Max k-cut and judicious k-partitions

Béla Bollobas ** Alex Scott

Abstract
Alon, Bollobés, Krivelevich and Sudakov [1] proved that every graph
with a large cut has a bipartition in which each vertex class contains
correspondingly few edges. We prove an analogous result for parti-
tions into k > 3 classes; along the way we prove a result for biased
bipartitions.

1 Introduction

Let G be a graph with m edges. It is easy to show that G has a cut (or,
equivalently, a bipartite subgraph) of size least m/2. It is much less obvious
(but nevertheless true) that there is a cut of this size such that the remaining
edges are roughly evenly distributed between the two sides of the cut: in other
words, each vertex class contains no more than (roughly) m/4 edges. Now
suppose that G has a cut that is much larger than m/2. In this case we
might hope for more: if G has a cut of size m/2 4+ «, then a near-optimal
cut that divides the remaining edges roughly equally between the two vertex
classes would have roughly m/4 — a/2 edges in each class. Alon, Bollobas,
Krivelevich and Sudakov [1] showed that, for « not too large, this is indeed
possible (for « large, they proved a complementary result: if & > m /30, there
is a bipartition in which each class contains at most m/4 —m/100 edges).
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The aim of this paper is to generalize these results in two directions: we
first give results on “biased” cuts, in which edges in the two vertex classes
are counted with different weights; we then continue by giving results in
partitions into more than two parts. In each case, as with Alon, Bollobas,
Krivelevich and Sudakov [1], we obtain matching results for the cases o small
and « large.

The remainder of this introduction is divided into two parts. In the first
part, we discuss some background to the problem; the second part describes
our results and gives a little notation.

1.1 Previous work
For a graph G, let us define

f(G)= max e(V},Va)= max (m—e(V;)—e(Va))
V(G)=V1UVs V(G)=V1UVs

to be the maximum size of a cut in GG. Then, for m > 1, we set

f(m) inf (@)
The extremal Max Cut problem asks for the value of f(m), and has been
extensively studied. It is easy to see that f(m) > m/2, for instance by
considering random partitions or a suitable greedy algorithm. Edwards [10,
11] showed that
m m 1 1

fmzg Vs ta s M)
which is sharp for complete graphs of odd order. More precise bounds for
other values of m were given by Alon [2], Alon and Halperin [3], and in
[5]. From the other side, it is easily seen by considering random graphs
G € G(n,1/2) that f(m) =m/2+ o(m).

The Max Cut problem asks for a bipartition in which e(V;, V3) is large,
and hence e(V}) + e(V5) is small. However, it does not place strong con-
straints on the number of edges in each vertex class separately. Problems in
which constraints are placed on all vertex classes simultaneously are known
as judicious partitioning problems (see [16] and [4] for an overview). In this
case, we define a judicious partitioning problem as follows. For a graph G,
let

9(G) = min  max{e(V1),e(V2)},
V(G)=V1UVa



and, for m > 1, set
m) = max ¢g(G).
gm) = max g(G)
Determining the behaviour of g(m) seems significantly harder than analyzing
f(m). For instance, proving that f(m) ~ m/2 is trivial, but there does not
seem to be any simple way to prove that g(m) ~ m/4 (which turns out to
be true). Bounds on g(m) were proved by several authors, including Porter
[12, 13, 14], Porter and Bin Yang [15], and Bollobds and Scott [9]. An
analogue of the Edwards bound was finally proved in [7], where it was shown
that every graph G with m edges has a bipartition V(G) = V4 UV, such that

m m 1 1
+Al =+

cm =
max{e(V1),e(V2)} < A 32 256 16

(2)
and in addition e(V7, V) satisfies (1). More generally, there is a vertex par-
tition into k classes, each of which contains at most

m k-1 1 1

T 92 -

ERETE (\/ " 2) )
edges.

The bounds (2) and (1) are closely related, and it is natural to ask whether
graphs with a very large cut (i.e. much larger than that guaranteed by (1))
also have a correspondingly good judicious partition. If G is a graph with
m edges, and f(G) = m/2 + «, then it is clear that ¢g(G) > m/4 — «/2,
since we cannot do better than a maximum cut with the remaining edges
divided equally between the two vertex classes. Alon, Bollobds, Krivelevich
and Sudakov [1] showed that it is possible to get pretty close to this bound:
if @« < m/30 then

10a?

9(G) < T = S +3Vm+ —, (4)

For large «, this bound is less useful. However, they also showed the com-
plementary result that if & > m/30 (and m is sufficiently large) then

m m

9(G) < 7 100 (5)



1.2 Our results

The aim of this paper is to extend the results of Alon, Bollobas, Krivelevich
and Sudakov [1] in two directions: to biased partitions, and to partitions into
k > 3 parts.

In Section 2, we give results on biased partitions. For p € [0,1] and
q =1—p, define

my(G) = min  qe(Vi) + pe(Va)
V(G)=V1UV2

Note that this is a ‘biased’ generalization of Max Cut: if we take p = 1/2
then we get my/2(G) = 3(m — f(G))).

Considering a random bipartion where each vertex independently has
probability p of being in V;, we get Ee(V;) = p*m and Ee(V) = ¢*m. It
follows that every graph G with m edges has m,(G) < pgm, while complete
graphs or not too sparse random graphs show that we can have m,(G) =
(1 4+ o(1))pgm. A corresponding judicious result was proved in [7], where it
was shown that there is in fact a bipartition such that there are no more
than about p?m edges in Vi and ¢*m edges in V5. More precisely, there is a
bipartition in which

e(Vi) < p*m -+ hip,m) (6)

and
e(Va) < ¢*m + h(p,m), (7)

h(p,m) =pg(/m/2+1/16 — 1/4).

Note that when p = 1/2, we recover (2).

Our aim in section 2 is to prove bounds similar to (4) and (5) in this
context. Suppose that m,(G) = pgm — a. If a < ¢(p)m, we will show in
Theorem 1 that there is a bipartition V(G) = Vi U V5 such that V; and V4

satisfy inequalities of form

where

2

e(Vi) <p’m—a+O(vVm+ %) (8)

and
2

e(V2) < g'm — a+ O((Vm + =). (9)



Note that we get a rather than a//2 here: this reflects the definition of m,(G):
for example, compare m,o(G) with f(G).

If @ > ¢(p)m then (8) and (9) are no longer useful: we show in Theorem
3 that there is a bipartition V(G) = V; U V4 such that

e(Vi) < p*m — c*(p)m

and
e(Va) < ¢m — c*(p)m

More precise statements of these results can be found at Theorems 1 and 3
below.

In Section 3, we turn to partitions into more than 2 pieces. For k > 2, let
us define mcy(G) to be the maximum size of a k-cut of G. It is easily seen
by considering a random partition that every graph G with m edges has

kE—1
meg(G) > —
We show (Theorem 5) that if there is a significantly larger cut then we get a
very good judicious partition. If
kE—1
mcy(G) = o m +a
then the following holds: if o < ¢(k)m then there is a k-cut in which each

class has at most )
m o« o

E—E—FO(\/E-FE) (10)
edges (once again, a more precise statement is given below). For o > ¢(k)m
there is (Theorem 8) a k-cut in which each class has at most m/k* — c*(k)m
edges. Note that if « is not too large, then (10) is similar to (3), except for
the constant in the error term.

In both sections, our proof strategy is to start with a good biased partition
or k-cut and then move vertices one at a time out of a ‘bad’ vertex class while
tracking their effect on the distribution of edges. This was used in [7] and
refined in [1]. Our strategy is similar to the approach used in [1]. However,
there are some additional obstacles that need to be overcome.

Throughout the paper, we use the following notation. Let G be a graph.
For W C V(G), we write e(W) for the number of edges spanned by W; for
disjoint X, Y C V(G) we write e(X,Y") for the number of edges zy € E(G)
withzx € X andy € Y.



2 Biased partitions

Let G be a graph with m edges and p € [0,1], ¢ = 1 — p. In this section,
we consider partitions V(G) = V4 UV, that minimize ge(V)) + pe(V2). Recall
that
my(G) = min_ qe(Vi) + pe(Va).
V(G)=V1UVs

For a random partition in which each vertex independently is placed in V;
with probability p or in V; with probability ¢, we have E(qe(V}) + pe(V2)) =
pgm. We shall show that if m,(G) = pge(G) — a, with a > /m, then we
get a very good judicious partition.

Note that in a partition with ge(V1) + pe(V;) minimal, every v € V; must
satisfy

dl(0) VAL < pIT() N Vs, (1)

or else we would have moved v to V5, and a similar inequality holds for
vertices in V5. We shall refer to (11) as the local inequality.

For any partition V(G) = V3 UV, that satisfies the local inequality, sum-
ming over V; implies that

2

e(Vi,V5) > ;qe(m

and so
e(Va) =m —e(Vi) —e(V1, V2)
2
Sm—mo—fw@
1
=m — + qe(Vl).
b

Therefore

qe(V1) + pe(Va) < qe(Vi) +pm — (1 + q)e(V1)
= pm — e(V1).

Thus if m,(G) = pgm — o, and V; and V5 satisfy the local inequality, we have
e(V1) < p*m + a. (12)

We begin with a result for a of moderate size, and prove a result for large
« later (Theorem 3).



Theorem 1. Let 0 < p < 1, ¢ = 1—p, and let c(p) =  min{p?, ¢*}. Suppose

2
G is a graph with m edges such that

my(G) = pgm — o, (13)
where o < ¢(p)m. Then there is a partition V(G) = V{ UVy such that

1602

V) < pP*m — 32mp? 14

Vi) S pim —ad v/32mp? + 50 (14)
and L6a2

Vi) < ¢*m — 32mg? + —— 15

e(V2) S g'm—at /32me* + 5 (15)

Note that this improves on (6) and (7) only in the range o = O(min{p?, ¢*})m.
Our main tool in the proof of Theorem 1 is the following.

Lemma 2. Suppose G has m edges and satisfies (13), where a < p?*m/2.
Suppose W C V =V (G) and, for allv e W,

D) VAW > @) n v (16)
If e(W) > p*m — « then there is v € W with
IT(v) N W| < \/32mp? (17)
and
D) NV \ W] < <%+]%) ID(v) N W]. (18)

As above, we will refer to inequality (16) as the local inequality.

Proof. Define

Ty ={veW:|I'(v)nW]|>+32mp?} (19)
and
Thy={veW:[Tlv)nV\W|> (%—F}%NF(U)QWH. (20)

Summing the inequality satisfied by vertices in (20) over Ty, and summing
(16) over the rest of W, we see that

8
W VAW) = I3 Ir@)ynw|+ 5= 37 [T(w) n W]
p’UEW pm’UGTz
_ 2

8
) e(W) + S > IP)nwl.

veETL



Thus
qe(W) 4+ pe(V\ W) = qge(W) +p(m —e(W) —e(W,V'\ W))

< ge(W) +p <m — (W) — Heqw) - p% S @) nw)

p vETH

S8
=pm—eW)— — 'v)ynW
(W) = i 2 M@ W]

8o
<pqm+oz—%z IT'(v) N W]|.

veET?

Thus, by (13),
8ax
o > L) nW| < 2a

vETH

and so )

Y IN)nw| < %.

vETH

(21)

On the other hand, since W and V' \ W satisfy the local inequality, by (12)

we have
e(W) < p’m+ o < 2p°m
and so
S D) N W] < 2e(W) < 4p>m,
veTy
which, by the definition of T}, implies

Ap*m mp?
7| < 2 _,jmr
\/32mp? 2
Thus
|T1’ me
Y IP@)NW| < e(Th) + e(W) < o | V) < == +eW).
veT
Since e(W) > p?m — a > p*m/2, (22) and (21) give
2
Y M) nw|< 1% + (W) < 2e(W)

veTIUT,

and so 17 U T, # W. The lemma follows immediately.

8

)



We can now turn to the proof of Theorem 1.
Proof of Theorem 1. Let V; U V5, be a partition with
qe(V1) + pe(Va) = pgm — .

If (14) and (15) are satisfied for V; and V,, we are done. Otherwise, exchang-
ing p and ¢ if necessary (and noting that this also exchanges (14) and (15)),
we may assume that

e(V1) > p*m — a.

If
e(Vi) =p’m —a+ A
then
pe(Va) = pgm — a — qe(V1)
= pgm — o — qp*m + qa — g\
= pg*m — pa — g\
and so

e(Va) = ¢*m — o — %)\. (23)

Note that (V1, V3) satisfies the local inequality (16) (with W = V7).

We now successively move vertices from V; to V3, at each step choosing
a vertex satisfying (17) and (18). We can find such a vertex, as the local
inequality (16) remains true if we remove vertices from V; and so we can
apply Lemma 2. We continue until we obtain V] such that p*m — a <
e(V]) < p*m — a + 1/32mp? (note that (17) guarantees that our steps are
sufficiently small that we don’t overshoot). Since we have decreased e(V;) by
at most A, (18) implies that we have increased e(V3) by at most

o)
p pm

and so, by (23), we end up with VJ satisfying

<@m—a+ ——A\ (24)
pm

By (12) we have A\ < 2a, and so the result follows from (24) by taking the
partition (V{,V5). O



We now deal with the case when « is large.

Theorem 3. Let 0 < p <1 and q =1—p. Let 0 < ¢ < min{p?, ¢*} and
c*(p) = min{ep/12,¢q/12}. Suppose that G is a graph with m edges and

my(G) = pgm — a, (25)

where o > em. Then, provided that m is sufficiently large (in terms of ¢ and
p), there is a partition V(G) = Vi3 U V; such that

e(V1) < p’m —c'm (26)
e(Va) < ¢*m — c*m. (27)

The best fit with Theorem 1 is obtained by specializing to a particular
value of c. However, it will be useful in the next section to allow any ¢ > 0.
The proof of Theorem 3 is based on the following lemma.

Lemma 4. Let 0 < p < 1, ¢ = 1 — p, and suppose that 0 < ¢* < p*/9.
Suppose that G is a graph with m edges. Suppose W C V =V (G) satisfies

e(W) > p*m — c'm
and, for every w € W,
gL' (w) N W[ < p[l'(w) NV \ WI.

Then, provided m is sufficiently large (in terms of p and c*), either there is
w € W such that

ID(w) NW| < c™m (28)
and 1
D) VAW < (4 5)I0@) n W] (29)
or there is W' C W such that (V1, V) = (W', V\ W') satisfies
e(V1) < p*m —c'm (30)
e(Va) < ¢*m — c*m. (31)

Proof. Let
Ty={veW:|I'(v)nW]|>c"m}

10



and

1
= {UE W D(w)ynV\W|> (}%—1-5) \F(U)HW|}.
Let T'=1T; UT,. We consider two cases.

Case 1. e(T) > p*m — c*m.
Since every graph with m edges has a vertex of degree at most v/2m, we
can delete vertices from T" C W one at a time until we obtain V; C T with

p’m —c'm —V2m < e(V1) < p*m — c*m. (32)

Then, writing V5, = V' \ V], and using the local inequality and the fact that
Vi C T, we have

e(Vi,Va) = Y [T(v) NV

veEV]
> S PN VAT
veEWV]
q 1
Z D) N T|+ 5 > IF)NT]
v€V1 veVINT:
2q 1
> M)+ 5 X NVl ()

veViNT,
Now, since ' C W, >~ . [T'(v) N W] < 2e(W) < 2m, and so |Th| < 2/c".
Thus e(T}) < 2/(c*)?, and so

> ITw) NVl < e(ViNTy) + e(VA)

veVinTy

e(Ty) +e(Vh)
(V).

2
(c)?

Since V7 C T, it follows that

Y. PN =2e(V) - Y L)V

veViNTy veViNTy



provided m is sufficiently large. Thus, by (33),

Vi) > (24 3) e

and so, using (32),
e(Va) =m —e(V1) — e(V1,V2)

2 1
<m—(1+?q+;l)e(1/1)
gm—(l—k%—l—%)(ﬁm—c*m—\ﬂm)

, 1, 29 1.,.
=qm=—p m+(1+?+4—1)(6 m+v2m)

< ¢*m—c'm,
provided m is sufficiently large. Thus (V3,V3) satisfies (30) and (31), as

required.

Case 2. e(T) < p*m — c*m.
In this case, there is some vertex w € W \ T'; this vertex will satisfy the
required inequalities.

[
Proof of Theorem 3. Let V(G) = V4 UV, be a partition such that
qe(V1) + pe(V2) = pgm — a. (34)

If V1 and V4 satisty (26) and (27) then we are done. Otherwise (exchanging
V1 and V5 and p and g if necessary, and noting that ¢* is unchanged) we may
assume V] fails (26). Suppose that

e(V1) = p*m — c'm + A, (35)
so that, by (34),
1
e(Va) = ];(pqm —a—qe(1h))
1
= ];(qum —a— g\ +qctm)

At o c'm
Qm_q _'_q
p p

LS

12



Provided m is sufficiently large, we can move vertices from V; to V5 using
Lemma 4. At each stage, we either obtain the partition required by the
theorem, or by (29) move a vertex that decreases e(V;) by some integer d
and increases e(V2) by at most (I + 3)d. We halt when we reach V{ C V
with

p’m — 2c¢'m < e(V]) < p*m — c'm;

here, (28) guarantees that we do stop. We have decreased e(V;) by
e(Vi) —e(V]) <X+ c™'m

and so, writing V4 =V \ V/,

e(V)) < e(Va)+ (% + 1) (A + ¢“m)

2
Ao c'm 1 .
— ¢m-1 + 1 +(g+—>()\+cm)
p p p 2
1 1 2 1
= ¢m—-a+ A+ i) em.
p 2 p 2

By (12), (35) and (34), we have A < a+ ¢*m, so

11 ¢ 1
V/ < 2 o - = 2 1 - *
e(Vy) < g¢m <p 2)a+ (p+2>cm

2 1 4*
< ¢gm——-a+-cm
p

2

< ¢*m—c'm.

Thus (V/, V) will do for our partition. O

3 Partitions into k£ vertex classes

In this section, we show that graphs with a large k-cut have a good judicious
partition into k vertex classes. As in the previous section, we begin with a
result for moderate values of «, and then prove a result (Theorem 8) for large
a.

Our first result is the following.

13



Theorem 5. Let k > 2. Suppose that G is a graph with m edges such that

mey(G) = (1 - %) m+ o, (36)

where o < m/kG. Then there is a k-cut in which each class has at most

m o« n kPa?
k2 k m

+4yv/m (37)
edges.

Before we prove this result, let us make a few simple observations. Note
first that if Ule V; is a maximum k-cut of G then, for ¢ # j and v € V;, we
have

[P(v) NVi| = [T(v) N Vi, (38)
or else we could move v from V; to V; to obtain a larger cut. Thus every
vertex class V; satisfies, for all v € V;, the inequality

T() N VAV = (k= 1)|T(v) N Vi (39)

Once again, we shall refer to this as the local inequality.
Summing (38) over vertices in V;, we find that

e(Vi, Vi) = 26(V)). (40)

It is easily seen (for instance, by considering a random k-cut, or partitioning
greedily one vertex at a time) that

meg(G) > e(G). (41)

Given a partition of some subset W C V(G) into k sets, we can extend
greedily to a k-cut of G by adding vertices one at a time to whichever class
maximizes the partial cut at each step. We see that, if H = G[W], then

k—1
k

We can also obtain a k-cut by choosing one vertex class and then taking a
(k — 1)-cut of the remainder of the graph. In particular, for any W C V =
V(G),

mey(G) > me,(H) + (e(G) —e(H)). (42)

meg(G) > e(W,V\ W) 4+ mcy_1(G\ W). (43)

In addition to these observations, our proof of Theorem 5 will be based
on the following two lemmas.

14



Lemma 6. Suppose that G is a graph with m edges such that

mcy(G) = %m +a (44)

and W C 'V satisfies the local inequality

IT(0) N (VAW)| > (k= 1D[T(v) N W] (45)
for allv e W. Then
m k-1
e(W) < 2 + @ (46)

Proof. Let V = V(G). Using (43) and (41), we see that

mc(G) > e(W, V\ W) +mcp_1(G\ W)

> e(W,V\W) —|—H(m—e(W) —e(W,V\W))

k—2 1 k—2
k—1m+k—1€(w’v\w)_k—1e(

Summing (45) over vertices in W, we see e(W,V \ W) > 2(k — 1)e(W). So

w).

-2 k—2
meg(G) > ™ + 2e(W) — T 16(W)
k—2 k
- 1m+ - 16(W)
The result now follows by a simple calculation. O

The proof of Theorem 5 involves moving certain vertices between the
vertex classes of a partition. The fact that we can find suitable vertices is
guaranteed by the following lemma.

Lemma 7. Suppose that o« < m/2k and

-1
me(G) = kTm + a. (47)

Suppose that W C V' and the local inequality (45) holds for every v € W. If

W)= 55—+ (48)

15



then there is a vertex v € W with
ID(v) N W| < 4vm (49)
and o
D) N (V\ W) < (k 1 +4k’3%) ID(v) N W] (50)
Proof. Let
T, = {veW:|[I'(v)NW|>4ym}
_ . _ 3¢
T, = {v eW D) N (V\ W) > <k 1+ 4k m) |F(v)ﬂW|}
It is enough to show that W \ (T} U Ty) is nonempty.
By (45), we have e(W,V\ W) > 2(k — 1)e(W) and as e(W) + e(W, V' \

W) < m, we get e(W) < m/(2k — 1). Since Y [I'(v) N W] < 2e(W) <
2m/(2k — 1), we have

2e(W) vm
1Tl < Im 22k 1)

71| m
1) < <
el 1)—( 2 ) = 8(2k —1)2
It follows that

Y IP@)NW| < e(W) +e(Th) < e(W) +

veT)

and so

m

s OV

We now concentrate on bounding »_ .., [I'(v) N W]. Calculating as in
the proof of Lemma 6, we have

k—2  k—2 1
el s U

Now (45) and the definition of 75 imply that

meg(G) > e(W,V\ W). (52)

eW,VAW) = > |F(w)n(V\W)|
> (k—l)z]F(v)ﬂleL%TaZ\F(v)ﬂW]
4k3 o

= 2(k—1)e(W) + > L) nw. (53)

vETH

16



It therefore follows from (52) that

k—2 k 4k3
> _— I ) 4
mck(G)_k_1m+k_1e(W)+m(k_1) UEET2| (v) N W| (54)
By (48) the right hand side is at least
k—1 «Q 43
— I .
w " k;—1+m(k;—1)z‘ ()Wl
vETH
But then (47) implies that
4k3« «Q k
S E— 'v)NW| < —
m(k:—l)veZT’(v) s e

and so m
> IPw)ynw|< e

vETH

It therefore follows from (51) that

Z IT(v) N W[ <e(W)+ (4%{2 + m) m.

veT1UT,

Since a < m/2k, we have e(W) > m/2k?. Since

1 n 1 - 1
4k 8(2k —1)2 ~ 2k%’
we have m
Z IF(v) NnW| <e(W)+ o2 < 2e(W),
veTIUT,
and so T1 U Ty, # W, as claimed. O

After this, we are ready to prove Theorem 5.

Proof of Theorem 5. We argue by induction on k. Let (V4, ..., V}) be a max-
imum cut, and suppose that e(Vy) > -+ > e(Vy). If e(V}) satisfies (37) we

are done. Otherwise,
m o«

17



where Lemma 6 implies that A\ < a.

We proceed by moving vertices one at a time from V; to other vertex
classes. Suppose we have reached a stage with vertex classes V/,...,V/
(where V] C Vi). Applying Lemma 7, we find a vertex v satisfying (49)
and (50), and move v to whichever class V/, i > 1, contains fewest neigh-
bours of v. This decreases e(V) by |I'(v)NV]| < 4y/m and, by (50), decreases
the size of the k-cut by at most

min{['(v) N V= Pw)nV]} < ﬁW(U) NVAV)] = T(v) NV
43 ,
mW(U) nVil. (56)

Since moving v does not affect the local inequality (45), we can continue to
move vertices until V; is reduced to W; with

m (6% m (6%

Note that inequality (49) implies that we do eventually obtain W, with e(W;)
in this range.

We end up with a set W; C V; that satisfies (37), and sets W, ..., W
with W; D V; for each i. Since (55) and (57) imply that e(Vi) —e(W;) < A <
a, it follows from (56) that the size of the k-cut we end up with is at least

k—1 4k3«y

Tm—l—a—&-m. (58)

Since (W, ..., Wy) satisfies (57), by (58) we have
k—1 4k3a?

1>2

——m — a+ . (59)

If & = 2, this implies (37) immediately. Otherwise, we consider the
subgraph H = G[V \ W], and partition it into k — 1 classes.
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Suppose first that e(H) < (%)Qm — & kl) a. We can find a judicious

partition of H into k — 1 classes, each of which satisfies (3). Extending to
a k-partition of G by taking W; as the kth vertex class gives a partition
satisfying (37).

Otherwise, e(H) > (k—;l)Qm (k kl) a. Note that since V] satisfies the
local inequality (39), so does Wi, and so e(Wy,V \ W) > 2(k — 1)e(W)).
now k2 k

meg_1(H) < P e(H) + 1% (60)

or else, using (57), (43) and the local inequality,

ka(G) Z ka—1<H) + E(Wl, %4 \ Wl)
k—2

k
> k_l(m—e(Wl)—e(Wl,V\Wl)) + 1a+e(Wl,V\W1)
k—2 1 k — 2 k
_k_1m+k_ €(W1,V\W1) k 1 (Wl) k_lOé
k—2 2
— 2
_k_1m+ e(Wy) — k—le(W1)+k T
k—2 k k
:k_lm—l—k_le(Wl)—l—k_la
>k_2m+ kom k g+ k N
k-1 k=1 Kk k—1k k-1
k-1
=——mta
which contradicts (36). Thus, writing
k—2
mey_1(H) = T 1€<H) + 7, (61)

by (60) and our assumptions on the size of e(H) and a,

ka/(k—1)
v/e(H) < (k —1)2m/k2 — (k — 1)2a/k
(m/k*) - k/(k—1)
= mk — 1)2/k2 = (k — 1)2m/k>
<1/(k - 1"
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Applying the inductive hypothesis to H, we obtain a partition W3, ..., W/
with

eV < (kre(—Hl))2 oyt 1)5% +4y/e(H)  (62)
Now, by (61),
(kf{fif)Q'_'k j,»1 = },1 (e(H) — mey_1(H))
SE%I e(W;) (63)

and, since v < Zza (by (60)) and e(H) > (%)zm — (k= 1)%a/k >

(52)*m — (k — 1)>m/k®,

72 E\°a? 1
o(H) = (k - 1) k=12 — (k= 12k
a? k"

T m (k—=DYk—1)
It follows from (62), (63) and (59) that

ne L | s 4 e(H)
nlglzalxe(Wi) < P12 e(W;) + (k—1) o) +4+/e(H)
m o« 4k o (k—1)%" a?
< _a « L 1y
R g Y il Ty S AL
2
m [0 (0
< ———+kK—+4
<0 k+knf+¢ﬁ

for k > 3. The result now follows immediately by taking the partition
Wy, Wi, ..., Wi. m

Finally, we turn to the case when the maximum k-cut is very large. As
in Alon, Bollobés, Krivelevich and Sudakov [1], we use a rather cruder argu-
ment.

Theorem 8. Let k > 2. Suppose that G is a graph with m edges such that

-1
me(G) = kTm + a,

20



where o > m/kS. Then, provided that m is sufficently large (in terms of k),
there is a partition of V(G) into k sets, each of which contains at most

m m

k2 12k10 (64)

edges.

Proof. Let (Vi,..., Vi) be a cut of size (k—1)m/k+a. Let i € {1,...,k} be
chosen uniformly at random, and consider the partition (V;,V \ V;). Then,

writing m’ = Z?Zl e(V;) =m/k —aand p=1—q=1/k, we have

1 / k—1 / (kgl) /
E(ge(V;) + pe(V\V;)) = gzm +p Tm+ (k) (m —m')
2
2k — 2 k—2
= 3 m/ % (m—m')
k—2 1,
- T MR
k—1 o
- e Tk
— pgm — <.
k

Suppose that mq,(G) = pgm — /. Since o/ > m/k", we can apply
Theorem 3 with p = 1/k and ¢ = 1/k” to get a bipartition V(G) = V/ U VJ
with e(V}) < m/k* — m/12k% and e(Vy) < (k — 1)*m/k* — m/12k®. We
refine the partition by splitting V5 into & — 1 pieces satisfying (3) (for the
(k — 1)-partite case). Providing m is sufficiently large (in terms of k), we
obtain a partition of V(@) satisfying (64). O

4 Conclusion

It seems likely that our constants could be improved significantly. It would
be interesting to have sharper constants both when 0 is small (for instance, in
(37)), and when 9 is large (for instance, in (64)). Particularly when § = Q(m),
all the bounds are rather crude, and it would be very interesting to know
the correct dependence of the error term on ¢, and to have some idea of the
extremal graphs.
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It would be very interesting to prove analogous results for hypergraphs
(see, for instance, [6] and [8] for results on judicious partitions of hyper-
graphs).

Finally, it would also be of interest to consider bisections instead of cuts.
More specifically, for a graph G, let

b(G) = max{e(V1,V2) : V(G) = Vi UVy, [[Vi] — V2| | < 1}

be the maximum size of a bisection of G, and let g,(G) be the minimum of
max{e(V1),e(Va)} over bisections of G. What can be said about the rela-
tionship between b(G) and g,(G)? Note that the star K, has b(Ky,-1) =
[n/2] ~ e(Ki,-1)/2, while gy(K1,-1) = [n/2] =1 ~ e(K,-1)/2, which is
about as bad as it could be. But what about graphs with bisections much
larger than m /27

Acknowledgement. We would like to thank the referees for their careful
reading of the paper.
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