_{Z \subseteq W} (-1)^{|Z|} g(C_1 \cup \{v\} \cup Z).$$

We claim that $g(C_1 \cup \{v\}, W) = 1$. To see this there are two cases, depending whether $C_1 \neq \emptyset$ or not. First, suppose that $C_1 \neq \emptyset$. Then for $Z \subseteq W$, $g(C_1 \cup \{v\} \cup Z)$ is nonzero only if $Z = B_{-1} \setminus \{v\}$, by (6) and the maximality of C_1 ; so

$$g(C_1 \cup \{v\}, W) = (-1)^{|B_1| - 1} g(C_1 \cup B_{-1}) = 1,$$

by (7) and (3), contradicting that g is good. Now suppose that $C_1 = \emptyset$. Then, again by (6), for $Z \subseteq W$, $g(C_1 \cup \{v\} \cup Z)$ is nonzero only if $Z \subsetneq B_{-1} \setminus \{v\}$, and in that case it has value -1. Consequently

$$g(C_1 \cup \{v\}, W) = (-1)^{|B_{-1} \setminus \{v\}|} = 1,$$

again contradicting that g is good. This proves 3.4.

4 The value on the null set

In this section we prove 1.6, thereby completing the inductive proof of 1.4. We need to show that if g is a good counter on a ternary graph G, then $|g(\emptyset)| \leq 1$. The proof is divided into several steps. We may assume the statement is false, for a contradiction; and by replacing g by -g if necessary, we may assume that $g(\emptyset) \geq 2$. Throughout this section, G is a counterexample to 1.6, and g is a good counter on G, with $g(\emptyset) \geq 2$.

4.1 The following hold:

- $g(\emptyset) = 2;$
- $g(\{v\}) = 1$ for every vertex $v \in V(G)$; and
- G is connected.

Proof. Let $v \in V(G)$; since g is good, it follows that $|g(\{v\})| \le 1$, and so 2.3 implies that $g(\{v\}) = 1$ and $g(\emptyset) = 2$. This proves the first two statements.

Suppose that G is not connected, let G_1 be a component of G and let G_2 be obtained from G by deleting $V(G_1)$. Since $f_{G_1}(\emptyset) = \pm g(\emptyset, V(G_2))$, and g is good, it follows that $|f_{G_1}(\emptyset)| \leq 1$, and similarly $|f_{G_2}(\emptyset)| \leq 1$. But

$$g(\emptyset) = \pm f_G(\emptyset) = \pm f_{G_1}(\emptyset) f_{G_2}(\emptyset),$$

I

a contradiction. This proves the third statement, and so proves 4.1.

In particular, if $u, v \in V(G)$ are distinct, then since $g(\{u\}) = 1$ by the second statement of 4.1, it follows that $g(\{u, v\}) \in \{0, 1\}$ by 2.3. Let H be the graph with vertex set V(G) in which distinct u, v are adjacent if $g(\{u, v\}) = 1$.

4.2 Every component of H is a complete graph, and H has at least two and at most four components.

Proof. Suppose the first statement is false. Then there are three distinct vertices $u, v, w \in V(H)$ such that $uv, vw \in E(H)$ and $uw \notin E(H)$. From 2.3, $g(\{u, w\}) = 0$. Now

$$\begin{array}{rcl} g(\emptyset, \{w\}) &=& g(\emptyset) - g(\{w\}) = 1, \\ g(\{v\}, \{w\}) &=& g(\{v\}) - g(\{v, w\}) = 0 \\ g(\{u, v\}, \{w\}) &=& g(\{u, v\}) - g(\{u, v, w\}); \end{array}$$

and by 2.5, $g(\{u, v\}, \{w\}) \neq 1$. Consequently $g(\{u, v, w\}) = 1$. But then $g(\{w\}) = 1$, $g(\{u, w\}) = 0$ and $g(\{u, v, w\}) = 1$, contrary to 2.5. This proves that every component of H is a complete graph.

Since each edge of H joins two vertices that are nonadjacent in G, it follows that H has at least two components. Suppose it has at least five. Since G is connected, there is a vertex of H that has neighbours (in G) in at least two components of H. Thus we can choose $v_1, \ldots, v_5 \in V(G)$, all in different components of H, where v_1 is adjacent (in G) to v_2, v_3 . Let $a, b, c \in \{v_1, \ldots, v_5\}$ be distinct. Since $|g(\emptyset, \{a, b, c\})| \leq 1$, and $g(\{a, b\}) = 0$ (because $g(\{a, b\}) \neq 1$ since a, b belong to different components of H, and $g(\{a, b\}) \neq -1$ by 2.3), and the same for $\{a, c\}$ and $\{b, c\}$, it follows from 2.1 that $|2 - 3 + 0 - g(\{a, b, c\})| \leq 1$, and so $g(\{a, b, c\}) \neq 1$. Hence $g(\{a, b, c\}) \in \{0, -1\}$ for every triple a, b, c of distinct members of $\{v_1, \ldots, v_5\}$.

Note that since $v_1v_2, v_1v_3 \in E(G)$, it follows that $g(\{v_1, v_2, v_i\}) = 0$ for every $i \in \{3, 4, 5\}$ and $g(\{v_1, v_3, v_j\}) = 0$ for every $j \in \{2, 4, 5\}$. Let \mathcal{T} be the set of all subsets $T \subseteq \{v_1, \ldots, v_5\}$ with |T| = 3 and g(T) = -1. Thus g(T) = 0 for all triples $T \notin \mathcal{T}$. Since $|g(\emptyset, \{v_1, v_2, v_3, v_4\})| \leq 1$, it follows from 2.1 that $\{v_2, v_3, v_4\} \in \mathcal{T}$, and similarly $\{v_2, v_3, v_5\} \in \mathcal{T}$.

Suppose that $\{v_1, v_4, v_5\} \notin \mathcal{T}$. Now 2.1 implies that

$$g(\emptyset, \{v_1, v_2, v_4, v_5\}) = 2 - 4 + 0 - g(\{v_2, v_4, v_5\}),$$

and so $\{v_2, v_4, v_5\} \in \mathcal{T}$, and similarly $\{v_3, v_4, v_5\} \in \mathcal{T}$. But then

$$g(\{v_5\},\{v_2,v_3,v_4\}) = -2 - g(v_2,v_3,v_4,v_5) \le -1$$

and $g(\{v_1\}, \{v_2, v_3, v_4\}) = 1$, contradicting that g is good. Thus $\{v_1, v_4, v_5\} \in \mathcal{T}$.

If also $\{v_2, v_4, v_5\} \in \mathcal{T}$ then $g(\{v_4, v_5\}, \{v_1, v_2\}) = 2$, contradicting that g is good; so $\{v_2, v_4, v_5\} \notin \mathcal{T}$, and similarly $\{v_3, v_4, v_5\} \notin \mathcal{T}$. Since $g(\{v_2, v_3\}, \{v_4, v_5\}) \leq 1$, it follows that $g(\{v_2, v_3, v_4, v_5\}) = -1$. But then $g(\{v_4\}, \{v_2\}) = 1$, $g(\{v_4, v_5\}, \{v_2\}) = 0$ and $g(\{v_3, v_4, v_5\}, \{v_2\}) = 1$, contrary to 2.5. This proves 4.2.

4.3 Let C_1, C_2 be distinct components of H, and let $X \subseteq C_1 \cup C_2$. Suppose that

- $X \cap C_1, X \cap C_2 \neq \emptyset;$
- $g(X) \neq 0$; and
- for all $X' \subseteq X$, if $g(X') \neq 0$ then either X' = X or $X' \subseteq C_1$ or $X' \subseteq C_2$.

If $|X \cap C_1| > 1$ then there is a subset $B \subseteq X \cap C_1$ with g(B) = 0.

Proof. Let $X_i = X \cap C_i$ for i = 1, 2; and suppose there is no $B \subseteq X_1$ with g(B) = 0. From 2.3 it follows that g(B) = 1 for all nonempty subsets B of X_1 , and in particular, $g(X_1) = 1$. Let $g(X) = i = \pm 1$. Because of the third bullet of the hypothesis, 2.1 implies that

$$g(X_1, X_2) = \sum_{Z \subseteq X_2} (-1)^{|Z|} g(X_1 \cup Z) = g(X_1) + (-1)^{|X_2|} i;$$

and since $g(X_1, X_2) \leq 1$, it follows that $(-1)^{|X_2|}i = -1$, that is, $|X_2|$ is odd if i = 1, and even if i = -1. Choose $u \in X_1$ and $v \in X_2$; then by 2.1, $g(X_1 \setminus \{u\}, X_2 \setminus \{v\}) = 1$ (since $|X_1| > 1$), $g(X_1 \cup \{v\} \setminus \{u\}, X_2 \setminus \{v\}) = 0$, and by 2.1,

$$g(X_1 \cup \{v\}, X_2 \setminus \{v\}) = \sum_{Z \subseteq X_2 \setminus \{v\}} (-1)^{|Z|} g(X_1 \cup Z \setminus \{v\}) = (-1)^{|X_2| - 1} g(X) = 1,$$

contrary to 2.5. This proves 4.3.

Let C be a component of H, and let $D \subseteq C$. We say that $B \subseteq D$ is a base of D if $g(B) \neq 1$ and there is no $B' \subseteq D$ with |B'| < |B| and with $g(B') \neq 1$.

4.4 Let C be a component of H, and let $D \subseteq C$.

- If there is a vertex v of G such that all its neighbours belong to D, then D has a base.
- If B is a base of D then g(B) = 0, and |B| is even and at least four.
- If D has a base, of cardinality k say, then every subset of D of cardinality k + 1 includes two bases of D, and so every vertex of D belongs to a base of D.
- If D has a base, of cardinality k, then there is a partition of D into nonempty sets D_1, \ldots, D_n , such that for all distinct $u, v \in D$, there is a base of D containing both u, v if and only if u, v do not belong to the same set D_i ; and consequently $n \ge k$.

Proof. For the first statement, suppose that all neighbours of v belong to D. If $V(G) = C \cup \{v\}$, then v is adjacent to all other vertices (since no vertex has degree zero, by 2.4), contradicting that $g(\emptyset) = 2$. Thus we may choose $u \notin C \cup \{v\}$. By 2.4, $g(\{u\}, D) = 0$, but $g(\{u\}) = 1$, and so by 2.1, there exists a nonempty subset $Z \subseteq D$ such that $g(Z \cup \{u\}) \neq 0$. Since C is the vertex set of a component of H, it follows that $|Z| \ge 2$. From 4.3, there exists $B \subseteq Z$ with g(B) = 0. This proves the first statement.

For the second, let B be a base of D. Then $g(B) \neq 1$ by hypothesis, and in particular $|B| \geq 3$, since $B \subseteq C$. For every $B' \subseteq B$ with $B' \neq \emptyset$, B, we have g(B') = 1, and since there is such a choice of B' with |B'| = |B| - 1, 2.3 implies that $g(B) \neq -1$; and hence g(B) = 0 since g is good. But by 2.2,

$$g(\emptyset, B) = \sum_{Z \subseteq B} (-1)^{|Z|} (g(Z) - 1) = (g(\emptyset) - 1) + (-1)^{|B|} (g(B) - 1) = 1 - (-1)^{|B|},$$

and so |B| is even. This proves the second statement.

For the third, let B be a base of D, with |B| = k say; it suffices to prove that for all $v \in D \setminus B$, $B \cup \{v\}$ includes at least two bases of D. Let $X = B \cup \{v\}$, and choose $u \in B$. Thus $g(X \setminus \{u, v\}) = 1$ and $g(X \setminus \{v\}) = 0$, so by 2.5, $g(X) \neq 1$. We may assume that $g(X \setminus \{u\}) = 1$, and so by 2.3, g(X) = 0. By 2.1, $g(\emptyset, X \setminus \{u, v\}) = 1$ and $g(\{u, v\}, X \setminus \{u, v\}) = 1$, so by 2.5, $g(\{v\}, X \setminus \{u, v\}) = 1$. Hence by 2.1, since $|X| \geq 3$, there exists $Z \subseteq X \setminus \{u, v\}$ with $g(Z \cup \{v\}) \neq 1$. Then $|Z| \leq |B|$, and since B is a base for D, it follows that Z is minimal with $g(Z) \neq 1$, and hence Z is another base for D. This proves the third statement.

The fourth statement follows from 2.7. This proves 4.4.

We call a partition D_1, \ldots, D_n as in the fourth statement of 4.4 the *induced partition* of D, and the sets D_1, \ldots, D_n are called its *classes*. (If the partition exists then it is unique, as is easily seen.)

4.5 Let C_1, C_2 be distinct components of H, and for i = 1, 2, let $D_i \subseteq C_i$, including a base for D_i . Then for one of i = 1, 2, there is a class of the induced partition of D_i that meets all edges between D_1 and D_2 .

Proof. Let the induced partition of D_1 have classes P_1, \ldots, P_m , and let the induced partition of D_2 have classes Q_1, \ldots, Q_n . We may assume that there is no $i \in \{1, \ldots, m\}$ such that all edges between

 D_1, D_2 have an end in P_i , and there is no $j \in \{1, \ldots, n\}$ similarly. By König's theorem, there exist distinct $i_1, i_2 \in \{1, \ldots, m\}$ and distinct $j_1, j_2 \in \{1, \ldots, n\}$ such that there is an edge between P_{i_1} and Q_{j_1} , and an edge between P_{i_2} and Q_{j_2} . Hence there is a base B_1 for D_1 and a base B_2 for D_2 , such that there are two edges of G between B_1, B_2 with no end in common.

(1) Suppose that there exists $M_1 \subseteq B_1$ with $g(B_2 \cup M_1) \neq 0$, and choose M_1 maximal with this property. Then $|M_1| \leq |B_1| - 2$, and $g(B_2 \cup M_1) = -1$, and $|M_1|$ is odd.

Since there are two edges of G between B_1, B_2 with no end in common, and both have an end in B_2 , it follows that neither has an end in M_1 , and so $|M_1| \le |B_1| - 2$. Let $A_1 = B_1 \setminus M_1$. By 2.1,

$$g(M_1, B_2) = \sum_{Z \subseteq B_2} (-1)^{|Z|} g(M_1 \cup Z)$$

But for $Z \subseteq B_2$, $g(M_1 \cup Z) \neq 0$ only if $Z = \emptyset$ or $Z = B_2$, by 4.3. Consequently $g(M_1, B_2) = g(M_1) + (-1)^{|B_2|} g(M_1 \cup B_2)$. But $g(M_1) = 1$ and $|B_2|$ is even, so $g(M_1 \cup B_2) = -1$ since g is good. Now by 2.1,

$$g(M_1, A_1 \cup B_2) = \sum_{Z \subseteq A_1 \cup B_2} (-1)^{|Z|} g(M_1 \cup Z).$$

But for $Z \subseteq A_1 \cup B_2$, $g(M_1 \cup Z) \neq 0$ only if $Z \subseteq A_1$ or $Z = B_2$; and so

$$g(M_1, A_1 \cup B_2) = (-1)^{|A_1|} (g(B_1) - 1) + (-1)^{|B_2|} g(M_1 \cup B_2).$$

Since $|B_2|$ is even, $g(B_1) = 0$ and $g(M_1 \cup B_2) = -1$, it follows that $g(M_1, A_1 \cup B_2) = (-1)^{|A_1|+1} - 1$, and so $|A_1|$ is odd, and therefore so is $|M_1|$. This proves (1).

(2) There do not exist $M_1 \subseteq B_1$ and $M_2 \subseteq B_2$ with $g(B_2 \cup M_1), g(B_1 \cup M_2) \neq 0$ and with M_1, M_2 both nonempty.

Suppose such sets M_1, M_2 exist and choose them maximal. Let $A_i = B_i \setminus M_i$ for i = 1, 2. By (1), $g(B_2 \cup M_1), g(B_1 \cup M_2) = -1$, and $|M_1|, |M_2|$ are odd. Thus $|A_1|$ and $|A_2|$ are odd, and so $g(M_1 \cup M_2, A_1 \cup A_2) = 2$ by 2.1, a contradiction, This proves (2).

(3) g(X) = 0 for all $X \subseteq B_1 \cup B_2$ with $X \cap B_1, X \cap B_2$ both nonempty.

Suppose not; then from 4.3, and by exchanging C_1, C_2 if necessary, we may assume that there exists $M_1 \subseteq B_1$, nonempty, with $g(B_2 \cup M_1) \neq 0$. Choose M_1 maximal. By (1), $g(B_2 \cup M_1) = -1$ and $|M_1|$ is odd. Let $A_1 = B_1 \setminus M_1$, and choose $u \in A_1$. Choose $v \in B_2$. Then by 2.1, since $A_1 \setminus \{u\} \neq \emptyset$, it follows that $g(M_1 \cup \{u\}, (A_1 \cup B_2) \setminus \{u, v\}) = -1$ and $g(M_1 \cup \{v\}, (A_1 \cup B_2) \setminus \{u, v\}) = 1$, contradicting that g is good. This proves (3).

From (3), 2.1 implies that
$$g(\emptyset, B_1 \cup B_2) = -2$$
, a contradiction. This proves 4.5.

4.6 Let C_1, C_2 be distinct components of H, and suppose there is a base for C_2 . Let D_1, \ldots, D_n be the induced partition of C_2 . Then there is no $i \in \{D_1, \ldots, D_n\}$ such that every edge of G between C_2 and $V(G) \setminus (C_1 \cup C_2)$ has an end in D_i .

Proof. Suppose there is such a value of i, say i = 1. Let A_1 be the set of vertices in C_1 with neighbours in C_2 . Now $n \ge 4$ (by the second and last statements of 4.4); choose $v \in D_2$. Thus all neighbours of v belong to C_1 , and hence to A_1 . By the first statement of 4.4, there is a base for A_1 . By 4.5, there is a set X that meets all edges between A_1 and C_2 , and X is either a class of the induced partition of C_2 or a class of the induced partition of A_1 . The first is impossible since there are at least four classes of the induced partition of C_2 and A_1 (because it meets some edge, and it has no edge to $V(G) \setminus (C_1 \cup C_2)$ from the choice of D_1). Also the second is impossible, since each class of the induced partition of A_1 . This proves 4.6.

Now we complete the proof of 1.6, which we restate:

4.7 If g is a good counter on a ternary graph G, then $|g(\emptyset)| \leq 1$.

Proof. In the same notation as before, we know that H has two, three or four components. Suppose it has only two, say C_1, C_2 . By the first statement of 4.4, there are bases for C_1 and for C_2 , contrary to 4.6.

Now suppose that H has exactly three components C_1, C_2, C_3 . By 2.6 we may assume that some vertex $v \in C_2$ has no neighbour in C_1 , and so by 4.4, there is a base for C_3 . Suppose that there is also a base for C_2 . By 4.5, by exchanging C_2, C_3 if necessary, we may assume that there is a class of the induced partition of C_2 that meets all edges between C_2, C_3 , contrary to 4.6. Thus, neither of C_1, C_2 have bases. By 4.4, every vertex in $C_1 \cup C_2$ has a neighbour in C_3 . We recall that $v \in C_2$ has no neighbour in C_1 . Since C_1 has no base, it follows that $g(C_1) = 1$, and so by 2.4, v has a neighbour, u say, with no neighbour in C_1 . But then all neighbours of u are in C_2 , and so by 4.4, there is a base for C_2 , a contradiction.

Finally, suppose that H has four components C_1, \ldots, C_4 . Let K be the graph with vertex set $\{1, \ldots, 4\}$ in which distinct i, j are adjacent if there is an edge of G between C_i, C_j . Since G is connected, it follows that every vertex of K has nonzero degree. Suppose that K has a 2-edge matching; then by renumbering C_1, \ldots, C_4 we may assume that there exist $u_i \in C_i$ for $1 \le i \le 4$ such that $u_1u_2, u_3u_4 \in E(G)$. But then $g(\emptyset, \{u_1, u_2, u_3, u_4\}) = -2$ by 2.1, a contradiction. Thus K has no 2-edge matching, and since every vertex of K has nonzero degree, we may assume that every edge of K is incident with 1, and so all edges of G have an end in C_1 .

For i = 2, 3, 4, let X_i be the set of vertices in C_1 with no neighbour in C_i . By the first statement of 4.4, there is a base for C_1 . By 4.6, there is no base for C_2 , and similarly none for C_3, C_4 ; and so by the first statement of 4.4, every vertex of C_1 has neighbours in at least two of C_2, C_3, C_4 . In particular, for all distinct $i, j \in \{2, 3, 4\}$ every vertex in X_i has a neighbour in C_j .

Since $g(C_2) \neq 0$, 2.4 implies that for all distinct $i, j \in \{2, 3, 4\}$, every vertex in C_i has a neighbour in X_j . Make a digraph J with vertex set $C_2 \cup C_3 \cup C_4$ in which for i = 2, 3, 4 and $u \in C_i$ and $v \in C_{i+1}$ (where C_5 means C_2), there is an edge of J from u to v if u, v has a common neighbour in X_{i-1} (where X_1 means X_4). Every vertex has positive outdegree in J, and so J has an induced directed cycle. Let K be such a cycle, with vertices (in order):

$$a_1, b_1, c_1, a_2, b_2, c_2, \ldots, a_k, b_k, c_k, a_1$$

where $a_1, \ldots, a_k \in C_2, b_2, \ldots, b_k \in C_3$ and $c_1, \ldots, c_k \in C_4$. For each *i* with $1 \le i \le k$, there exists $x_i \in X_4$ adjacent in *G* to a_i, b_i , and $y_i \in X_2$ adjacent to b_i, c_i , and $z_i \in X_3$ adjacent to c_i, a_{i+1} (where

 a_{k+1} means a_1). Also, for each such i, x_i has no other neighbours in V(K); it is nonadjacent to each a_j because $x_i \in X_4$, and nonadjacent to the remaining vertices of V(K) since K is induced. A similar statement holds for the y_i 's and z_i 's. Consequently the subgraph of G induced on

$$\{a_i, b_i, c_i, x_i, y_i, z_i : 1 \le i \le k\}$$

is an induced cycle of length 6k, contradicting that G is ternary. This proves that H does not have four components, and so proves 4.7 and hence 1.4.

References

- M. Bonamy, P. Charbit and S. Thomassé, "Graphs with large chromatic number induce 3kcycles", arXiv:1408.2172.
- M. Bousquet-Mélou, S. Linusson and E. Nevo, "On the independence complex of square grids", J. Algebr. Comb., 27 (2008), 423–450.
- [3] G. Chen and A. Saito, "Graphs with a cycle of length divisible by three", J. Combinatorial Theory, Ser. B, 60 (1994), 277–292.
- [4] P. Fendley, K. Schoutens and H. van Eerten, "Hard squares with negative activity", J. Phys. A, 38 (2005), 31–322.
- [5] G. Gauthier, Graphs with no cycle length divisible by three, Ph. D. thesis, Princeton, 2017.
- [6] A. Hatcher, Algebraic Topology, Cambridge University Press (2009).
- [7] J. Jonsson, "Hard squares with negative activity and rhombus tilings of the plane", *Electronic J. Combinatorics*, 13 (2006), #R67.
- [8] G. Kalai, "When do a few colors suffice?", https://gilkalai.wordpress.com/2014/12/19/when-a-few-colors-suffice.
- [9] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. X. Holes with specific residue", *Combinatorica*, to appear, arXiv:1705.04609.
- [10] A. Scott and A. D. Sokal, "The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma", J. Statistical Physics, 118 (2005), 1151–1261.