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Abstract

Let H be a tree. It was proved by Rödl that graphs that do not contain H as an induced subgraph,
and do not contain the complete bipartite graph Kt,t as a subgraph, have bounded chromatic number.
Kierstead and Penrice strengthened this, showing that such graphs have bounded degeneracy. Here
we give a further strengthening, proving that for every tree H, the degeneracy is at most polynomial
in t. This answers a question of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé and Walczak.



1 Introduction

The Gyárfás-Sumner conjecture [6, 15] asserts:

1.1 Conjecture: For every forest H, there is a function f such that χ(G) ≤ f(ω(G)) for every
H-free graph G.

(We use χ(G) and ω(G) to denote the chromatic number and the clique number of a graph G,
and a graph is H-free if it has no induced subgraph isomorphic to H.) One attractive feature of
this conjecture is that it is best possible in a sense: for every graph H that is not a forest, there
is no function f as in 1.1 (because, as shown by Erdős [4], there are graphs with arbitrarily large
chromatic number and girth). The conjecture has been proved for some special families of trees (see,
for example, [3, 7, 8, 9, 11, 12, 13]) but remains open in general.

A class C of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for every graph
G that is an induced subgraph of a member of C (see [14] for a survey). Thus the Gyárfás-Sumner
conjecture asserts that the class of all H-free graphs is χ-bounded, for every forest H. For some
χ-bounded classes, the function f can be taken to be polynomial, and it remains open whether for
every forest H, there is a polynomial f that satisfies 1.1. (Indeed, Esperet [5] made the even stronger
conjecture that, for every χ-bounded class, f can always be chosen to be a polynomial, but this has
recently been shown to be false [2].)

The complete bipartite graph with parts of cardinality s, t is denoted by Ks,t. Let us define τ(G)
to be the largest t such that G contains Kt,t as a subgraph (not necessarily induced). It was proved
by Rödl (mentioned in [10], and see also [8]) that the analogue of the Gyárfás-Sumner conjecture is
true if we replace ω(G) by τ(G). Explicitly:

1.2 For every forest H, there is a function f such that χ(G) ≤ f(τ(G)) for every H-free graph G.

This has the same attractive feature that the result is best possible (in the same sense).
This result was strengthened by Kierstead and Penrice. Let us say a graph G is d-degenerate

(where d ≥ 0 is an integer) if every nonnull subgraph has a vertex of degree at most d; and the
degeneracy ∂(G) of G is the smallest d such that G is d-degenerate. Then χ(G) ≤ ∂(G) + 1, and so
the following result of Kierstead and Penrice [9] is a strengthening of 1.2:

1.3 For every forest H, there is a function f such that ∂(G) ≤ f(τ(G)) for every H-free graph G.

What about the analogue of Esperet’s question: do 1.2 and 1.3 remain true if we require f to
be a polynomial in τ(G)? This question was raised by Bonamy, Bousquet, Pilipczuk, Rzążewski,
Thomassé and Walczak in [1], and they proved it when H is a path, that is:

1.4 For every path H, there exists c > 0 such that ∂(G) ≤ τ(G)c for every H-free graph G.

In this paper we answer the question completely. Our main result is:

1.5 For every forest H, there exists c > 0 such that ∂(G) ≤ τ(G)c for every H-free graph G.

We also look at a related question: what can we say about χ(G) and ∂(G) if G is H-free and does
not contain Ks,t as a subgraph? More exactly, if H, s are fixed, how do χ(G) and ∂(G) depend on t?
We will show that the dependence is in fact linear in t:
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1.6 For every forest H and every integer s > 0, there exists c > 0 such that for every graph G and
every integer t > 0, if G is H-free and does not contain Ks,t as a subgraph, then ∂(G) ≤ ct.

We also prove a weaker result, that under the same hypotheses, χ(G) ≤ ct, and for this the bound
on c is a small function of s,H.

Finally, there is a second pretty theorem in the paper [1] of Bonamy, Bousquet, Pilipczuk,
Rzążewski, Thomassé and Walczak:

1.7 Let ` be an integer; then there exists c > 0 such that ∂(G) ≤ τ(G)c for every graph G with no
induced cycle of length at least `.

We give a new proof of this, simpler than that in [1].
In this paper, all graphs are finite and have no loops or parallel edges. We denote by |H| the

number of vertices of a graph H. If X ⊆ V (G), we denote the subgraph of G induced on X by G[X].
We use “G-adjacent” to mean adjacent in G, and “G-neighbour” to mean a neighbour in G, and so
on.

2 Producing a path-induced rooted tree.

We will prove 1.5 in this section and the next. We need to show that if a graph G has degeneracy at
least some very large polynomial in t (independent of G), and does not contain Kt,t as a subgraph,
then it contains any desired tree as an induced subgraph. We will show this in two stages: in this
section we will show that G contains a large (with degrees a somewhat smaller polynomial in t) “path-
induced” tree, and in the next section we will convert this to the desired induced tree. “Path-induced”
means that each path of the tree starting at the root is an induced path of G; so we should be talking
about rooted trees. Let us say this carefully.

A rooted tree (H, r) consists of a tree H and a vertex r of H called the root. A rooted subtree of
(H, r) means a rooted tree (J, r) where J is a subtree of H and r ∈ V (J). The height of (H, r) is the
length (number of edges) of the longest path of H with one end r. If u, v ∈ V (H) are adjacent and
u lies on the path of H between v, r, we say v is a child of u and u is the parent of v. The spread
of H is the maximum over all vertices u ∈ V (H) of the number of children of u. (Thus the spread
is usually one less than the maximum degree.) Let H be a subgraph of G (not necessarily induced),
where (H, r) is a rooted tree. We say that (H, r) is a path-induced rooted subgraph of G if every path
of H with one end r is an induced subgraph of G.

Let ζ, η ≥ 1. The rooted tree (H, r) is (ζ, η)-uniform if

• every vertex with a child has exactly ζ children;

• every vertex with no child is joined to r by a path of H of length exactly η.

We need two lemmas:

2.1 Let k, ζ, η ≥ 1 with ζ ≥ 2, and let (H1, r1), . . . , (Hk, rk) be (kζη+1, η)-uniform rooted trees, each
a subgraph of a graph G, such that ri /∈ V (Hj) for all distinct i, j ∈ {1, . . . , k}. Then for 1 ≤ i ≤ k
there is a (ζ, η)-uniform rooted subtree (H ′i, ri) of (Hi, ri), such that the trees H ′1, . . . ,H

′
k are pairwise

vertex-disjoint.
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Proof. Choose j ≤ k maximum such that there are (ζ, η)-uniform rooted subtrees (H ′i, ri) of (Hi, ri)
for 1 ≤ i ≤ j, such that the treesH ′1, . . . ,H ′j are pairwise vertex-disjoint. LetX = V (H ′1)∪· · ·∪V (H ′j).
Thus |X| ≤ jζη+1, since each H ′i has

1 + ζ + ζ2 + · · ·+ ζη ≤ ζη+1

vertices (here we use that ζ ≥ 2). Suppose that j < k. Then each vertex of (Hj+1, rj+1) with a child
has at least (k − j)ζη+1 ≥ ζη+1 ≥ ζ children not in X; and since rj+1 /∈ X, it follows that there is
a (ζ, η)-uniform rooted subtree (H ′j+1, rj+1) of (Hj+1, rj+1) vertex-disjoint from X, contrary to the
maximality of j. Thus j = k, and this proves 2.1.

Let (T, r) be a rooted tree, where T is a subgraph of G. For t > 0, a vertex u ∈ V (G) is t-bad
for (T, r) if there is a vertex w ∈ V (T ) such that u is distinct from and G-adjacent to more than
d(1− 1/t) children of w, where d is the number of children of w. We will often use the following:

2.2 Let t, η ≥ 1 and ζ ≥ 2 be integers. Let (T, r) be a (tζ, η)-uniform rooted tree, where T is a
subgraph of G; and let u ∈ V (G) \ V (T ). If u is not t-bad for (T, r), then there is a (ζ, η)-uniform
rooted subtree (S, r) of (T, r) such that u has no G-neighbour in V (S) except possibly r.

We omit the proof, which is clear. The second lemma is:

2.3 Let t, η ≥ 1 and ζ ≥ 2 be integers, where t divides ζ. Let G be a graph that does not contain
Kt,t as a subgraph, and let (T, r) be a (ζ, η)-uniform rooted tree, where T is a subgraph of G. Then
fewer than ζη vertices in V (G) are t-bad for (T, r).

Proof. There are ζη/(ζ − 1) vertices in V (T ) that have children (since ζ ≥ 2). Let w ∈ V (T ) with
ζ children, and let Cw be the set of its children in (T, r). Suppose that there are t distinct vertices
u1, . . . , ut in V (G) such that each is G-nonadjacent to more than |Cw|(1 − 1/t) vertices in Cw, and
hence to at least |Cw|(1− 1/t) + 1 such vertices, since t divides |Cw|.

It follows that each ui is equal or |Cw|/t − 1 G-nonadjacent to at most |Cw|/t − 1 vertices of
Cw, and so at most t(|Cw|/t− 1) vertices in Cw belong to or have a G-nonneighbour in {u1, . . . , ut}.
Consequently at least t vertices in Cw are G-adjacent to all of u1, . . . , ut, contradicting that G does
not contain Kt,t as a subgraph. Thus there are at most t − 1 ≤ ζ − 1 vertices in V (G) with more
than |Cw|(t− 1)/t G-neighbours in Cw. So the number of vertices in V (G) that are t-bad for (T, r)
is at most ζ − 1 times the number of vertices of T that have children, and so smaller than ζη. This
proves 2.3.

The main result of this section is the following:

2.4 Let η > 0 be an integer and let c = (η + 1)!. Let ζ ≥ 2, and let (H, r) be a rooted tree of height
at most η, and spread at most ζ. Let t ≥ 1 be an integer, and suppose that the graph G does not
contain Kt,t as a subgraph, and does not contain a rooted tree isomorphic to (H, r) as a path-induced
rooted subgraph. Then ∂(G) ≤ (ζt)c.

Proof. We may assume that t ≥ 2. We proceed by induction on η. If η = 1, it follows that G has
maximum degree at most ζ − 1, since it does not contain (H, r) as a path-induced rooted subgraph;
and so ∂(G) ≤ ζ − 1 ≤ (ζt)c as required. So we may assume that η ≥ 2, and the result holds for all
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rooted trees with height less than η. Let c′ = η! and ζ ′ = tζη+1. Let us say a limb is a (ζ ′, η − 1)-
uniform rooted tree that is a path-induced rooted subgraph of G.

(1) For each vertex u, there are at most ζ − 1 G-neighbours v of u with the property that there
is a limb (J, v) of G such that u /∈ V (J) and u is not t-bad for (J, v).

Suppose there are ζ such vertices v1, . . . , vζ , and let the corresponding limbs be (Ji, vi) for 1 ≤ i ≤ ζ.
By 2.2, for 1 ≤ i ≤ ζ, there is a (ζη+1, η − 1)-uniform rooted subtree (J ′i , vi) of (Ji, vi), such that u
has no neighbour in V (J ′i) except vi. By 2.1, there is a (ζ, η − 1)-uniform rooted subtree (H ′i, ri) of
(J ′i , ri) for 1 ≤ i ≤ ζ, such that the trees H ′1, . . . ,H ′k are pairwise vertex-disjoint. But then adding
u to the union of these trees gives a (ζ, η)-uniform rooted tree, and it is path-induced in G, and
contains a rooted induced subgraph isomorphic to (H, r), a contradiction. This proves (1).

Let P be the set of vertices v of G such that there is a limb with root v, and let Q = V (G) \ P .
For each v ∈ P , there is at least one limb with root v; select one, and call it (Jv, v). For each edge e
with at least one end in P , select one such end, and call it the head of e.

• Let A be the set of all edges with both ends in Q;

• Let B be the set of all edges uv of G with head v, such that u /∈ V (Jv), and u is not t-bad for
(Jv, v);

• Let C be the set of all edges uv of G with head v, such that u /∈ V (Jv), and u is t-bad for
(Jv, v);

• Let D be the set of all edges uv of G with head v, such that u ∈ V (Jv).

Thus every edge of G belongs to exactly one of A,B,C,D. Since G[Q] does not contain a limb, the
inductive hypothesis implies that ∂(G[Q]) ≤ (ζ ′t)c

′ . Consequently

|A| ≤ (ζ ′t)c
′ |Q| ≤ (ζ ′t)c

′ |G|.

By (1), for each vertex u ∈ V (G), there are at most ζ − 1 edges uv ∈ B with head v; and so

|B| ≤ (ζ − 1)|G|.

For each v ∈ P , there are at most ζ ′η−1 edges uv ∈ C with head v by 2.3, and so

|C| ≤ ζ ′η−1|P | ≤ ζ ′η−1|G|.

For each v ∈ P , since (Jv, v) is path-induced, there are at most ζ ′ edges uv ∈ D with head v, and so

|D| ≤ ζ ′|P | ≤ ζ ′|G|.

Summing, we deduce that

|E(G)| ≤
(
(ζ ′t)c

′
+ (ζ − 1) + ζ ′η−1 + ζ ′

)
|G|,
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and so some vertex of G has degree at most 2
(
(ζ ′t)c

′
+ (ζ − 1) + ζ ′η−1 + ζ ′

)
. Since this also holds

for every non-null induced subgraph of G, we deduce that

∂(G) ≤ 2
(
(ζ ′t)c

′
+ (ζ − 1) + ζ ′η−1 + ζ ′

)
.

We recall that ζ ′ = tζη+1 and c = (η + 1)c′; and so

∂(G) ≤ 2
(
ζc

′(η+1)tc
′
+ (ζ − 1) + ζη

2−1tη−1 + ζη+1t
)

(1)

≤ 2ζc
(
tc

′
+ 1 + tη−1 + t

)
(2)

≤ 8ζctc
′ ≤ ζctc (3)

(since c ≥ c′ + 3 and t ≥ 2). This proves 2.4.

We remark that 2.4 implies 1.4, and a strengthening:

2.5 If H is a path, and t ≥ 1 is an integer, and G is H-free and does not contain Kt,t as a subgraph,
then ∂(G) ≤ (2t)|H|!.

Proof. Let ζ = 2, and η = |E(H)| = |H| − 1. Let r be one end of H. Then G does not contain
(H, r) as a path-induced rooted subgraph, and so ∂(G) ≤ (2t)|H|! by 2.4. This proves 2.5.

3 Growing a tree

If (T, r) is a rooted tree and v ∈ V (T ), the height of v in (T, r) is the number of edges in the path
between v, r; and so the height of (T, r) is the largest of the heights of its vertices. Let (T, r) be a
rooted tree, and let (S, r) be a rooted subtree. The graph obtained from T by deleting all the edges
of S is disconnected, and each of its components contains a unique vertex of S; for each v ∈ V (S),
let Tv be the component that contains v ∈ V (S). We call the rooted tree (Tv, v) the decoration of S
at v in T .

Let G be a graph, let (S, r) be a rooted tree, and let ζ ≥ 2 and η ≥ 1. We say that (S, r) is
(ζ, η)-decorated in G if S is an induced subgraph of G with height at most η−1, and there is a rooted
tree (T, r) with the following properties:

• (S, r) is a rooted subtree of (T, r), and (T, r) is a path-induced rooted subgraph of G;

• for each u ∈ V (S) and v ∈ V (T ) \ V (S), if u, v are G-adjacent then they are T -adjacent;

• for each v ∈ V (S), the decoration of S at v in T is (ζ, η − h)-uniform, where h is the height of
v in (S, r).

Thus, informally, T is obtained from S by attaching to S uniform trees rooted at each vertex of S.
Note that T is only required to be path-induced: the various uniform trees that are attached to S
might have edges between them.

In view of 2.4, if we have a graph G with huge degeneracy that does not contain Kt,t, then it
contains a (ζ, η)-uniform rooted tree (T, r) as a path-induced rooted subgraph; and consequently
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there is a one-vertex rooted tree (S, r) that is (ζ, η)-decorated in G. The next result shows that if we
start with ζ large enough, then by reducing ζ we can grow S into any larger tree that we wish, and
that will prove 1.5.

3.1 Let η, t ≥ 1 and ζ ≥ 2 be integers, let G be a graph that does not contain Kt,t as a subgraph, and
let (S′, r) be a (ζ ′, η)-decorated rooted tree in G, where ζ ′ ≥ (ζt)η|S′|+ ζt. Let p ∈ V (S′) with height
in (S′, r) less than η. Then there is a G-neighbour q of p, with q ∈ V (G) \ V (S′), and with no other
G-neighbour in V (S′), such that, if S denotes the tree obtained from S′ by adding q and the edge pq,
then (S, r) is a (ζ, η)-decorated rooted tree in G.

Proof. For each v ∈ V (S′), let h(v) denote the height of v in (S′, r). Since (S′, r) is (ζ ′, η)-decorated
in G, it follows that S′ is an induced subgraph of G, and there is a rooted tree (T ′, r) such that

• (S′, r) is a rooted subtree of (T ′, r), and (T ′, r) is a path-induced rooted subgraph of G;

• for each u ∈ V (S′) and v ∈ V (T ′) \ V (S′), if u, v are G-adjacent then they are T ′-adjacent;

• for each v ∈ V (S′), the decoration of S′ at v in T ′ is (ζ ′, η − h(v))-uniform.

For each v ∈ V (S′), let (Tv, v) be the decoration of S′ at v in T ′. Since Tp is (ζ ′, η−h(p))-uniform,
and h(p) < η, it follows that p has ζ ′ children in (Tp, p). We need to select one of these children, say
q, to add to S′, forming S. Any one of them would make a larger induced tree when added to S′,
since (S′, r) is (ζ, η)-decorated. But in order to make the new rooted tree (ζ, η)-decorated, we will
delete from T ′ all vertices of T ′ that are G-adjacent and not T ′-adjacent to q; and doing so must not
destroy too much of T ′.

For each v ∈ V (S′), let (Sv, v) be a (tζ, η− h(v))-uniform rooted subtree of (Tv, v). By 2.3, there
are fewer than (tζ)η−h(v) ≤≤ (tζ)η vertices not in V (Sv) that are t-bad for (Sv, v), and so there are
fewer than (tζ)η|S′| children of p in (Tp, p) that are t-bad for one of the rooted trees (Sv, v) (v ∈ V (S′)).
Also, since (Sp, p) is path-induced, every G-neighbour of p in V (Sp) is an Sp-neighbour of p; so there
are only tζ children of p in (Tp, p) that belong to V (Sp). Since ζ ′ ≥ (ζt)η|S′|+ ζt, there is a child q
of p in (Tp, p) that is t-bad for none of the trees (Sv, v) (v ∈ V (S′)) and does not belong to V (Sp).

Let Q be the component containing q of the graph obtained from T ′ by deleting V (S); thus
(Q, q) is (ζ ′, η − h(p)− 1)-uniform, and so we may choose a (ζ, η − h(p)− 1)-uniform rooted subtree
(Rq, q) of (Q, q). Note that q has no neighbours in V (Q) except its neighbours in T ′, since (T ′, r) is
path-induced. Since q is not t-bad for any of the rooted trees (Sv, v) (v ∈ V (S′)), it follows by 2.2
that for each v there is a (ζ, η − h(v))-uniform rooted subtree (Rv, v) of (Sv, v) such that q has no
G-neighbour in V (Rv) except possibly v, and q is G-adjacent to v if and only if they are T ′-adjacent
(that is, v = p), since v ∈ V (S′) and (S′, r) is (ζ ′, η)-decorated. Let S be the tree induced on
V (S′) ∪ {q}, and let T be the union of T ′, the trees Rv (v ∈ V (S′) ∪ {q}) and the edge pq. Then S
satisfies the theorem, because the tree T exists. This proves 3.1.

We deduce 1.5, which we restate in a strengthened form:

3.2 Let η, t ≥ 1 and ζ ≥ 2. For every rooted tree (H, s) with height at most η and spread at most
ζ, let c = (η+ 3)!|H|; then ∂(G) ≤ (|H|ζt)c for every H-free graph G that does not contain Kt,t as a
subgraph.
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Proof. Choose η ≥ 1 and ζ ≥ 2 such that (H, s) has height at most η and spread at most ζ.
Let H have k vertices. Define ζk = ζ, and for i = k − 1, k − 2, . . . , 1 let ζi = k(tζi+1)

η. Thus
ζi ≥ i(tζi+1)

η + tζi+1

Let G be an H-free graph that does not contain Kt,t as a subgraph. Suppose that G contains
a one-vertex rooted tree that is (ζ1, η)-decorated in G. Choose a maximal rooted subtree (F, s) of
(H, s) such that there is a rooted subtree (S, r) of G, isomorphic to (F, s), such that (S, r) is (ζi, η)-
decorated in G, where i = |F |. By 3.1, i = k; and so G contains an induced subgraph isomorphic to
H, a contradiction.

Thus G contains no one-vertex rooted tree that is (ζ1, η)-decorated in G. Hence G contains no
(ζ1, η)-uniform rooted tree as a path-induced rooted subgraph, and so by 2.4 (applied with (H, r)
replaced by a (ζ1, η)-uniform rooted tree), ∂(G) ≤ (ζ1t)

d where d = (η + 1)!.
Now ζk = ζ, and ζk−1 = k(tζ)η. For all i with 1 ≤ i ≤ k − 2, ζi+1 ≥ ktη, and so ζi = k(tζi+1)

η ≤
ζη+1
i+1 . Consequently

ζ1 ≤ ζ(k−2)(η+1)
k−1 ≤ (k(tζ)η)(k−2)(η+1) ≤ (kζt)(k−2)(η+1)2 .

So ∂(G) ≤ (kζt)c where c = (k − 2)(η + 1)2(η + 1)! + (η + 1)! ≤ (η + 3)!k. This proves 3.2.

Now ζk = ζ, and ζk−1 = (k − 1)ζηtη + ζt. For all i with 1 ≤ i ≤ k − 2, ζi+1 ≥ itη+1, and so
ζi = iζηi+1t

η+1 ≤ ζη+1
i+1 . Consequently

ζ1 ≤ ζ(k−2)(η+1)
k−1 ≤

(
kζηtη+1

)(k−2)(η+1) ≤ (kζt)(k−2)(η+1)2 .

So ∂(G) ≤ (kζt)c where c = (k − 2)(η + 1)2(η + 1)! + (η + 1)! ≤ (η + 3)!k. This proves 3.2.

4 Excluding Ks,t

In this section we prove 1.6, and before that we prove a weaker statement, with ∂(G) replaced by
χ(G). For the latter we need the following lemma:

4.1 Let J be a digraph such that every vertex has outdegree at most k. Then the undirected graph
underlying J has chromatic number at most 2k + 1.

Proof. Let G be the undirected graph underlying J . Since every subgraph of G has the property that
its edges can be directed so that it has outdegree at most k, it follows that every such subgraph H has
at most k|H| edges; and therefore (if it is non-null) has a vertex of degree at most 2k. Consequently
G is 2k-degenerate, and so is (2k + 1)-colourable. This proves 4.1.

We use 4.1 to prove the following (which we include here because the proof gives a relatively small
constant c, although the fact that some c exists follows from 1.6):

4.2 Let H be a tree and s ≥ 1 an integer, and let c = (2s|H|)s+|H|. Then for every H-free graph G
and every integer t ≥ 1, if G does not contain Ks,t as a subgraph then χ(G) ≤ ct.
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Proof. We will prove this by induction on |H| (for the same value of s). Let H be a tree and s ≥ 0 an
integer, and suppose the theorem holds for all smaller trees and the same value of s. We may assume
that |H| ≥ 3, since the theorem is true for trees with at most two vertices; let p ∈ V (H) have degree
one, and let q be its H-neighbour. Let H ′ be obtained by deleting p from H. Let c′ = (2s|H ′|)s+|H′|.
We observe that

(1) c ≥ max
(
(|H| − 2)s−1, (s− 1)(|H| − 2), (2(s− 2)(|H| − 2) + 1) c′ + 1

)
.

Let t ≥ 1 be an integer, and let G be an H-free graph not containing Ks,t as a subgraph. We
will show that χ(G) ≤ ct. Suppose that this is false, and choose a minimal induced subgraph G′ of
G with χ(G′) > ct. It follows that every vertex of G′ has degree at least ct (since c is an integer).

Let v ∈ V (G′). We say a subset X ⊆ V (G′) \ {v} is a v-bag if there is an isomorphism from H ′

to G[X ∪ {v}] that maps q to v. (Thus each v-bag has cardinality |H| − 2.)
Let v ∈ V (G′), and suppose that there are s − 1 pairwise disjoint v-bags, say X1, . . . , Xs−1.

Since G is H-free, every G-neighbour u of v either belongs to Xi or has a G-neighbour in Xi, for
1 ≤ i ≤ s − 1. In particular, every G-neighbour u of v not in X1 ∪ · · · ∪ Xs−1 has a G-neighbour
in each of X1, . . . , Xs−1. But for each choice of xi ∈ Xi (1 ≤ i ≤ s − 1) there are at most t − 1
G-neighbours of v G-adjacent to each of x1, . . . , xs−1 (since they are also all adjacent to v, and G
has no Ks,t subgraph). Consequently there are at most (t− 1)(|H| − 2)s−1 G-neighbours of v not in
X1 ∪ · · · ∪Xs−1; and hence

(s− 1)(|H| − 2) + (t− 1)(|H| − 2)s−1 > ct.

Since ct = c+ c(t− 1), and (s− 1)(|H| − 2) < c, and (t− 1)(|H| − 2)s−1 ≤ c(t− 1), this contradicts
(1); so there is no such choice of X1, . . . , Xs−1.

Choose an integer r maximum such that there are r pairwise disjoint v-bags, say X1, . . . , Xr.
Consequently r ≤ s− 2. Let Yv = X1 ∪ · · · ∪Xr; then from the maximality of r, X ∩Yv 6= ∅ for every
v-bag X. Moreover |Yv| ≤ (s− 2)(|H| − 2).

Let J be the digraph with vertex set V (G′) in which every vertex in Yv is J-adjacent from v,
for each v ∈ V (G′). Thus J has maximum outdegree at most (s − 2)(|H| − 2), and so by 4.1,
the undirected graph J ′ underlying J has chromatic number at most 2(s − 2)(|H| − 2) + 1; and so
V (G′) = V (J ′) can be partitioned into 2(s− 2)(|H| − 2) + 1 sets each of which is a stable set of J ′.
Let Z be one of these sets. Then G[Z] is H ′-free (because otherwise there would be a vertex v ∈ Z,
and a subset X ⊆ Z \ {v}, and an isomorphism from H ′ to G[X ∪ {v}] mapping q to v, and hence
with X ∩ Yv 6= ∅; but no vertex of Yv belongs to Z, since Z is stable in J ′). From the inductive
hypothesis, χ(Z) ≤ c′t, and hence

ct < χ(G) = χ(G′) ≤ (2(s− 2)(|H| − 2) + 1)c′t

contrary to (1). This proves 4.2.

To prove 1.6, we will need the following strengthening of 1.3, also proved in [9]:

4.3 For every forest H, and every integer s > 0, there is a tree S such that for every H-free graph
G, if G contains S as a subgraph, then G contains Ks,s as a subgraph.

Now we prove 1.6, which we restate:
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4.4 For every forest H and every integer s > 0, there exists c > 0 such that for every graph G and
every integer t > 0, if G is H-free and does not contain Ks,t as a subgraph, then ∂(G) < ct.

Proof. Let S be as in 4.3, and let c = |S|s; we will show that c satisfies the theorem. Let t > 0 be
an integer, and let G be an H-free graph that does not contain Ks,t as a subgraph. Suppose that
∂(G) ≥ ct, and choose G minimal with these properties: then every vertex of G has degree at least
ct.

(1) Let R be a tree. If every vertex of G has degree at least t|R|s, then G contains a subgraph T
isomorphic to R, and V (T ) can be ordered as {t1, . . . , tn}, such that for 1 ≤ i ≤ n, ti is G-adjacent
to at most s− 1 of t1, . . . , ti−1.

We prove this by induction on |R|. We may assume that |R| > 1; let p ∈ V (R) have degree one in R,
and let q be its R-neighbour. Let R′ be obtained from R by deleting p. From the inductive hypothesis,
G contains a subgraph T ′ isomorphic to R′, and its vertex set can be ordered as {t1, . . . , tn−1}, such
that for 1 ≤ i ≤ n− 1, ti is G-adjacent to at most s− 1 of t1, . . . , ti−1. Choose v ∈ V (T ′) such that
some isomorphism from R′ to T ′ maps q to v. If some G-neighbour u of v does not belong to V (T ′)
and has at most s− 1 G-neighbours in V (T ′), then we may set tn = u as required; so we may assume
that every G-neighbour u of v in G either belongs to V (T ′) or has at least s G-neighbours in V (T ′).
Let X ⊆ V (T ′) with |X| = s. If there are at least t vertices in V (G) that are G-adjacent to every
vertex in X, then G contains Ks,t as a subgraph, a contradiction. So for each such X, there are at
most t − 1 vertices in V (G) that are G-adjacent to every vertex in X. Since there are most |R′|s
choices of X, there are at most (t−1)|R′|s vertices in V (G)\V (T ′) that have at least s G-neighbours
in V (T ′). Consequently v has at most (t − 1)|R′|s G-neighbours not in V (T ′). But it has at most
|R′| G-neighbours in V (T ′) and so the degree of v in G is at most (t − 1)|R′|s + |R′| < t|R|s. This
proves (1).

Each vertex of G has degree at least ct = t|S|s; let us apply (1) taking R = S. We deduce that G
contains a subgraph T isomorphic to S, and its vertex set can be ordered as {t1, . . . , tn}, such that
for 1 ≤ i ≤ n, ti is G-adjacent in G to at most s − 1 of t1, . . . , ti−1. By 4.3, G[V (T )] contains Ks,s

as a subgraph. Choose i maximum such that ti belongs to this subgraph; then ti is G-adjacent to at
least s vertices that are earlier in the ordering, a contradiction. This proves 4.4.

5 Long holes

There is another result in the paper by Bonamy et al. [1]:

5.1 Let ` ≥ 2 be an integer; then there exists c > 0 such that ∂(G) ≤ τ(G)c for every graph G with
no induced cycle of length at least `.

In this section we give a simpler proof of this result.
Let η, t ≥ 1 be integers. We say a rooted tree (H, r) is (t, η)-tapering if (H, r) has height η, and

every vertex v ∈ V (H) of height i < η has exactly tη−i children. For each v ∈ V (H), let h(v) be its
height in (H, r).

Let G be a graph. A map φ from V (H) into V (G) is a (t, η)-infusion of (H, r) into G if
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• for all distinct u, v ∈ V (H), if u, v ∈ V (H) are H-adjacent then φ(u), φ(v) are distinct and
G-adjacent;

• for each u ∈ V (H), if v, w are distinct children of u in (H, r), then φ(v) 6= φ(w);

• for every path P of H with one end r, the vertices φ(v) (v ∈ V (P )) are all distinct; and

• for every path P of H with one end r, and for all distinct u, v ∈ V (P ), φ(u), φ(v) are G-adjacent
if and only if u, v are H-adjacent.

Let φ be a (t, η)-infusion into G. We define V (φ) = {φ(v) : v ∈ V (H)}, and we define the root of
φ to be φ(r). We say u ∈ V (G) is t-bad for φ if there exists v ∈ V (H) with h(v) < η, such that u is
distinct from and G-adjacent to φ(w) for more than (t− 1)tη−h(v)−1 children w of v in (H, r). Then
we have:

5.2 Let t, η ≥ 1 be integers, let (H, r) be a (t, η)-tapering rooted tree, let G be a graph not containing
Kt,t as a subgraph, and let φ be a (t, η)-infusion of (H, r) into G. There are at most tηη vertices in
G that are t-bad for φ.

The proof is like that for 2.3, using that H has at most tηη−1 vertices that have children, and we omit
it.

The next result strengthens 1.7:

5.3 Let η ≥ 2 be an integer, and let G be a graph with no induced cycle of length more than η. For
every integer t ≥ 1, if G does not contain Kt,t as a subgraph then ∂(G) ≤ t7ηη .

Proof. Let t ≥ 1 be an integer, and let G be a graph with no induced cycle of length more than η
that does not contain Kt,t. We may assume that t ≥ 2. Let (H, r) be a (t, η)-tapering rooted tree
(not necessarily contained in G).

(1) If u ∈ V (G) and vi is a G-neighbour of u for 1 ≤ i ≤ tη, all distinct, and for each i there
is a (t, η)-infusion of (H, r) into G with root vi, such that u /∈ V (φi), and u is not t-bad for φi, then
there is a (t, η)-infusion of (H, r) into G, with root u.

Let (H ′, r) be a (t, η − 1)-tapering rooted subtree or (H, r). It follows (analogously to 2.2) that
for 1 ≤ i ≤ tη, there is a (t, η − 1)-infusion φ′i of (H

′, r) into G such that u has no G-neighbour in
V (φ′i) except vi. Let us number the components of H \ {r} as H1, . . . ,Htη . Let ψ(r) = v, and for
1 ≤ i ≤ tη and each v ∈ V (Hi), define ψ(v) = φ′i(w) where w is the parent of v in (H, r). Then ψ is
a (t, η)-infusion of (H, r) into G, with root v. This proves (1).

In these circumstances we say that ψ, constructed as in the proof of (1), is derived from the
sequence (φi : 1 ≤ i ≤ tη).

If P is a path of H with length η and one end r, and φ is a (t, η)-infusion of (H, r) into G, then φ
maps P to an induced path φ(P ) of G with length η and with one end the root of φ. We call φ(P ) a
column of φ. We observe that if ψ is derived from (φi : 1 ≤ i ≤ tη) as above, then for every column
Q of ψ, there is a column Q′ of one of φi (1 ≤ i ≤ tη), say of φ′, such that Q \ ψ(r) is a subpath of
Q′. Let us call (φ′, Q′) a shift of (φ,Q).
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Let A1 be the set of all (t, η)-infusions of (H, r) into G. Inductively for i > 1, let Ai be the set of
all (t, η)-infusions φ such that for some choice of φ1, φ2, . . . , φtη ∈ Ai−1, φ is derived from the sequence
(φj : 1 ≤ j ≤ tη). Thus Ai ⊆ Ai−1 for each i. There are two cases: either Ai is empty for some i,
or it remains nonempty for all values of i. Suppose first that Ai is nonempty for all i, and let A be
the intersection of all the sets Ai (i ≥ 1). Choose φ1 ∈ A, and let Q1 be a column of φ1. Since φ1 is
derived from some members of A, there exists φ2 ∈ A with root u2, and a column Q2 of φ2, such that
(φ2, Q2) is a shift of (φ1, Q1). Similarly we can choose an infinite sequence (φi, Qi) (i = 1, 2, 3 . . .)
such that each φi ∈ A and each (φ,Qi) is a shift of its predecessor. Let vi be the root of φi for each
i. Then vi, vi+1, . . . , vi+η are the vertices in order of Qi for each i; and so form an induced path of G.
Since G is finite, there exists j > 0 such that vj is adjacent to one of v1, . . . , vj−2; choose a minimum
such value of j, and choose i ≤ j−2 maximum such that vi, vj are adjacent. Then {vi, . . . , vj} induces
a cycle of G of length more than η, a contradiction.

So the second case holds, that is, Ai is empty for some i. Choose k minimum such that Ak+1 = ∅.
For 1 ≤ i ≤ k let Xi be the set of all vertices v such that v is the root of a member of Ai and not the
root of any member of Ai+1. Thus the sets X1, . . . , Xk are pairwise disjoint. Let X0 be the set of
vertices that are not the root of any member of A1; so the sets X0, . . . , Xk form a partition of V (G).
For each edge e of G with an end in one of X1, . . . , Xk, choose i maximum such that e has an end in
Xi, let v be an end of e in Xi, and call v the head of e. For each v ∈ Xi, choose φv ∈ Ai with root v.
(Thus φv /∈ Ai+1 from the definition of Xi.)

• Let A be the set of all edges of G with both ends in X0;

• Let B be the set of all edges uv with head v such that u /∈ V (φv) and u is not bad for φv;

• Let C be the set of all edges uv with head v such that u /∈ V (φv) and u is bad for φv;

• Let D be the set of all edges uv with head v such that u ∈ V (φv).

Since there is no (t, η)-infusion of (H, r) into G[X0], it follows that G[X0] does not contain a (ζ, η)-
uniform tree as a path-induced rooted subgraph, where ζ = tη, and so ∂(G[X0]) ≤ (ζt)(η+1)! from
2.4. Hence

|A| ≤ (ζt)(η+1)!|G|.
For each u ∈ V (G), with u ∈ Xi say, there do not exist tη neighbours v of u such that uv has head v
and belongs to B, since there is no (t, η)-infusion of (H, r) with root u that is derived from members
of Ai. Hence

|B| ≤ tη|G|.
For each v ∈ V (G), there are at most tηη neighbours u of v such that the edge uv has head v and
belongs to C, by 5.2; so

|C| ≤ tηη |G|.
Finally, for each v ∈ V (G), there are at most tη neighbours u of v such that the edge uv has head v
and belongs to D; so

|D| ≤ tη|G|.
Summing, we obtain

|E(G)| ≤
((
tη+1

)(η+1)!
+ tη + tη

η
+ tη

)
|G| ≤

(
t(η+2)! + tη

η
)
|G| ≤ t7ηη/2.

Consequently ∂(G) ≤ t7ηη . This proves 5.3.
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