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Abstract

We answer four questions from a recent paper of Rao and Shinkar
[17] on Lipschitz bijections between functions from {0, 1}n to {0, 1}.
(1) We show that there is no O(1)-bi-Lipschitz bijection from Dictator
to XOR such that each output bit depends on O(1) input bits. (2) We
give a construction for a mapping from XOR to Majority which has
average stretch O(

√
n), matching a previously known lower bound.

(3) We give a 3-Lipschitz embedding φ : {0, 1}n → {0, 1}2n+1 such
that XOR(x) = Majority(φ(x)) for all x ∈ {0, 1}n. (4) We show
that with high probability there is a O(1)-bi-Lipschitz mapping from
Dictator to a uniformly random balanced function.

1 Introduction

Given two boolean functions f, g : {0, 1}n → {0, 1} we say that a bijection
φ : {0, 1}n → {0, 1}n is a mapping from f to g if, for every x ∈ {0, 1}n,
we have f(x) = g(φ(x)). The analysis of boolean functions, in particu-
lar their Fourier coefficients and noise stability, is widely-studied and has
applications in many areas of mathematics including the theory of social
choice, complexity theory and in the hardness of approximations (see for in-
stance [1, 3, 4, 7, 8, 9, 12, 13, 14, 16]). A frequent theme in the literature is the
analysis of the similarities and differences between boolean functions with dif-
ferent geometric or structural properties; for example, between functions such
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as Dictator that are determined by a small number of coordinates, and func-
tions such as Majority or XOR that are not. One measure of similarity be-
tween functions is the existence of a Lipschitz mapping (with small constant)
between them. In this paper we continue the study of Rao and Shinkar [17] on
Lipschitz mappings between the boolean functions Dictator,XOR, Majority
and a uniformly random balanced function and answer several of the ques-
tions they pose.

Write a point x ∈ {0, 1}n as x = (x1, . . . , xn) and, for φ : {0, 1}n →
{0, 1}n, write φ = (φ1, . . . , φn). For x, y ∈ {0, 1}n, let |x| =

∑n
i=1 xi de-

note the Hamming weight of x and dist(x, y) =
∑n

i=1 |xi − yi| the Hamming
distance between x and y.

A bijection φ : {0, 1}n → {0, 1}n is said to be C-Lipschitz if, for all
x, y ∈ {0, 1}n, dist(φ(x), φ(y)) ≤ C dist(x, y), and φ is said to be C-bi-
Lipschitz if both φ and φ−1 are C-Lipschitz. As a relaxation from being
Lipschitz we define the average stretch of a mapping φ : {0, 1}n → {0, 1}n by

avgStretch(φ) = Ex,i [dist(φ(x), φ(x+ ei))]

where x ∈ {0, 1}n and i ∈ [n] are both chosen independently and uniformly
at random.

Given a bijection φ : {0, 1}n → {0, 1}n we say that the jth output bit
φj depends on the ith input bit xi if there exists x ∈ {0, 1}n such that
φj(x) 6= φj(x + ei). If every output bit depends on at most k input bits, we
say the map φ is k-local.

In Sections 2 and 3 we study mappings between three boolean functions
Dictator, XOR and Majority which we define by

� Dictator(x) = x1,

� XOR(x) =
∑n

i=1 xi mod 2,

� Majority(x) = 1 if |x| > n/2 and Majority(x) = 0 otherwise.

In Section 4 we consider a uniformly random balanced function f : {0, 1}n →
{0, 1}, where we say a boolean function g : {0, 1}n → {0, 1} is balanced if
g−1(1) and g−1(0) are of the same size. Clearly, both XOR and Dictator are
always balanced while Majority is only balanced when n is odd (and so a
bijection from Dictator or XOR to Majority can only exist for odd n).

2



1.1 Bijections between Dictator and Majority

The functions Dictator and Majority are in many ways opposites of each
other. For example, the first coordinate clearly has a large influence on the
value of Dictator, while for Majority every coordinate has the same small
amount of influence. There are many results which show that functions
which differ from Majority in some way must have influential coordinates
and are therefore similar to Dictator functions. For example, the “Majority
Is Stablest” theorem of Mossel, O’Donnell and Oleszkiewicz in [16] shows that
if a balanced boolean function is essentially more noise-stable than Majority,
then it must have an influential coordinate.

It is straightforward to see that no bijection φ from Dictator to Majority
can be C-Lipschitz for any C < n/2. Indeed, suppose φ is such a bijection
and let x ∈ {0, 1}n be such that φ(x) =

∑n
i=1 ei. Clearly y := x − e1 differs

from x in the first coordinate so Dictator(y) 6= Dictator(x). By the definition
of φ, we must have Majority(φ(y)) = 0 and |φ(y)| is at most n/2. Hence,
dist(φ(x), φ(y)) ≥ n/2 which gives a contradiction.

For maps from Majority to Dictator, the situation is better. Rao and
Shinkar [17] showed that, for all odd n, there is a mapping ψ from Majority
to Dictator which is 11-Lipschitz. As noted above, the function ψ−1 cannot
be O(1)-Lipschitz. However, it has the weaker property that ψ−1 has O(1)-
average stretch. Indeed, Rao and Shinkar’s construction gives a Lipschitz
function that is in fact an O(1)-bi-Lipschitz bijection from the upper half of
{0, 1}n to the half-cube with first coordinate 1; similarly ψ induces a O(1)-bi-
Lipschitz bijection between the lower half of {0, 1}n and the half-cube with
first coordinate 0. As there are only 2n−1 edges between the two half-cubes,
the average stretch of ψ−1 is O(1).

1.2 Bijections between Dictator and XOR

Rao and Shinkar note that the map φ : {0, 1}n → {0, 1}n given by φ(x) =
(XOR(x), x2, x3, . . . , xn) is a mapping from Dictator to XOR, and it is easy
to check that φ is 2-bi-Lipschitz. This leads them to consider maps with
stronger properties. In the above map, the first output bit depends on all
n input bits and the map is not k-local for any k < n. However, one can
easily find a map which is 2-local: Rao and Shinkar give the example φ(x) =
(x1 +x2, x2 +x3, . . . , xn−1 +xn, xn) which is 2-Lipschitz and 2-local, although
the inverse of this map is not even (n−1)-Lipschitz. In [17] Rao and Shinkar
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construct a map φ which is 2-Lipschitz and 3-local and where the inverse is
O(log n)-Lipschitz. This leads them to ask the following question.

Question 1 (Question 6.1 in [17]). Is there a mapping from Dictator to XOR
that is O(1)-local and O(1)-bi-Lipschitz?

We answer this in the negative with the following theorem.

Theorem 1. Let φ : {0, 1}n → {0, 1}n be a mapping from Dictator to XOR
which is C-Lipschitz and where each output bit depends on at most k input
bits. Then there is a constant δ = Ω(1/(k + log(C))) such that the inverse
map φ−1 is not δ log(n)-Lipschitz.

Furthermore, if φ is a linear mapping, then we may take δ = Ω(1/ log(C+
k)).

It follows that the map constructed by Rao and Shinkar in [17] is es-
sentially best possible: if φ is a mapping from Dictator to XOR which is
O(1)-Lipschitz and O(1)-local, then φ−1 cannot be o(log n)-Lipschitz. We
prove Theorem 1 in Section 2.

1.3 Bijections between XOR and Majority

Since we have a 2-bi-Lipschitz map from Dictator to XOR, we might expect
the maps between XOR and Majority to behave similarly to those between
Dictator and Majority. Indeed, composing this 2-bi-Lipschitz map from
Dictator to XOR with the O(1)-Lipschitz map from Majority to Dictator
gives a O(1)-Lipschitz map from Majority to XOR, and the argument used
to show that there is no O(1)-Lipschitz mapping from Dictator to Majority
can also be applied to mappings from XOR to Majority to show that they
cannot be C-Lipschitz for C < n/2. However, while there is a map from
XOR to Dictator with constant average stretch, Rao and Shinkar [17] show
that for any mapping φ from XOR to Majority the average stretch is Ω(

√
n).

They then ask if this lower bound is tight:

Question 2 (Question 6.3 in [17]). Is there a mapping φ from XOR to
Majority such that avgStretch(φ) = O(

√
n)?

In Section 3 we show that the bound is indeed tight by giving a map
which has average stretch O(

√
n). This result also follows from a recent

result of Boczkowski and Shinkar [5] where they prove, for any two sets
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A,B ⊆ {0, 1}n with |A| = |B| = 2n−1, there is a mapping φ : A → B with
E [dist(x, φ(x))] ≤

√
2n.

Theorem 2. For odd n there is a mapping φ from XOR to Majority such
that

avgStretch(φ) = O
(√

n
)
.

Given the need for such a mapping to have large average stretch, Rao
and Shinkar also ask what happens if we relax the problem from finding a
bijection to finding an embedding in a larger space.

Question 3 (Question 6.4 in [17]). Is there a Lipschitz embedding φ : {0, 1}n →
{0, 1}poly(n) such that XOR(x) = Majority(φ(x)) for all x ∈ {0, 1}n?

We give a simple construction that gives a positive answer:

Theorem 3. For every n there exists a 3-Lipschitz embedding φ : {0, 1}n →
{0, 1}2n+1 such that XOR(x) = Majority(φ(x)) for all x ∈ {0, 1}n.

1.4 Bijections from Dictator to a random f

Rao and Shinkar also consider random functions. We say a function f :
{0, 1}n → {0, 1} is balanced if f−1(1) and f−1(0) are of the same size. Build-
ing on a construction of H̊astad, Leighton and Newman [11], Rao and Shinkar
show that with high probability there is a bijection from Dictator to a uni-
formly random balanced function f which has average stretch bounded by
an absolute constant [17]. They ask whether we can in fact ask for more:

Question 4 (Question 6.2 in [17]). Is it true that with high probability there
is a O(1)-bi-Lipschitz mapping from Dictator to a uniformly random balanced
function f?

In Section 4 we give a positive answer to this question. In fact, we prove
a stronger statement about the maximum distance between x and φ(x).

Theorem 4. Let f : {0, 1}n → {0, 1} be a balanced boolean function chosen
uniformly at random. Then, with high probability, there exists a mapping
φ : {0, 1}n → {0, 1}n from Dictator to f such that for all x ∈ {0, 1}n,

dist(x, φ(x)) ≤ C

where C is an absolute constant. In particular, φ is (2C + 1)-bi-Lipschitz.
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It is straightforward to extend this to bijections between two independent
uniformly random balanced boolean functions f and g.

Corollary 5. Let f, g : {0, 1}n → {0, 1} be two balanced boolean functions
chosen independently and uniformly at random. Then, with high probability,
there exists a mapping φ : {0, 1}n → {0, 1}n from f to g such that for all
x ∈ {0, 1}n,

dist(x, φ(x)) ≤ C

where C is an absolute constant. In particular, φ is (2C + 1)-bi-Lipschitz.

Proof. By the above theorem there exists a mapping φf from Dictator to f
such that dist(x, φf (x)) ≤ c and a mapping φg from Dictator to g such that
dist(x, φg(x)) ≤ c for some absolute constant c, both with high probability.
Using the triangle inequality, it is easy to see that φ = φg ◦φ−1f is a mapping
from f to g such that dist(x, φ(x)) ≤ 2c. This proves the first part of the
corollary with C = 2c.

The second part also follows easily. Fix x ∈ {0, 1}n and let y = x+ ei for
some i. Then

dist(φ(x), φ(y)) ≤ dist(x, φ(x)) + dist(x, y) + dist(y, φ(y)) ≤ 2C + 1

and the triangle inequality shows φ is (2C+1)-Lipschitz. A similar argument
shows that φ−1 is also (2C + 1)-Lipschitz.

The rest of this paper is organised as follows. In Section 2 we prove
Theorem 1, in Section 3 we prove Theorem 2 and Theorem 3. We then prove
Theorem 4 in Section 4.

2 Bijections from Dictator to XOR

Given a mapping φ : {0, 1}n → {0, 1}n from Dictator to XOR we define the
dependency graph Dφ as follows. Let Dφ be the bipartite graph with vertex
sets A = {a1, . . . , an} and B = {b1, . . . , bn} where there is an edge aibj if and
only if the jth output bit of φ depends on the ith input bit. The following
lemma shows that if there is an output bit φj which is at a large distance
from a1 in the dependency graph, then changing φj must cause many input
bits to change.
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Lemma 6. Suppose φ is a mapping from Dictator to XOR such that the
distance between a1 and bj in Dφ is at least d. Then, for any y ∈ {0, 1}n,

dist
(
φ−1(y), φ−1(y + ej)

)
≥ d+ 1

2
.

Proof. Suppose that φ−1(y) = x and φ−1(y + ej) = x′ and let the set of
coordinates in which they differ be X. Now let D′φ be the subgraph of Dφ

induced by AX := {ai : i ∈ X} and its neighbours. Since φ(x) and φ(x′) differ
in the jth bit, one of the neighbours of bj must be in AX and bj ∈ V (D′φ).
As φ is a mapping from Dictator to XOR and XOR(y) 6= XOR(y + ej), we
must have Dictator(x) 6= Dictator(x′) and so a1 ∈ AX . If a1 and bj are in the
same component of D′φ, then D′φ must contain a path from a1 to bj, which
must have length at least d. Since D′φ is bipartite, |X| ≥ (d + 1)/2 and we
are done.

Otherwise, let the component of D′φ containing a1 have vertices AY ∪BY ′ ,
where Y, Y ′ ⊂ [n]. Consider the input x + eY where eY =

∑
i∈Y ei: we will

show that φ(x+ eY ) = φ(x). If y′ ∈ Y ′, then the output bit φy′ depends only
on the input bits in Y and input bits that are not in X so φy′(x + eY ) =
φy′(x

′) = φy′(x) (since φ(x) and φ(x′) differ only in the jth bit and j 6∈ Y ′).
Changing the value of x on Y can only change φ(x) in the output bits in Y ′

and so φi(x) = φi(x+eY ) for every i 6∈ Y ′. This means that φ(x) = φ(x+eY ),
which gives a contradiction as φ is a bijection.

Now that we have related distance in the dependency graph Dφ to the
Hamming distance of the inverse map, we prove Theorem 1 by showing that
the conditions on φ imply that there is a vertex at least logarithmically far
from a1 in Dφ.

Proof of Theorem 1. As each output bit of φ(x) depends on at most k input
bits of x, the degree of a vertex bj in Dφ is at most k.

Let us now show that the degrees of the ai are also bounded. Fix a
vertex ai in Dφ and let it have neighbours bj1 , . . . , bjm . The value of the
output bit j1 depends on i and at most k − 1 other bits which we denote
X. By definition, there is some assignment x of the k − 1 bits X such that
φ(x) and φ(x+ ei) differ in the bit j1. Let U ∈ {0, 1}n be a bit string chosen
uniformly at random: then the probability that this is equal to x on X is
21−k and, hence, the probability that φ(U) and φ(U + ei) differ in bit j1 is
at least 21−k. The same holds for bits j2, . . . , jm and so, by the linearity of
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expectation, the expected number of bits in which φ(U) and φ(U + ei) differ
is at least m21−k. There must be some value for U for which the number
of bits that differ is at least m21−k and, as φ is C-Lipschitz, we must have
m21−k ≤ C. In particular, the degree of a vertex ai is bounded by C2k−1.

Define ∆ := max{k, C2k−1} so that every vertex has degree at most ∆.
The number of vertices at distance at most l from a1 is at most (∆ + 1)l

and hence, if the distance from a1 to any vertex is at most d, (∆ + 1)d ≥ 2n
and d ≥ (log 2n)/ log(∆ + 1). As the graph is bipartite, there must be a
vertex bj at distance at least d− 1 from a1 and hence, by Lemma 6, φ is not
δ log(n)-Lipschitz for δ = 1/(2 log(∆ + 1)).

If φ is a linear map, then φ(x) and φ(x + ei) differ in the bits j1, . . . , jm
for every x. Hence, the degree of a vertex ai is bounded by C (compared to
C2k−1 in the general case), and the bound on δ follows from bounding the
maximum degree by C + k.

The construction presented by Rao and Shinkar in [17] gives a linear map
which shows δ(2, k) = O(1/ log k). Theorem 1 shows that this is tight for
linear maps, but only gives the bound δ(2, k) = Ω(1/k) for general maps.
This raises the following question: Does there exist a map φ from Dictator
to XOR which is C-Lipschitz, where each output bit depends on at most k
input bits and such that φ−1 is o(log n/ log k)-Lipschitz as n, k →∞?

3 Bijections from XOR to Majority

It was shown by Rao and Shinkar in [17] that any mapping φ : {0, 1}n →
{0, 1}n from XOR to Majority must have average stretch Ω (

√
n) in any di-

rection. In this section we prove Theorem 2 by constructing a map with
average stretch O(

√
n). Our strategy is to map each x ∈ {0, 1}n for which

XOR(x) = Majority(x) to itself, and otherwise to swap x with a y chosen
such that |x| + |y| = n. The problem is then to find a matching, so that
when the matched elements are switched, they are not too far from their
neighbours on average. We do this by matching according to a symmetric
chain decomposition so that the Hamming distance between switched ele-
ments is minimised. This is similar to the proof of Theorem 1.2 in [17] which
defines a mapping from Majority to Dictator by permuting elements along
the chains in a particular symmetric chain decomposition. Recall that a
symmetric chain is a path C = {ck, . . . , cn−k} in the hypercube such that
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|ci| = i. A symmetric chain decomposition is a partition of the hypercube
into symmetric chains. It is well known that these decompositions exist for
all n (see e.g. [6]).

Proof of Theorem 2. Suppose we have a symmetric chain decomposition of
{0, 1}n and, for a point x ∈ {0, 1}n, let yx be the unique point in the chain
containing x such that |x|+ |yx| = n. We note that XOR(x) 6= XOR(yx) and
Majority(x) 6= Majority(yx), so the bijection φ : {0, 1}n → {0, 1}n defined
by

φ(x) =

{
x if XOR(x) = Majority(x)

yx if XOR(x) 6= Majority(x)

is a mapping from XOR to Majority.

Claim 1. Suppose x ∈ {0, 1}n has Hamming weight m. Then, for any i,

dist (φ(x), φ(x+ ei)) ≤ |n− 2m|+ 3

Proof of Claim 1. The proof of this claim is a case analysis over XOR(x),
Majority(x), whether ei ≤ x and, where necessary, Majority(x + ei). Let us
fix i and use x′ to denote x+ ei.

First consider the case where XOR(x) = 1, Majority(x) = 1 and xi = 0.
Then we have |x′| = m + 1, XOR(x′) = 0 and Majority(x′) = 1. Hence, φ
keeps x constant and switches x′ to yx′ . We know that yx′ ≤ x′ and is of
weight n−m−1 so x and yx′ must agree in at least n−m−2 places. Hence,
the distance between x and yx′ is bounded by 1+m−(n−m−2) = 2m−n+3.

Now consider the case XOR(x) = 1, Majority(x) = 1 and xi = 1. In
this case it is possible for Majority(x′) = 1 or Majority(x′) = 0 and we must
consider these cases separately. Suppose Majority(x′) = 1. Then φ keeps
x constant and switches x′ to yx′ where |yx′| = n − m + 1. We also have
yx′ ≤ x + ei ≤ x so the stretch is 2m− n− 1. If Majority(x + ei) = 0, then
φ keeps both x and x+ ei constant and the stretch is 1.

The other cases follow similarly.

For a uniformly chosen x and an arbitrarily chosen direction we have

Ex,i [dist (φ(x), φ(x+ ei))] ≤ 3 + 2−n
n∑

m=0

|2m− n|
(
n

m

)
. (1)

Let Sn be the position a simple random walk on Z after n steps (i.e. Sn =∑n
i=1Xi where the Xi are independent and take the value 1 with probability
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1/2 and the value −1 otherwise). Then E [|Sn|] = 2−n
∑n

m=0 |2m− n|
(
n
m

)
,

and applying standard results we get

Ex,i [dist (φ(x), φ(x+ ei))] ≤ 3 +
n+ 1

2n+1

(
n+ 1

(n+ 1)/2

)
∼
√

2n

π
.

Given that the average stretch for a mapping from XOR to Majority
must be Ω(

√
n), Rao and Shinkar ask if it is possible to relax the problem by

increasing the size of the codomain and asking instead for a O(1)-Lipschitz
injection. In the proof of Theorem 3 below we give one such example.

Proof of Theorem 3. Define φ(x) : {0, 1}n → {0, 1}2n+1 by

φ(x) = (xc,XOR(x), x)

where xc is the bitwise complement of x (and where we have written (a, b, c)
for the concatenation of vectors a, b and c). As we can read off x from the
last section, this is clearly a one-to-one mapping. If x has Hamming weight
m, xc has Hamming weight n − m, so overall φ(x) has Hamming weight
n+ XOR(x). Hence, Majority(φ(x)) = XOR(x) for all x ∈ {0, 1}n.

Suppose x, y ∈ {0, 1}n are distinct. Then

dist(φ(x), φ(y)) = dist(xc, yc) + dist(XOR(x),XOR(y)) + dist(x, y)

= 2 dist(x, y) + XOR(x+ y)

≤ 3 dist(x, y)

and the map is 3-Lipschitz.

4 Bijections from Dictator to a random f

Let f be a boolean function. We say a point x ∈ {0, 1}n is a 1 of f if f(x) = 1
and similarly say x is a 0 of f if f(x) = 0. We say a set B is balanced if
B contains an equal number of 1s and 0s of f , is positively imbalanced if B
contains more 1s of f than 0s of f and negatively imbalanced if B contains
more 0s of f than 1s of f . The imbalance of f over a set B is the unsigned
difference between the number of 1s of f and |B|/2.

Before we prove Theorem 4, let us first sketch the ideas behind the proof
without worrying about the technicalities.
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Sketch proof of Theorem 4. We start by partitioning the hypercube {0, 1}n
into “blocks” which contain a large polynomial number of points (say na),
have bounded diameter and contain an equal number of 1s and 0s of Dictator.
These blocks are small in comparison to the cube so, in a given block B, we
expect the number of 1s of f to have a distribution similar to that of a
binomial random variable with |B| trials and success probability 1/2. This
means we expect every block to have an imbalance not much more than na/2

and a large proportion (tending to 1) of the blocks to have an imbalance not
much less than na/2. We call a sequence of distinct blocks B1, . . . , Bk a block
path if, for i = 1, . . . , k − 1, there is an edge between a vertex of Bi and
a vertex of Bi+1. In our construction, we take a large set of random block
paths in the hypercube and use these to move the imbalance. If a block B1

has too many 1s of f , we find a block path B1, . . . , Bk from B1 to a block Bk

with too many 0s and map a 0 of Dictator from B1 to a 0 of f from B2, a
0 of Dictator from B2 to a 0 of f from B3, and so on. We also do the same
with the 1s but in the opposite direction. That is, we map a 1 of Dictator
from B2 to a 1 of f from B1, map a 1 of Dictator from B3 to a 1 of f from
B2, and so on. By doing this along enough paths, we can even out the sets
and then arbitrarily match within them.

For this to work we need to make sure that we don’t try to map too many
points to a block, which means ensuring there aren’t too many paths through
any single block. However, we also need to make sure there are enough paths
between the blocks to spread the imbalance around. Once we have chosen our
paths (at random) we construct a bipartite graph between the positive and
negative blocks and find a subgraph with suitable degrees. This corresponds
to the paths that will actually be used to move the imbalance around. The
imbalance is not much more than na/2 in any block, so we don’t need too
many paths; at the same time, the imbalance is not much less than na/2

in most blocks, which ensures that there are enough random paths between
imbalanced sets.

Our proof of Theorem 4 uses the fact that, with high probability, there is
a perfect matching in our random bipartite graph. The following lemma is
an immediate consequence of a result of Erdős and Rényi [10]. (The lemma
can easily be strengthened, but this form is sufficient for our case.)

Lemma 7. Let A be a multiset of at least 2n log n pairs (i, j) each chosen
uniformly and independently at random from [n]× [n]. Let G be the random
bipartite graph with vertex set {v+1 , . . . , v+n , v−1 , . . . , v−n }, where v+i v

−
j is an
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edge if and only if (i, j) ∈ A. Then the probability that G contains a perfect
matching tends to 1 as n→∞.

We will also make use of the following Chernoff bounds; see [15] for a
discussion and derivation of these bounds.

Lemma 8. Let X ∼ Bin(n, p) and t > 0. Then

P (X ≥ np+ t) ≤ e−2t
2/n.

Also, for 0 ≤ ε ≤ 1 we have

P (X ≥ (1 + ε)np) ≤ e−ε
2np/4

and

P (X ≤ (1− ε)np) ≤ e−ε
2np/2.

We are now ready to prove the main theorem. Throughout this proof we
will use the constants a, b, c and d to which we assign explicit values only at
the end of the proof.

Proof of Theorem 4. Suppose first that we have a mapping φ : {0, 1}n →
{0, 1}n from Dictator to f such that dist(x, φ(x)) ≤ C for all x ∈ {0, 1}n.
Fix x ∈ {0, 1}n and let y = x+ ei for some i. Then

dist(φ(x), φ(y)) ≤ dist(x, φ(x)) + dist(x, y) + dist(y, φ(y)) ≤ 2C + 1

and the triangle inequality shows φ is (2C+1)-Lipschitz. A similar argument
shows that φ−1 is also (2C+1)-Lipschitz and this proves the latter part of the
theorem. Thus it remains to show that such a φ exists with high probability.

We shall assume for the rest of the argument that n is large enough for
our estimates to hold. Let a > 2 be a constant. We start by partitioning
the hypercube {0, 1}n into “blocks” with diameter at most 4a which contain
between na−2 and 4na elements, exactly half of which are 1s of Dictator. Let
B be a maximal set of points in {0, 1}n−1 such that the pairwise distance
between any two points is at least 2a. For each point v ∈ B, we define the
set of points Av to be the points in {0, 1}n−1 which are closer to v than to
any other point in B (settling ties arbitrarily). As the set B is maximal, the
radius of Av must be less than 2a, or else we could add a point to B. As the
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distance from v to any other point in B is at least 2a, Av contains a Hamming
ball of radius a − 1 centred at v and at least na−2 points. If a set contains
N elements with N > 2na, we arbitrarily split the set into bN/nac sets each
containing between na and 2na points. For each of our sets A, we define a
corresponding “block” in {0, 1}n to be {0, 1} ×A. Clearly this gives a set B
of blocks with the desired properties. Note that 2n/(4na) ≤ |B| ≤ 2n/na−2.

The following claim shows that, with probability tending to 1, no block
B ∈ B has an imbalance much more than na/2.

Claim 2. Provided that b > 1/2, with probability tending to 1, none of the
sets B ∈ B have an imbalance of more than na/2+b.

Proof. Say that a block B is bad under a function f if B has an imbalance
greater than na/2+b. Let g : {0, 1}n → {0, 1} be a random boolean function
where g(x) is chosen independently and uniformly at random for each x ∈
{0, 1}n. Then the probability that B is bad under f is the same as the
probability that B is bad under g conditioned on the event that g is balanced,
so

P (B bad under f) = P (B bad under g| g balanced) ≤ P (B bad under g)

P (g balanced)
.

The number of 1s of g in B is a binomial random variable so the first Chernoff
bound in Lemma 8 shows the probability that B is bad under g is at most
2e−2n

a+2b/N ≤ 2e−n
2b/2. The probability that g is balanced is 2−n

(
2n

2n−1

)
∼

(π2n−1)−1/2. Using the union bound over all blocks B ∈ B, the probability
that at least one of the sets B is bad is at most 23n/2e−n

2b/2 for all sufficiently
large n, and this is o(1) provided b > 1/2.

We will also need that most sets have an imbalance not much less than
na/2.

Claim 3. Provided that c > 2, with probability tending to 1, the sum over
B ∈ B of the imbalance of B is at least 2n/(8na/2+c).

Proof. Fix B and let |B| = N . We can then write down the probability that
the imbalance of B is at most na/2−c as

na/2−c∑
i=−na/2−c

(
N

N/2+i

)(
2n−N

2n−1−N/2−i

)(
2n

2n−1

) .

13



Using
(
2n
n

)
∼ 4n√

πn
and that N = o(2n), the largest term (i = 0) is O(N−1/2).

As N ≥ na−2, each term is O(n−(a/2−1)) and the sum is O(1/nc−1). Let X
be the number of blocks with imbalance at most na/2−c. Then,

E [X] = O

(
|B|
nc−1

)
and so, by Markov’s Inequality, P (X ≥ |B|/n) = O(1/nc−2). This is o(1)
provided c > 2, and in this case, with probability tending to 1, the sum of
the imbalances is at least (2n/(4na)) · (1 − 1/n) · na/2−c ≥ 2n/(8na/2+c) for
large n.

Now suppose that every block has an imbalance of at most na/2+b and
that the total imbalance is at least 2n/(8na/2+c).

Independently sample K = b2n/ndc uniformly random pairs of vertices
in the hypercube and a random shortest path between them.

Claim 4. Provided that a + 1 − d > 1, with high probability, the number of
paths in K which intersect a given block B ∈ B is at most 8na+1−d.

Proof. By symmetry every point is equally likely to be on a random shortest
path and, as any shortest path has at most n vertices, the probability that
a given vertex is on each sampled path is at most n/2n. Using the union
bound the probability that a given random path goes through a fixed B ∈ B
is at most n|B|/2n. As each path is sampled independently the number
of paths through a fixed B is dominated by a binomial distribution with K
trials and success probability 4na+1/2n. Applying the second Chernoff bound
from Lemma 8 with ε = 1, the probability that there are more than 8na+1−d

paths through a given block is at most exp(−na+1−d/2) and, taking the union
bound, the probability that any B intersects more than 8na+1−d paths is at
most exp(−na+1−d/2) · 2n/na−2. This tends to 0 as n → ∞ provided that
a+ 1− d > 1.

We now form a random bipartite graph G with vertex sets V + and V −

as follows. If B ∈ B has a positive imbalance of i, we add i positive vertices
vB1 , . . . , v

B
i to V + and similarly if B has a negative imbalance of i, we add i

negative vertices to V −. We generate the edge set of G by examining each of
our random paths in turn. Given a path, say between v1 ∈ B1 and v2 ∈ B2,
we do the following:

14



� Discard the path with probability 1− n2a−4/(|B1| · |B2|).

� If the path hasn’t been discarded, independently choose two numbers
i, j in [na/2+b] and say that the edge vB1

i vB2
j is present if both vertices

exist and have opposite signs.

Claim 5. The graph G has a perfect matching M with high probability pro-
vided

a/2 > 3b+ 2c+ d+ 7. (2)

Proof. The probability that a random path gives any particular edge be-
tween V + and V − is p = 2(na/2−2−b/2n)2 and, in particular, every edge
is equally likely. Hence, the number of edges in the multiset induced by
the sampled random paths has a binomial distribution with K trials and
success probability |V +|2p. By assumption |V +| ≥ 2n/(16na/2+c) and so
|V +|2p ≥ (128n2b+2c+4)−1. Using the third Chernoff bound in Lemma 8, the
probability the multiset contains at most 2n−9/n2b+2c+d+4 pairs is at most
exp(−2n−11/n2b+2c+d+4). There are at most 2n/na−2 blocks each with im-
balance at most na/2+b so |V +| ≤ 2n/na/2−b−2. Hence, 2|V +| log |V +| ≤
2n+1/na/2−b−3. From (2), for large enough n,

2n+1/na/2−b−3 ≤ 2n−9/n2b+2c+d+4,

and we have that G contains a perfect matching M with high probability by
Lemma 7.

Given the matching M we can greedily construct the map φ. We start
with all vertices as both unset and unused. During the construction we will
let φ(x) = y for some x, y ∈ {0, 1}n and we will then say that x is set and y
is used. The vertices for which we still have to define φ are exactly the unset
vertices, and the vertices which are not yet in the image of φ are exactly the
unused vertices.

Each edge in M corresponds to a path in the hypercube and this induces
a walk between two blocks in the block decomposition. By removing any
loops, we can say the edge corresponds to a path P = Bi1 . . . Bik in the block
decomposition where Bi1 has positive imbalance and Bik has negative imbal-
ance. For j = 1, . . . , k−1, we choose any point x ∈ Bij with Dictator(x) = 0
which is currently unset and any point y ∈ Bij+1

with f(y) = 0 which is
currently unused and set φ(x) = y, setting x and using y. We also choose
any point in x′ ∈ Bij+1

with Dictator(x) = 1 which is currently unset and
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any point y′ ∈ Bij with f(y) = 1 and set φ(x′) = y′. In order to guaran-
tee there will always be enough points to do the above, we will enforce that
8na+1−d ≤ na−2.

If B has positive imbalance i, there are i paths starting at B (those
corresponding to the edges in the matching using vB1 , . . . , v

B
i ) and hence,

after processing all the paths which start at B, the number of unset 1s of
Dictator in B is still |B|/2 while the number of 0s is now |B|/2− i. Similarly
the number of unused 1s of f in B is now |B|/2 while the number of 0s is
still |B|/2 − i. The paths for which B is an internal block reduce all four
quantities by 1 so, after processing all the paths, the number of 1s and 0s of
Dictator which are unset and the number of 1s and 0s of f which are unused,
are equal. This means we can greedily complete φ inside B by taking any
unset x and any unused y with Dictator(x) = f(y) and setting φ(x) = y. A
similar argument works when B is balanced or has negative imbalance.

It is clear that, provided nothing goes wrong, this construction gives a
bijection φ : {0, 1}n → {0, 1}n which maps Dictator to f . If x ∈ B, then
either φ(x) ∈ B or φ(x) ∈ B′ for some B′ for which there is an edge between
B and B′ in the hypercube. As the diameter of a block is bounded by 4a,
the distance between x and φ(x) is bounded by 8a+ 1.

This construction can fail if any block has too large an imbalance, the
total imbalance is too small, there are too many paths through a block, there
aren’t enough edges in the multiset or there isn’t a matching in G; but all of
these events happen with probability tending to 0 (for suitable choices of a,
b, c and d).

To complete the proof it remains to find suitable values for the constants
a, b, c and d. From Claim 2 we must have b > 1/2 and from Claim 3 we must
have c > 2. We will also need 8na+1−d ≤ na−2, which follows for large enough
n provided d > 3. Finally, we require a > 2, a + 1− d > 1 and, from Claim
4, that a/2 > 3b+ 2c+ d+ 7. All these constraints can be satisfied by taking
a = 42, b = 1, c = 3 and d = 4.

5 Open Problems

We saw in Theorem 1 that it is not possible for a map from Dictator to
XOR to be O(1)-Lipschitz, O(1)-local and also have an inverse that is O(1)-
Lipschitz. On the other hand we saw that maps exist if we drop the condition
on the inverse or on the locality. Can we drop the first condition while keeping

16



the other two?

Problem 1. Is there a mapping φ : {0, 1}n → {0, 1}n from Dictator to XOR
such that each output bit depends on O(1) input bits and such that φ−1 is
O(1)-Lipschitz?

Corollary 5 shows that, with high probability, if A,B ⊆ {0, 1}n are two
independent uniformly random sets with |A| = |B| = 2n−1, there exists a
O(1)-bi-Lipschitz bijection φ : {0, 1}n → {0, 1}n such that φ(A) = B, but
we made no attempt to optimise the constant. We expect a much smaller
constant to hold in this corollary (and in Theorem 4), possibly even as small
as 2 or 3. How small could the constant be?

Problem 2. Let A,B ⊆ {0, 1}n be two independent uniformly random sets
with |A| = |B| = 2n−1. What is the smallest constant C such that, with high
probability, there is a C-bi-Lipschitz bijection φ : {0, 1}n → {0, 1}n such that
φ(A) = B?

There are many interesting variations of this problem. For example, what
happens if we let |A| = |B| = f(n) for some function f(n)?

Problem 3. Let A,B ⊆ {0, 1}n be two independent uniformly random sets
with |A| = |B| = f(n). For what functions f : N → N does there exist
a C such that, with high probability, there is a C-bi-Lipschitz bijection φ :
{0, 1}n → {0, 1}n with φ(A) = B? For example, what happens when f(n) =
Θ (2n/n)?

A closely related problem concerns colourings. If we view the partition of
{0, 1}n into 2 parts (A and Ac) as a partition into 2 colour classes, then we
can view mappings as relabellings of the cube which respect two balanced
2-colourings. What happens if we instead colour the cube with k colours? If
k is a constant, then a modification of the argument used to prove Theorem
4 will show that there is an O(1)-bi-Lipschitz mapping with high probability.
But what happens if we let k →∞ as n→∞?

We say that a partition of {0, 1}n into k parts A1, . . . , Ak is a balanced
partition if |A1| ≤ |A2| ≤ · · · |Ak| ≤ |A1|+ 1.

Problem 4. Let A1, . . . , Ak and B1, . . . , Bk be two independent uniformly
random balanced partitions of {0, 1}n into k(n) parts. For what functions
k : N → N does there exist a constant C such that, with high probability,
there is a C-bi-Lipschitz bijection φ : {0, 1}n → {0, 1}n with φ(Ai) = Bi for
all i? How small can C be?
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The problems above have been concerned with functions on the hypercube
but we can ask similar questions for functions on other graphs and, in par-
ticular, Cayley graphs. For example, what happens for Zn×Zn generated by
the elements (1, 0) and (0, 1)? In this case, we say that a map φ : Zn×Zn →
Zn×Zn is C-Lipschitz if, for every x, y ∈ V , d(φ(x), φ(y)) ≤ Cd(x, y) where
d is the graph distance in the Cayley graph. The proof of Theorem 4 relied
on a decomposition of {0, 1}n into “blocks”, each with bounded radius but
containing a large polynomial number of points. In Zn×Zn any subset with
bounded radius must contain a bounded number of points and the “blocks”
won’t tend towards being relatively balanced.

Problem 5. Let A,B ⊆ Zn×Zn be two independent uniformly random sets
with |A| = |B| = dn2/2e. What is the best C = C(n) such that, with high
probability, there is a C-bi-Lipschitz bijection φ : Zn × Zn → Zn × Zn with
φ(A) = B?

In a different direction, we observe that there is a natural symmetric
measure of the difference between two boolean functions. Define the Lipschitz
constant of a mapping φ by

‖φ‖Lip = inf {C ≥ 0 : ‖φ(x)− φ(y)‖ ≤ C‖x− y‖ for all x, y ∈ {0, 1}n} ,

and define the dissimilarity between two boolean functions f and g by

diss(f, g) := inf
{
‖φ‖Lip · ‖φ−1‖Lip : φ is a mapping from f to g

}
.

The 2-bi-Lipschitz mapping between Dictator and XOR we saw earlier
implies that diss(Dictator,XOR) ≤ 4, and Theorem 4 states that, if f and
g are uniformly random balanced boolean functions, diss(f, g) = O(1) with
high probability. On the other hand we know that any mapping from Dictator
to Majority is not C-Lipschitz for any C < n/2 so diss(Dictator,Majority) =
Ω(n). Rao and Shinkar [17] give a O(1)-Lipschitz mapping from Majority
to Dictator, so we can strengthen this to diss(Dictator,Majority) = Θ(n).
In general we know that every mapping is n-Lipschitz which gives a trivial
upper bound of n2, but is it possible to do better?

Problem 6. Is there a constant α < 2 such that diss(f, g) = O(nα) for all
balanced boolean functions f and g?

Finally, we note that the paper by Rao and Shinkar is motivated in part
by a problem from Benjamini, Cohen and Shinkar in [2] which remains open
and seems very interesting.
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Problem 7. Is there a set A ⊆ {0, 1}n of size |A| = 2n−1 such that any
bijection from {0, 1}n−1 to A has average stretch ω(1)?
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