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Abstract. We show that a maximum cut of a random graph below the giant-
component threshold can be found in linear space and linear expected time

by a simple algorithm. In fact, the algorithm solves a more general class
of problems, namely binary 2-variable constraint satisfaction problems. In
addition to Max Cut, such Max 2-CSPs encompass Max Dicut, Max 2-Lin,
Max 2-Sat, Max-Ones-2-Sat, maximum independent set, and minimum vertex

cover. We show that if a Max 2-CSP instance has an “underlying” graph which
is a random graph G ∈ G(n, c/n), then the instance is solved in linear expected
time if c ≤ 1. Moreover, for arbitrary values (or functions) c > 1 an instance
is solved in expected time n exp(O(1 + (c − 1)3n)); in the “scaling window”

c = 1 + λn−1/3 with λ fixed, this expected time remains linear.
Our method is to show, first, that if a Max 2-CSP has a connected underly-

ing graph with n vertices and m edges, then O(n2(m−n)/2) is a deterministic
upper bound on the solution time. Then, analyzing the tails of the distribution
of this quantity for a component of a random graph yields our result. Towards

this end we derive some useful properties of binomial distributions and simple
random walks.

1. Introduction

In this paper we prove that a maximum cut of a random graph below the giant-
component threshold can be found in linear expected time.

Theorem 1. For any c ≤ 1, a maximum cut of a random graph G ∈ G(n, c/n) can
be found in time whose expectation is O(n), using space O(m + n), where m is the
size of the graph.

We should point out the significance of requiring linear time “in expectation”
rather than just “almost always”. With high probability, a random graph below
the giant-component threshold consists solely of trees and unicyclic components,
and a maximum cut in such a graph is easy to find. (It cuts all edges except for one
edge in each odd cycle.) However, exponential time can be spent on finding optimal
cuts in the rare multicyclic graphs, which is what makes the proof of Theorem 1
difficult.

Our approach is, first, to give a deterministic algorithm and an upper bound on
its running time as a function of the input graph’s “excess” of edges over vertices,
m − n.

Theorem 2. Let G be a connected graph with n vertices and m edges. A maximum
cut of G can be found in time O(n2(m−n)/2), using space O(m + n).

We then bound the distribution of the excess in a component of a sparse random
graph. This enables us to bound the expected running time of our algorithm, and
hence prove Theorem 1.
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In fact, Theorems 1 and 2 are special cases of more general results (Theorems
22 and 5). Our algorithm employs local reductions that take us outside the class of
Max Cut problems, forcing us to work with the larger class Max 2-CSP (defined and
discussed in Section 2). Working in this broader class both simplifies our methods
and means that our results apply not just to Max Cut but also to problems including
Mix Dicut, Max 2-Lin, Max 2-Sat, Max-Ones-2-Sat, maximum independent set,
minimum vertex cover, and weighted versions of these problems.

Throughout the paper, n and m are reserved for the number of vertices and
edges of a graph G. By G ∈ G(n, p) as usual we denote a random graph with n
vertices, where each potential edge is present with probability p, independently; we
also write G(n, p) as shorthand for such a graph.

1.1. Context. Our results are particularly interesting in the context of phase tran-
sitions for various maximum constraint-satisfaction problems. Since we are just
situating our results, we will be informal. It is well known that a random 2-Sat
formula with “density” c < 1 (where the number of clauses is c times the number
of variables) is satisfiable with probability tending to 1 as the number n of vari-
ables tends to infinity, while for c > 1, the probability of satisfiability tends to 0
as n → ∞; see Chvátal and Reed [7], Goerdt [15], and Fernandez de la Vega [13].
Indeed there is now a detailed picture of the scaling window; see Bollobás, Borgs,
Chayes, Kim and Wilson [6]. Max 2-Sat has since been shown to exhibit similar
behavior, so for c < 1, only an expected Θ(1/n) clauses go unsatisfied, while for
c > 1, an expected Θ(n) clauses must go unsatisfied; see Coppersmith, Gamarnik,
Hajiaghayi and Sorkin [10].

For a random graph G(n, c/n), with c < 1 the graph almost surely consists solely
of small trees and unicyclic components, while for c > 1, it almost surely contains a
“giant”, complex component, of order Θ(n) (see for example Bollobás [5]). Again,
[10] proves the related facts that in a maximum cut of such a graph, for c < 1 only
an expected Θ(1) edges fail to be cut, while for c > 1 it is Θ(n).

For both Max 2-Sat and Max Cut, it seems likely that the mostly-satisfiable
(or mostly-cuttable) sparse instances are algorithmically easy, while the not-so-
satisfiable dense instances are algorithmically hard. While, as far as we are aware,
little is known about the hardness of dense instances, our results here confirm that
not only are typical sparse Max Cut instances easy, but even the atypical ones can be
accommodated in linear expected time; see the Conclusions for further discussion.

More generally, our interest here is in solving random instances of hard problems
in polynomial expected time, and of course there is a substantial body of literature
on this subject. For example, results on coloring random graphs in polynomial
expected time can be found in Krivelevich and Vu [22], Coja-Oghlan, Moore and
Sanwalini [8], and Coja-Oghlan and Taraz [9].

As already remarked, our expected-linear-time result comes from analyzing an
algorithm which, for arbitrary connected graphs, runs in time O(n2(m−n)/2), de-
terministically. This parametrization in terms of m − n is efficient for random
graphs up to the giant-component threshold or even slightly beyond, because a
random graph G(n, (1 + n−1/3)/n) typically has a giant component with Θ(n2/3)
vertices and a similar number of edges, but excess only Θ(1). In a paper with a
preliminary version of the present result [28], we also showed that, for any Max

2-CSP instance, the same Max 2-CSP algorithm has running time Õ
(

2 m/5
)

, where

the Õ notation hides polynomial factors. Previously, Niedermeier and Rossmanith
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showed that Max 2-Sat could be solved in time Õ
(

2 0.347m
)

[26]; Hirsch improved

this to Õ
(

2 m/4
)

[17]; Gramm, Hirsch, Niedermeier and Rossmanith improved it

to Õ
(

2 m/5
)

and adapted it to solve Max Cut in time Õ
(

2 m/3
)

[16]; Fedin and

Kulikov improved the Max Cut result to Õ
(

2 m/5
)

[23]; and in a forthcoming paper

we refine our present algorithm and analysis to obtain time Õ
(

2 19m/100
)

for any
Max 2-CSP [27].

1.2. Outline of proof. Our main result will be Theorem 1, generalized from c ≤ 1
to a larger range, and from Max Cut to the class Max 2-CSP (to be defined in
Section 2). Its proof has a few principal components. Since the maximum cut of
a graph is the combination of maximum cuts of each of its connected components
(and the same is true for any Max 2-CSP), it suffices to bound the expected time
the algorithm spends on the component containing a fixed vertex.

In order to bound the expected running time of “Algorithm A” (introduced
in Section 3) we must control the distribution of the excess of a component of a
random graph. This is done by “exploring” the component as a branching process,
dominating it with a similar process, and analyzing the latter as a random walk. We
obtain stochastic bounds on the component order u and, conditioned upon u, the
“width” w (defined later), and finally the excess, which is dominated by a binomial
random variable B(uw, c/n).

Finally, we combine the running times, which are exponentially large in the
excess, with the exponentially small large-deviation bounds on the excess, to show
that Algorithm A runs in linear expected time.

We could also have tried to bound the expected running time of Algorithm A by
characterizing the excess using estimates for C(n, n + k), the number of connected
graphs on n vertices with n + k edges. Such estimates are given by Bollobás [4],
 Luczak [24] and Bender, Canfield and McKay [2], but they seem not to be imme-
diately suitable for our purposes; we discuss this more extensively in Section 6.

2. Max 2-CSP

The problem Max Cut is to partition the vertices of a given graph into two classes
so as to maximize the number of edges “cut” by the partition. Think of each edge
as being a function on the classes or “colors” of its endpoints, with value 1 if the
endpoints are of different colors, 0 if they are the same: Max Cut is equivalent to
finding a 2-coloring of the vertices which maximizes the sum of these edge functions.
This view naturally suggests a generalization.

An instance (G,S) of Max 2-CSP is given by an “underlying” graph G = (V,E)
and a set S of “score” functions. Writing {R,B} for the colors Red and Blue, for
each edge e ∈ E there is a “dyadic” score function se : {R,B}2 → R, for each vertex
v ∈ V there is a “monadic” score function sv : {R,B} → R, and finally there is a
single “niladic” score function s0 : {R,B}0 → R which takes no arguments and is
just a constant convenient for bookkeeping. We allow an instance to have parallel
edges (and further such edges may be generated while the algorithm runs).

A potential solution is a “coloring” of the vertices, i.e., a function φ : V →
{R,B}, and an optimum solution is one which maximizes

s(φ) := s0 +
∑

v∈V

sv(φ(v)) +
∑

uv∈E

suv(φ(u), φ(v)).(1)
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Without belaboring the notation for edges, we wish to take each edge just once,
and (since suv need not be a symmetric function) with a fixed notion of which
endpoint is “u” and which is “v”. We will typically assume that V = [n] and any
edge uv is really an ordered pair (u, v) with 1 ≤ u < v ≤ n. We remark that the
“2” in the name Max 2-CSP refers to the fact that the score functions take 2 or
fewer arguments (3-Sat, for example, is out of scope); replacing 2 by a larger value
would mean replacing the underlying graph with a hypergraph.

Our assumption of an undirected underlying graph is sound even for a problem
such as Max Dicut (maximum directed cut). Here one normally thinks of a directed
edge as cut only if its head has color 0 and its tail has color 1, but for a directed
edge (v, u) with v > u this may be expressed by the undirected (or, equivalently,
canonically directed) edge (u, v) with score 1 if (φ(u), φ(v)) = (1, 0), and score 0
otherwise. That is, instead of directing the edges we incorporate the direction into
the score functions. (In cases like this we do not mention the monadic and niladic
score functions; they are “unused”, i.e., taken to be identically 0.)

An obvious computational-complexity issue is raised by allowing scores to be
arbitrary real values. Our algorithm will add, subtract, and compare these values
(never introducing an absolute value larger than the sum of those in the input)
and we assume that each such operation can be done in time O(1) and its result
represented in space O(1). If desired, scores may be limited to integers, and the
length of the integers factored in to the algorithm’s complexity, but this seems
uninteresting and we will not remark on it further.

We can solve minimization problems by replacing each score function with its
negation (there is no assumption of positivity) and solving the resulting maximiza-
tion problem. Max 2-CSP also models weighted problems: assigning a weight to a
constraint just means multiplying the score function by the weight. Generalization
to problems like Max-Ones-2-Sat can be achieved by adding, to the usual 2-Sat
formulation, small monadic cost functions sv(φ(v)) = ǫφ(v) (for instance, ǫ = 1/2n
will do); this rewards setting variables to 1, but not at the expense of satisfying
even a single clause.

Max 2-CSP further includes problems that are not obviously structured around
pairwise constraints. Our original example of Max Cut may fall into this category, as
do maximum independent set and minimum vertex cover (a minimum set of vertices
dominating all edges). To model the problem of finding a maximum independent
set in a graph as a Max 2-CSP, let φ(v) = 1 if vertex is to be included in the set
and 0 otherwise, define vertex scores sv(φ(v)) = φ(v) (rewarding a vertex for being
included in the set), and define edge scores suv(φ(u), φ(v)) = −2 if φ(u) = φ(v) =
1, and 0 otherwise (penalizing violations of independence, and outweighing the
reward for inclusion). Similarly, for minimum dominating set we penalize vertices
for inclusion, but more heavily penalize edges neither of whose endpoints is included.

3. Solving a maximum constraint-satisfaction instance

In this section we describe our algorithm, Algorithm A, and analyze its perfor-
mance on an arbitrary Max 2-CSP instance. The implications for random instances
are taken up in subsequent sections.

The algorithm uses three types of reductions and an additional, trivial “pseudo-
reduction”. We begin by defining these reductions. We then show how the algo-
rithm fixes a sequence in which to apply the reductions by looking at the underlying
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graph of the instance. This sequence defines a tree of instances, which can be solved
bottom-up to solve the original one. Finally, we bound the algorithm’s time and
space requirements.

3.1. Reductions. Our first two reductions are “transformations”, each producing
an equivalent problem with fewer vertices; the third is a “splitting rule” producing a
pair of problems, both with fewer vertices, one of which is equivalent to the original
problem.

Reduction I: Let y be a vertex of degree 1, with neighbor x. Reducing
(V,E, S) on y results in a new problem (V ′, E′, S′) with V ′ = V \ y and
E′ = E \ xy. S′ is the restriction of S to V ′ and E′, except that for
C,D ∈ {R,B} we set

s′x(C) = sx(C) + max
D

{sxy(C,D) + sy(D)},

i.e., we set

s′x(R) = sx(R) + max{sxy(R,R) + sy(R), sxy(R,B) + sy(B)}
s′x(B) = sx(B) + max{sxy(B,B) + sy(B), sxy(B,R) + sy(R)}.

Note that any coloring φ′ of V ′ can be extended to a coloring of V in two
ways, namely φR and φB (corresponding to the two colorings of y), and the
defining property of the reduction is that S′(φ′) = max{S(φR), S(φB)}. In
particular, maxφ′ S′(φ′) = maxφ S(φ), and an optimal coloring φ′ for the
instance (V ′, E′, S′) can be extended to an optimal coloring φ for (V,E, S).

xx y

Reduction II: Let y be a vertex of degree 2, with neighbors x and z. If
x = z we have a pair of parallel edges: we combine the two edges and
perform a type I reduction. Otherwise, reducing (V,E, S) on y results in a
new problem (V ′, E′, S′) with V ′ = V \ y and E′ = (E \ {xy, yz}) ∪ {xz}.
S′ is the restriction of S to V ′ and E′, except that for C,D,E ∈ {R,B} we
set

s′xz(C,D) = max
E

{sxy(C,E) + syz(E,D) + sy(E)},

i.e., we set

s′xz(R,R) = max{sxy(R,R) + syz(R,R) + sy(R), sxy(R,B) + syz(B,R) + sy(B)}
s′xz(R,B) = max{sxy(R,R) + syz(R,B) + sy(R), sxy(R,B) + syz(B,B) + sy(B)}
s′xz(B,R) = max{sxy(B,R) + syz(R,R) + sy(R), sxy(B,B) + syz(B,R) + sy(B)}
s′xz(B,B) = max{sxy(B,R) + syz(R,B) + sy(R), sxy(B,B) + syz(B,B) + sy(B)}.

This reduction creates a new edge xy, which may be parallel to one or more
existing edges, each such edge having its associated score function. (The
only reason we do not immediately merge parallel edges is that, working
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within our linear-time constraint, there is not time to identify them! Un-
fortunately our notation fails to distinguish among parallel edges and their
scores, but this is only to keep the notation manageable; there is no deeper
issue.) As in Reduction I, any coloring φ′ of V ′ can be extended to V in
two ways, φR and φB, and S′ picks out the larger of the two scores. Also
as in Reduction I, maxφ′ S′(φ′) = maxφ S(φ), and an optimal coloring φ′

for the instance (V ′, E′, S′) can be extended to an optimal coloring φ for
(V,E, S).

xx

y

zz

Reduction III: Let y be a vertex of degree 3 or higher. Where reductions
I and II each had a single reduction of (V,E, S) to (V ′, E′, S′), here we
define a pair of reductions of (V,E, S), to (V ′, E′, SR) and (V ′, E′, SB),
corresponding to assigning the color R or B to y. We define V ′ = V \ y,
and E′ as the restriction of E to V ′. For C,D ∈ {R,B}, SC is the restriction
of S to V \ y, except that we set

(sC)0 = s0 + sy(C),

and, for every neighbor x of y,

(sC)x(D) = sx(D) + sxy(D,C).

In other words, SR is the restriction of S to V \ y, except that we set
(sR)0 = s0 + sy(R) and, for every neighbor x of y,

(sR)x(R) = sx(R) + sxy(R,R)

(sR)x(B) = sx(B) + sxy(B,R).

Similarly SB is given by (sB)0 = s0 + sy(B) and, for every neighbor x of y,

(sB)x(R) = sx(R) + sxy(R,B)

(sB)x(B) = sx(B) + sxy(B,B).

As in the previous reductions, any coloring φ′ of V \y can be extended to
V in two ways, φR and φB, corresponding to the color given to y, and now
(this is different!) SR(φ′) = S(φR) and SB(φ′) = S(φB). Furthermore,

max{max
φ′

SR(φ′), max
φ′

SB(φ′)} = max
φ

S(φ),

and an optimal coloring on the left can be extended to an optimal coloring
on the right.
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y

(V,E, S) (V ′, E′, SR) (V ′, E′, SB)

Reduction 0: We define one more “pseudo-reduction”. If a vertex y has
degree 0 (so it has no dyadic constraints), we simply delete it from the
instance and incorporate its cost into the niladic score s0. Specifically,
reducing (V,E, S) on y results in a new problem (V ′, E′, S′) with V ′ = V \y
and E′ = E. S′ is the restriction of S to V ′ and E′, except that for
C ∈ {R,B} we set

s′0 = s0 + max
C

sy(C).

As usual, maxφ′ S′(φ′) = maxφ S(φ), and an optimal coloring φ′ for (V ′, E′, S′)
can be extended to an optimal coloring φ for (V,E, S).

3.2. Algorithm idea. A recursive algorithm for solving an input instance works
as follows. Begin with the input problem instance. Given an instance M = (G,S):

(1) If any reduction of type 0, I or II is possible, apply it to reduce M to
M′, record certain information about the reduction, solve M′ recursively,
and use the recorded information to reverse the reduction and extend the
solution to one for M.

(2) If only a type III reduction is possible, reduce on a vertex of degree ≥ 4 if
one exists, a vertex of degree 3 otherwise. In either case, first recursively
solve MR (the “red” version of the reduction), then solve MB (the “blue”
version), select the solution with the larger score, and use the recorded
information to reverse the reduction and extend the solution to one for M.

(3) If no reduction is possible then the graph has no vertices, there is a unique
coloring (the empty coloring), and the score is s0 (from the niladic score
function).

The algorithm makes two runs as above. In the first run, in step (3) save the score
if it sets a new record; this returns the optimal score but not the corresponding
coloring. In the second run, when the score matches the record value, stop and
return the coloring, by using the information stored at the ancestor nodes of the
current leaf.

That the algorithm returns an optimal solution, i.e., that it is correct, follows
from the definitions of the reductions. The run time is analyzed in the following
sections, dealing with implementation details and data structures. We shall speak
in terms of a computation tree implicitly defined by the recursive computation.
For clarity, we will speak of “nodes” of this tree, as opposed to “vertices” of the
instance’s underlying graph. The tree’s root node is the original problem instance,
and each node’s children are the subinstances derived from reducing it; III-reducing
a node produces two children and the other reductions give a single child. We will
also use a reduced tree which collapses nodes with exactly one child, so that a series
of reductions starting with any number of 0, I and II-reductions and ending with
a III-reduction (or when the instance is empty) is represented by a single edge.
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The depth r of the reduced tree is a key parameter: Corollary 4 shows that an
appropriate algorithm implementation runs in time O(n2r) (and space O(m + n)).

3.3. Implementation details and data structures. Limiting the algorithm to
linear space excludes saving copies of the instance as we descend a branch of the
tree; rather, when the algorithm is processing a node of the tree, the corresponding
instance should be the only one explicitly maintained, while the ancestor instances
should be reconstructible by compact information stored at the ancestor nodes.

In this subsection we establish the following claim.

Claim 3. After linear-time preprocessing, we can do the following:

(1) Identify the next reduction to perform, in time O(1).
(2) Perform a III-reduction on a vertex y in time O(n), creating an O(deg(y))-

space annotation enabling the reduction to be reversed and its coloring op-
timally extended.

(3) Perform a series of 0-, I- or II-reductions corresponding to an edge of the
reduced tree in time O(n), creating an O(1)-space annotation for each in-
dividual reduction.

The implementation details are unrelated to the main direction of the paper,
the characterization of a random process. However, they are important since the
linear-time result depends on these tight space and time bounds.

3.3.1. Data structure. We assume a RAM model, so that a given memory location
can be accessed in constant time.

We presume that the input graph is given in a sparse representation, consisting
of a vector of vertices, each with its monadic score function (a 2-element table)
and a doubly-linked list of incident edges, each edge with its dyadic score function
(a 4-element table) and a pointer to the edge’s twin copy indexed by the other
endpoint. We also assume that there is a doubly linked list of all the vertices. As
vertices are removed from an instance to create a subinstance, they are bridged
over in the linked list, so that there is always a linked list of just the vertices in the
subinstance. We maintain an indication of whether each vertex is still unset or has
been set to Red or Blue.

In time O(m + n) and space O(n), we transform the input instance into an
equivalent instance without multiple edges. The simple procedure relies on a pointer
array of length n, initially empty. For each vertex u, we iterate through the incident
edges. For an edge to vertex v, if the vth entry of the pointer array is empty, we
put a pointer to the edge uv. If the vth entry is not empty, this is not the first uv
edge, and we coalesce it with the original one. That is, using the pointer to the
original edge, we add the redundant edge’s score function to that of the original
one. We use the link from the redundant uv edge to its “vu” twin copy to delete
the twin and bridge over it, then delete and bridge over the redundant uv edge
itself. After processing the last edge for vertex u we run through its edges again,
clearing the pointer array. The time to process a vertex u is of order the number
of its incident edges (or O(1) if it is isolated), so the total time is O(m + n) as
claimed. Henceforth we assume without loss of generality that the input instance
has no multiple edges.
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3.3.2. Vertex degrees. One of the trickier points is to maintain information about
the degree of each vertex. The algorithm may introduce multiple edges, and by a
vertex’s “degree” we mean the number of distinct neighbors. Rather than keeping
the precise degree of each vertex, we maintain a “low-degree stack” containing all
vertices of degrees 0, 1, and 2; a stack of degree-3 vertices; and a “high-degree
stack” of vertices of degree ≥ 4. The stacks themselves are maintained as doubly
linked lists, and from each vertex v we keep a pointer to its “marker” in the stack.
The stacks can be created in linear time from the input, and can also be maintained
efficiently. The only difficulty comes from the possibility of multiple edges.

The key subroutine is a degree-checking procedure for a vertex x. Iterate through
x’s incident edges, keeping track of the number of distinct neighboring vertices seen,
stopping when we run out of edges or find 4 distinct neighbors. If a neighbor is
repeated, coalesce the two edges. The time spent on x is O(1) plus the number
of edge coalescences. Once the degree of x is determined as 3, less, or more, x’s
marker is removed from its old stack (using the link from x to delete the marker,
and links from the marker to its predecessor and sucessor to bridge over it), and a
marker to x is pushed onto the appropriate new stack.

When reducing on vertex y, run the degree-checking procedure on each neighbor
x of y. Of each neighbor’s degree-checking time of O(1) plus the number of edge
coalescences, charge the O(1) to y, and subsume it into the time for the reduction
on y which anyway is Θ(deg(y)). We account for the edge coalesences separately,
claiming that in any sequence of reductions (i.e., within any branch of the recursion
tree) there are at most n coalescenses. It suffices to show that in any sequence of
reductions, at most n duplicate edges are created; this is true because only a II-
reduction can create such an edge, and even then it creates at most one.

Existence of the degree stacks assures the first part of Claim 3, that we can select
a next reduction in time O(1): simply pop a vertex, in preference order, from the
low-degree stack, the high-degree stack, or the degree-3 stack. We have also shown
that the stack maintenance can be performed within the times specified by the
second and third parts of the Claim. Thus we turn our attention to the remaining,
more mathematical aspects of the reductions.

3.3.3. 0-, I- and II-Reductions. We omit discussion of type 0 and I reductions and
start with the slightly more complicated type II reductions. Suppose that the
popped vertex y has two neighbors x and z. First we construct the score function
sxz replacing sxy and syz. At the same time, we make a note of how to set y as a
function of x and z. For example if xy is a “cut” constraint of weight 2, and yz
is a cut constraint of weight 1, these are replaced by a single anti-cut constraint
on xz, with associated optimal values of y: in Figure 1 the first table gives the score
function for xy, the second gives that for yz, and the third, “table T” gives the
score function and the optimal value of y for xz. Table T, mapping the coloring
of xz to a score and an optimal color for y, is associated with the instance M
being reduced. The new instance M′ is formed by deleting edge yx and its twin
xy (bridging over them in the linked lists), deleting yz and its twin zy, and adding
a new edge xz and twin zx with score function taken from table T. Finally, vertex
y is deleted. Disregarding the degree-checking time accounted for in the previous
subsection, the reduction takes time and space O(1). Reversing the reduction is
equally straightforward, if we associate x, y, z, and table T with this step in the
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y x score

R R 0
R B 2
B R 2
B B 0

y z score

R R 0
R B 1
B R 1
B B 0

x z y score

R R B 3
R B B 2
B R R 2
B B R 3

Figure 1. Example of a II-reduction replacing score functions for
yx and yz with a score function for xz and the associated optimal
values of y.

recursive calculation; this takes space O(1) per node of the implicit computation
tree, at most one root-to-leaf branch of which exists at any time.

3.3.4. III-Reductions. A “Red” III-reduction on y is performed by making a first
sweep through the incident edges, for edge yx adding the score function syx(R, .)
to the monadic score function sx(), then making a second sweep and deleting each
edge yx and twin xy. (As each edge is deleted, we save a pointer to it and its
predecessor and successor; we also save a pointer to each neighbor x of y.) For
each edge xy deleted, we run a degree check on x and place it on the appropriate
stack. This defines an instance MR. The same procedure is of course applied for
a reduction to MB . Reversing a reduction is straightforward, if before performing
it we record y’s neighbors and the corresponding dyadic score functions, as well as
y’s monadic score function. This takes space O(deg(y)).

3.3.5. Backtracking. To undo a reduction of any type, we use the saved pointers to
reconstruct the deleted edges, “un-bridging” the pointer bridges we built around
them, correcting the vertex degrees, and undoing the changes to the score functions.

This establishes Claim 3.

3.4. Algorithm implementation and analysis. Having established Claim 3, it
is easy to analyze the algorithm’s complexity first in terms of the depth of the
reduced computation tree, and then in terms of m and n.

Corollary 4. An n-vertex, m-constraint Max 2-CSP instance whose computation
tree has at most r type III reductions in any root-to-leaf path can be solved in time
O(n2r) using space O(m + n).

Proof. If the computation tree has at most r III-reductions in any root-to-leaf path,
then by definition the reduced tree is a binary tree of depth at most r, with O(2r)
nodes.

On its first pass, the recursive algorithm performs a depth-first search of the
reduced tree; this takes time linear in the tree’s size, multiplied by the time for an
elementary step. Moving from a node to its child means performing a series of 0-,
I- and II-reductions and a single III-reduction, which by Claim 3 takes time O(n).
Reversing a reduction is equally easy, so returning from a child to its parent also
takes time O(n). Thus the total run time for the first pass is O(n2r).

On its second pass, the algorithm repeats a portion of the depth-first search until
it reaches a leaf with optimal score. It then reconstructs the corresponding coloring
by using the information stored at ancestors of the current leaf; since there are at
most r III-reductions to reverse, this pass takes time at most O(n2r) + O(rn) +
O(n) = O(n2r).
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At any stage of the recursion, the sub-problem being solved corresponds to a
node of the reduction tree, and at each ancestor node is recorded information to
reconstruct that instance. By Claim 3 the annotation for reducing any vertex y is
of size O(1 + deg(y)), and so the space needed by the algorithm is O(m + n). �

We can now bound the running time of Algorithm A in terms of the excess of
the graph underlying the CSP. Note that Theorem 2 follows as a special case of
Theorem 5.

Theorem 5. Given a weighted Max 2-CSP whose underlying graph G is connected,
has order n, size m, and excess κ = m−n, Algorithm A returns an optimal solution
in time O(n2min(κ/2,m/4)), using space O(m + n).

The “m/4” bound is used here only for Case 4 of the proof of Theorem 22, and
we include a short proof to keep the argument self-contained. In fact a bound of
m/5 holds for the same algorithm. A proof sketch was given in [28]; a more careful
proof is given in [27], which also gives a more sophisticated algorithm and analysis
resulting in a bound of 19m/100.

Proof. In light of Corollary 4, it suffices to prove that the number of type III
reduction steps r(G) is bounded by both max{0, κ/2} and m/4.

We begin with the κ/2 bound. The proof is by induction on the order of G.1

The base case, order 0, is trivial. If the first reduction is of type 0, I or II then too
the induction is trivial.

Otherwise, the first type III reduction, from G to G′, reduces the number of
edges by at least 3 and the number of vertices by exactly 1, thus reducing the
excess to κ′ ≤ κ − 2. If G′ has components G′

1, . . . , G
′
I , then r(G) = 1 +

∑

i r(G′
i).

Given that we applied a type III reduction, G had minimum degree ≥ 3 (that is, per
Section 3.3.2, at least 3 distinct neighbors, independent of edge multiplicities), so G′

has minimum degree ≥ 2. Thus each component G′
i has minimum degree ≥ 2, and

so excess κ′
i ≥ 0. Then, by induction, r(G) = 1+

∑

i r(G′
i) ≤ 1+

∑

i max{0, κ′
i/2} =

1 +
∑

i κ′
i/2 = 1 + κ′/2 ≤ 1 + (κ − 2)/2 = κ/2.

For the m/4 bound, we simply argue that each III-reduction results in the de-
struction of at least 4 edges. A III-reduction on a high-degree vertex destroys at
least 4 edges instantly. If the III-reduction is instead on a degree-3 vertex then
its neighbors were also of degree 3. (If any was of higher-degree we would have
III-reduced on it instead; if any was of lower degree we would have 0-, I- or II-
reduced on it.) The III-reduction converts these 3 neighbors to degree 2, they get
pushed onto the (previously empty) low-degree stack, and the next step will be to
II-reduce on the first of them, destroying a fourth edge following the 3 from the
III-reduction. �

4. The binomial distribution and staircase random walks

Our analysis in the next section will center on characterizing the order and
excess of a component of a random graph, which we will do by showing how these
quantities are dominated by parameters of a random walk. Characterization of the

1There is a simpler “proof” from the fact that I- and II-reductions preserve excess, and III-

reductions decrease it by at least 2. Unfortunately this overlooks 0-reductions, which increase
excess, or equivalently, overlooks the fact that components consisting of an isolated vertex have
negative excess.
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random walk itself requires a certain amount of work, and since it is independent
of our Max CSP context we take it up in this separate section.

We would have expected the facts given here already to be known, but we have
searched the literature and spoken to colleagues without turning up anything. Even
if the main points of this section are not new (Definition 7, Theorem 10, Corol-
lary 11, and Theorem 12) they seem not to be well known, and may be of indepen-
dent interest.

Our aim parallels well-known results for Brownian motion. Since we took both
that result and its proof as our model, let us state it. Let X : [0, 1] → R be a
standard Brownian motion with X(0) = 0 and X(1) = s. Then, where φ denotes
the density of the standard normal N(0, 1), the following theorem is a classical
result on the “standard Brownian bridge” X(t) − ts.

Theorem 6. For any b ≥ 0, Pr
(

maxt(X(t)− ts) ≥ b
)

= φ(2b)/φ(0) = exp(−2b2).

For a standard Brownian motion, an increment X(t + τ) − X(t) has Gaussian
distribution N(0, τ), and the proof of the theorem applies the reflection principle
to Brownian motion, using the symmetry φ(x) = φ(−x) of the Gaussian density.

We require an analogous result for a simple random walk X(t), by which we mean
a walk which at each step increases by 1 with probability p, and stays the same
with probability 1− p; we will condition the walk on X(0) = 0 and X(n) = s. The
increments X(t + τ) − X(t) for the (unconditioned) random walk have binomial
distribution B(τ, p), and our proof of Theorem 12 (analogous to the Brownian-
motion theorem above) applies the reflection principle to the random walk, using
the asymmetry of the binomial distribution as in Theorem 10 and Corollary 11.

We begin by defining and characterizing a continuous extension of the binomial
density function.

Definition 7. For any real values n > 0, 0 ≤ p ≤ 1, and any real k, we define

Bn,p(k) :=
Γ(n + 1)

Γ(k + 1)Γ(n − k + 1)
pk(1 − p)n−k(2)

if 0 ≤ k ≤ n, and Bn,p(k) := 0 otherwise.

For integers n and k ∈ {0, . . . , n} this is of course just the binomial density
(

n
k

)

pk(1 − p)n−k. Although the continuous extension need not integrate to 1, we
will still call it the “continuous binomial density”.

It is a simple and well-known fact that the usual binomial density function (on
integers) is unimodal with with a unique maximum lying at k = ⌊(n + 1)p⌋, or two
maxima if, for that k, Bn,p(k) = Bn,p(k − 1). We first prove that the continuous
extension is unimodal.

Theorem 8. The continuous binomial density defined by (2) is unimodal; Bn,p((n+
1)p−1) = Bn,p((n+1)p); every value of Bn,p on the interval [(n+1)p−1, (n+1)p] =
[np − (1 − p), np + p] exceeds every value outside it; and thus the maximum lies in
this interval.

Note that the maximum need not occur at np, as shown for instance by n = 3,
p = 1/3, where the maximum occurs at around 0.82 rather than at 1.
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Proof. We use Gauss’s representation Γ(x) = x−1
∏∞

i=1

[

(1+1/i)x (1+x/i)−1
]

[14,
p. 450]. First, Bn,p(k) is log-concave:

ln Bn,p(k) = k ln p + (n − k) ln(1 − p) + ln(k + 1) + ln(n − k + 1) + ln Γ(n + 1)

−
∑

i≥1

[(k + 1) ln(1 + 1/i) − ln(1 + (k + 1)/i)]

−
∑

i≥1

[(n − k + 1) ln(1 + 1/i) − ln(1 + (n − k + 1)/i)],

so

d

dk
ln Bn,p(k) = ln p − ln(1 − p) +

∑

i≥0

[

1

i + k + 1
− 1

i + n − k + 1

]

,(3)

and

d2

dk2
ln Bn,p(k) = 0 +

∑

i≥0

[−1/(i + k + 1)2 − 1/(i + n − k + 1)2] < 0.

Thus Bn,p(k) is unimodal. Also,

Bn,p(k)/Bn,p(k − 1) =
n − k + 1

k

p

1 − p
,(4)

so for k = (n+1)p, Bn,p(k)/Bn,p(k−1) = 1. Thus the maximum of Bn,p(k) occurs
for some k in the range [(n+ 1)p−1, (n+ 1)p], and moreover every value of Bn,p(k)
in this range is at least as large as every value outside it. �

We will need the following simple fact.

Remark 9. If a real-valued function f is convex on [a − λ, b + λ], with a < b and
λ ≥ 0, then

1

b − a

∫ b

a

f(x)dx ≤ f(a − λ) + f(b + λ)

2
.

Proof. Let f̄(x) be the linear interpolation at x from f(a − λ) and f(b + λ). By

convexity, for all x ∈ [a − λ, b + λ], f(x) ≤ f̄(x). Integrating, 1
b−a

∫ b

a
f(x)dx ≤

1
b−a

∫ b

a
f̄(x)dx. As the average value of a linear function, the latter quantity is

1
2

(

f̄(a) + f̄(b)
)

= 1
2 (f̄(a − λ) + f̄(b + λ)) = 1

2 (f(a − λ) + f(b + λ)), concluding the
proof. �

For a Gaussian distribution, the right and left tails are of course symmetric to
one another. For fixed p and large n, a binomial distribution Bn,p is approximately
Gaussian and the two tails are nearly but not exactly symmetric. We use Claim 8
to show that, for p ≤ 1/2, a binomial’s right tail (slightly) dominates its left tail.
(For p > 1/2 the opposite is true, by symmetry.)

Theorem 10. For p ∈ (0, 1/2), the continuous binomial density function Bn,p(k)
defined by (2) has the property that for all deviations δ ≥ 0,

Bn,p((n + 1)p − 1 − δ) ≤ Bn,p((n + 1)p + δ).
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Proof. For notational convenience, let N = n + 1. The truth of the theorem for
δ = 0 is immediate from Claim 8’s assertion that Bn,p(Np − 1) = Bn,p(Np). It
suffices, then, to prove the non-negativity of

d

dδ
ln

(

Bn,p(Np + δ)

Bn,p(Np − δ − 1)

)

=
d

dδ
ln Bn,p(Np + δ) − d

dδ
ln Bn,p(Np − δ − 1).

(That is, the slope going forwards from the point Np + δ should “outweigh” the
slope going backwards from Np− δ − 1.) Taking the derivatives from (3), then, we
wish to show non-negativity of

2(ln(p) − ln(1 − p)) +
∑

i≥0

[

1

i + Np + δ + 1
− 1

i + N(1 − p) − δ
(5)

+
1

i + Np − δ
− 1

i + N(1 − p) + δ + 1

]

.

Before proving this, we note that if δ is fixed and we let N → ∞, it can be seen
(by approximating the sum by an integral) that (5) tends to 0; showing (5) to be
positive will require a little care.

Let f(x) = 1/[(p+x)(1−p+x)]. Note that (1−2p)
∫∞

0
f(x)dx = ln(1−p)−ln(p),

so f will be used to address the first summand in (5). Also f ′′(x) = 2/[(1 − p +
x)(p + x)3] + 2/[(1− p + x)2(p + x)2] + 2/[(1− p + x)3(p + x)], which is positive for
x > −p, so f is convex on (−p,∞). Returning to the quantities in (5), then

∑

i≥0

[

1

i + Np + δ + 1
− 1

i + N(1 − p) − δ
+

1

i + Np − δ
− 1

i + N(1 − p) + δ + 1

]

=
∑

i≥0

[

N(1 − 2p)

(i + Np − δ)(i + N(1 − p) − δ)
+

N(1 − 2p)

(i + Np + δ + 1)(i + N(1 − p) + δ + 1)

]

=
∑

i≥0

[ 1
N (1 − 2p)

(p + (i − δ)/N)(1 − p + (i − δ)/N)
+

1
N (1 − 2p)

(p + (i + δ + 1)/N)((1 − p) + (i + δ + 1)/N)

]

=
1

N
(1 − 2p)

∑

i≥0

[f((i − δ)/N) + f((i + δ + 1)/N)]

≥ (1 − 2p)
∑

i≥0

2

∫ (i+1)/N

i/N

f(x)dx (as explained below)

= 2(1 − 2p)

∫ ∞

0

f(x)dx

= −2(ln(p) − ln(1 − p)),

proving the non-negativity of (5). The inequality follows from Remark 9, with
a = i/N , b = (i + 1)/N , and λ = δ/N : f is convex on (−p,∞), which contains the
relevant range because a − λ = (i − δ)/N ≥ −δ/N > −p as long as δ ≤ np < Np,
while if δ > np then the theorem is true trivially, as Bn,p((n+1)p−1−δ) is 0 while
Bn,p((n + 1)p + δ) is positive. �

We note that this has the following corollary for binomial random variables.

Corollary 11. For a binomially distributed random variable X ∼ B(n, p), p ≤ 1/2,
for any δ ≥ 0, Pr(X = ⌊(n + 1)p − 1 − δ⌋) ≤ Pr(X = ⌊(n + 1)p + δ⌋).
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Proof. From Claim 8, Pr(X = ⌊(n + 1)p − 1 − δ⌋) = Bn,p(⌊(n + 1)p − 1 − δ⌋) ≤
Bn,p((n + 1)p − 1 − δ). Also, Pr(X = ⌊(n + 1)p + δ⌋) = Bn,p(⌊(n + 1)p + δ⌋) ≥
Bn,p((n + 1)p + δ): if ⌊(n + 1)p + δ⌋ ≥ (n + 1)p the last inequality follows from the
fact that Bn,p decreases above (n+1)p, while if ⌊(n + 1)p + δ⌋ < (n+1)p it follows
from the fact that every value of Bn,p in the interval [(n+1)p−1, (n+1)p] is larger
than any value outside it. By Theorem 10, Bn,p((n+1)p−1−δ) ≤ Bn,p((n+1)p+δ).
Putting the three inequalities together proves the claim. �

Next we consider the deviation of a “staircase” random walk above its linear
interpolate. Our bound on the tail of this parameter is roughly the square of what
would be obtained from a naive application of Hoeffding’s inequality for sampling
with replacement [18, Section 6].

As noted earlier, our result and proof are modeled on a classical equality (Theo-
rem 6) for the Brownian bridge. Since the “long-run” behavior of a simple random
walk converges to Brownian motion (in a sense we do not need to make precise), it
is not surprising that we should be able to obtain a similar result.

Theorem 12. Fix any positive integers n and S ≤ n/2, and any integer discrepancy
b ≥ 2. Let X1, . . . ,Xn be a 0-1 sequence chosen uniformly at random from among
all such sequences having sum X1 + · · · + Xn = S. Then

Pr

(

max
i

{

X1 + · · · + Xi −
i

n
S

}

≥ b

)

≤ Bn,S/n(S + 2b − 1)

Bn,S/n(S)
.

Proof. First observe that a random 0-1 sequence with X1+· · ·+Xn = S as above has
precisely the same distribution as a sequence of n i.i.d. Bernoulli random variables
conditioned on having sum S. For the remainder of the proof we adopt this view,
in particular choosing to give each random variable the distribution Xi ∼ B(p)
with p = S/n ≤ 1/2. For notational convenience, let Xτ =

∑τ
i=1 Xi. Noting

that EXτ = τp, then, we are asking for the conditional probability that there is
a time τ such that Xτ ≥ τp + b. If so, define the “first crossing time” τb to be
min{τ ≤ n : Xτ ≥ τp + b}, and otherwise let τb = n + 1. Because Xτ increases by
at most 1 in a step, if τb ≤ n then Xτb = ⌈τbp + b⌉. The event we are interested in
is precisely that τb ≤ n, conditioned on Xn = np:

Pr(τb ≤ n | Xn = np) =
Pr(τb ≤ n,Xn = np)

Pr(Xn = np)
.(6)

The numerator of this expression is

num =
n
∑

τ=1

Pr(τb = τ, Xn = np)

=
n
∑

τ=1

Pr(τb = τ) Pr(Xn = np | τb = τ)

which by the Markovian nature of the process

=
n
∑

τ=1

Pr(τb = τ) Pr(Xn = np | Xτ = ⌈τp + b⌉)
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=
n
∑

τ=1

Pr(τb = τ)Bn−τ,p(np − ⌈τp + b⌉)

=

n
∑

τ=1

Pr(τb = τ)Bn−τ,p((n − τ + 1)p − 1 − δ)

where, using b’s integrality, δ = ((n− τ +1)p−1)− (np−⌈τp + b⌉) = b−1+ ⌈τp⌉−
τp + p ≥ 0, and thus we may apply the inequality of Theorem 10:

≤
n
∑

τ=1

Pr(τb = τ)Bn−τ,p((n − τ + 1)p + δ)

=
n
∑

τ=1

Pr(τb = τ)Bn−τ,p(np + b − 1 − 2τp + ⌈τp⌉ + 2p).

For reasons that will shortly become clear, we wish to replace the binomial’s argu-
ment by np + 2b − 1 − ⌈τp + b⌉. We observe that the original argument is larger
than (n−τ +1)p (because δ ≥ 0); the new argument is smaller than the original one
(because b is integral, and −⌈τp⌉ ≤ −2τp + ⌈τp⌉); and the new argument is larger
than (n− τ + 1)p− 1 (because the difference is b− ⌈τp⌉ + τp− p > b− 1 − p > 0).
Thus by Theorem 8, the binomial’s value can only increase:

≤
n
∑

τ=1

Pr(τb = τ)Bn−τ,p(np + 2b − 1 − ⌈τp + b⌉)

=

n
∑

τ=1

Pr(τb = τ) Pr(Xn = np + 2b − 1 | Xτ = ⌈τp + b⌉)

which again by the Markovian nature of the process

=

n
∑

τ=1

Pr(τb = τ) Pr(Xn = np + 2b − 1 | τb = τ)

=

n
∑

τ=1

Pr(τb = τ, Xn = np + 2b − 1)

= Pr(Xn = np + 2b − 1),

where the last equality holds because Xn = np + 2b− 1 means that Xn exceeds its
expectation np by 2b − 1 ≥ b and thus implies that τb ≤ n. Returning to (6) and
substituting S = np yields the claim. �

Remark 13. For positive integers b and np with b ≤ 2np,

Bn,p(np + b)

Bn,p(np)
≤ exp

(

−(3 ln(3) − 2)/4 · b2/np
)

.
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Proof. The proof is by simple calculation.

Bn,p(np + b)

Bn,p(np)
=

(n − (np + b − 1)) · · · (n − np)

(np + b) · · · (np + 1)

(

p

1 − p

)b

=

b
∏

i=1

1 − (i − 1)/n(1 − p)

1 + i/np

≤
b
∏

i=1

1

1 + i/np

≤ exp

(

−
∫ b

0

ln(1 + i/np) di

)

= exp (−np(1 + b/np) ln(1 + b/np) + b) .(7)

If b = x · np, then the value of c for which (7) equals exp
(

−cb2/np
)

is c =
(x+1) ln(x+1)−x

x2 . Since this is decreasing in x, the worst-case (smallest) value of
c occurs for the largest allowed value of x = b/np. By hypothesis, this is x = 2,
where c = (3 ln(3)− 2)/4 . For smaller values of x = b/np, then, (7) is smaller than
exp

(

−(3 ln(3) − 2)/4 · b2/np
)

, completing the proof. �

5. Stochastic size and excess of a random graph

We stochastically bound the excess κ = m−n of a component of a random graph
G via the branching-process approach pioneered by Karp [20] (see also Kendall [21],
von Bahr and Martin-Löf [31], and Martin-Löf [25]). Given a graph G and a vertex
x1 in G, together with a linear order on the vertices of G, the branching process
finds a spanning tree of the component G1 of G that contains x1 and, in addition,
counts the number of non-tree edges of G1 (i.e., calculates the excess minus 1).

At each step of the process, vertices are classified as “living”, “dead”, or “unex-
plored”, beginning with just x1 living, and all other vertices unexplored. At the ith
step, the process takes the earliest living vertex xi. All edges from xi to unexplored
vertices are added to the spanning tree, and the number of non-tree edges is in-
creased by 1 for each edge from xi to a living vertex. Unexplored vertices adjacent
to xi are then reclassified as living, and xi is made dead. The process terminates
when there are no living vertices.

Now suppose G is a random graph in G(n, c/n), with the vertices ordered at
random. Let w(i) be the number of live vertices after the ith step and define the
width w = max w(i). (Note that w(i) and w are functions of the random process,
not just the component, since they depend on the order in which the vertices are
taken. Despite this, for convenience we will refer to the “width of a component”.)

Let u = |G1|, so that w(0) = 1 and w(u) = 0. The number of non-tree edges
uncovered in the ith step is binomially distributed as B(w(i) − 1, c/n), and so,
conditioning on u and w(1), . . . , w(u), the number of excess edges is distributed as

(8) B

( u
∑

i=1

(w(i) − 1), c/n

)

.

Since
∑u

i=1(w(i) − 1) ≤ uw, and also
∑u

i=1(w(i) − 1) ≤ ∑u
i=1(i − 1) =

(

u
2

)

, the

number of excess edges is dominated by the random variable B(min{uw,
(

u
2

)

}, c/n).
At the ith stage of the process, there are at most n− i unexplored vertices, and so
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the number of new live vertices is dominated by B(n − i, c/n). This allows us to
define a simpler random walk which dominates the graph edge-exposure branching
process.

Definition 14. Given a constant c > 0 and integer n > 0, define the random
walk RW by X(0) = 1 and, for i > 0, X(i) = X(i − 1) + B(n − i, c/n), where
the binomial increments are independent. Parametrize its time-i width by W ′(i) =
X(i) − i, its order by U ′ = min{n, min{i : W ′(i) = 0}}, and its (maximum) width
by W ′ = maxi≤U ′ W ′(i).

Claim 15. The order U and width W of the component G1 on vertex 1 of a random
graph G(n, c/n) are stochastically dominated by U ′ and W ′ of the random walk RW.

Proof. Consider a variant of the branching process on the random graph in which
at each step we add enough new special “red” vertices to bring the number of
unexplored vertices to n − i. This is equivalent to the random walk RW. It also
dominates the original branching process: in the implicit coupling between the two,
the variant has width at least as large at every step, and thus also has maximum
width and order which are at least as large as those of the original process. �

Thus the excess κ1 of G1 is stochastically dominated by the same quantity for
RW:

κ1 � B
(

min
{

U ′W ′,
(

U ′

2

)

}

, c/n
)

.(9)

Let t(G1) be the time spent by Algorithm A on G1. We shall analyze the total
running time by “charging” t(G1)/|G1| to each vertex of G1; the running time is
then the sum of these charges.

Claim 16. The amortized running time t(G1)/|G1| of Algorithm A on G1, the
component on vertex 1 of a random graph G(n, c/n), satisfies

(10) E(t(G1)/|G1|) = O(1) E exp
(

c(
√

2 − 1) min{U ′W ′/n, U ′/2}
)

,

with U ′ and W ′ given by the random walk RW.

Proof. The running time of Algorithm A on a connected graph with n1 vertices,
m1 edges and excess κ1 = m1 − n1 is

(11) O(n12κ1/2).

The exponential moments of binomial random variables are simple and well known:
If a random variable U has distribution B(N, p), then

EzU =
N
∑

i=0

(

N

i

)

zipi(1−p)N−i = (pz+(1−p))N = (1+p(z−1))N ≤ exp(p(z−1)N),

and in particular,

(12) E

√
2

U ≤ exp((
√

2 − 1)Np).

Setting N = min{U ′W ′,
(

U ′

2

)

} and combining (9), (11), and (12) gives

(13) E(t(G1)/|G1|) = O(1) E(2κ/2) ≤ O(1) E exp((
√

2 − 1)N c/n),

Noting that U ′ ≤ n, and so
(

U ′

2

)

/n ≤ U ′/2, yields (10). �
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In the following, we therefore focus on finding bounds on the probability Pr(U,W )
that the “first” component of a random graph has order U and width W , or, since
(U,W ) � (U ′,W ′) per Claim 15, the corresponding probability Pr(U ′,W ′) for the
random walk RW.

We use a version of Chernoff’s inequality (see Janson,  Luczak and Rucinski [19,
Theorems 2.1 and 2.8]), which states that for a sum Z of independent 0-1 Bernoulli
random variables with parameters p1, . . . , pn and expectation µ =

∑n
i=1 pi:

Pr(Z ≥ µ + t) ≤ exp
(

−t2/(2µ + 2t/3)
)

(14)

Pr(Z ≤ µ − t) ≤ exp
(

−t2/(2µ)
)

.(15)

The next lemma describes the probability that U ′ is large, and has a corollary
for the probability that |G1| is large. (We will not use the corollary, but we state it
because it is natural and potentially useful.) Although the proof is framed in terms
of the binomial increments B(n−i, c/n) for RW (corresponding to vertex exposures
in the random graph), it may also be helpful to think in terms of subdividing such an
increment into n−i Bernoulli increments Be(c/n) (corresponding to edge exposures
in the random graph).2 This view will be essential in proving Lemma 20, and is
illustrated in Figure 2. The X axis indicates edge exposures j in the augmented
graph model, or equivalently the number of Bernoulli random variables exposed
in the random walk (a “finer sampling” of the same RW). Since the number of
edge exposures between successive deaths shrinks from n − 1 to n − 2 etc., the
cumulative number of deaths (call it d(j)) grows super-linearly. (As it happens,
j−1(d) is a parabola, i.e., d(j) is a parabola rotated sideways.) The expected
cumulative number of births grows linearly, as (c/n)j, and (for c = 1) is tangent to
the “death curve” at the origin. The event that the actual number of births equals
deaths equals αn means that a corresponding sum of Bernoulli random variables
Be(c/n) equals αn; the individual births comprising this sum describe a random
walk, a sample of which is shown in the figure.

Lemma 17. Let n > 0 be an integer, Λ > 0 a real, and c > 0 a real with c ≤ 1+Λ.
For any integer i > 0, setting α = i/n, the time-i widths W ′(i) of the random walk
RW with parameters c, n satisfy

(16) Pr(W ′(αn) > 0) ≤ exp

(−3α3n(1 − 6Λ/α)

24 − 8α

)

.

Proof. We assume Λ/α < 1/6 since otherwise the inequality is trivial. We also
assume without loss of generality that c = 1 + Λ, since the corresponding process
dominates that for any smaller c. Note that W ′(i) has distribution

W ′(i) ∼ B

(

(n − 1) + · · · + (n − i),
1 + Λ

n

)

− i + 1

= B

(

ni −
(

i + 1

2

)

,
1 + Λ

n

)

− i + 1

2The edge-exposure model was previously used by Spencer in an elegant short paper [29].
Spencer was studying a related problem, calculating C(n, n + k) (the number of connected graphs
with k vertices and n + k edges) for k fixed and n → ∞. We will discuss C(n, n + k) in Section 6.
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actual births

expected births

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | |

| ||
|||

|||
|||

|||
|||
|||
|||
|||
|||
||| deaths

edge exposures

b
ir

th
s;

d
ea

th
s

}

1
2α2n

αn

αn2 − 1
2α2n2

Figure 2. Birth-death process described by edge exposures in the
augmented graph process, or equivalently by Bernoulli exposures
in RW.

and so W ′(i) > 0 means that

B

(

ni −
(

i + 1

2

)

,
1 + Λ

n

)

≥ i = αn.(17)

This binomial r.v. has expectation
(

αn2 −
(

αn + 1

2

))

1 + Λ

n
≤ (1 + Λ)(α − α2/2)n.(18)

For convenience, define q = Λ/α < 1/6. Thus if (17) holds, the r.v. exceeds its
expectation by at least

(19) α2n/2 − Λ(α − α2/2)n =
α2n

2
(1 − 2q + αq) ≥ 0.

Together with (18) and (19), (14) implies that (17) has probability at most

(20) exp

( −α4n2(1 − 2q + αq)2/4

2(1 + qα)(α − α2/2)n + α2n(1 − 2q + αq)/3)

)

.

A short calculation shows that this is at most (16). (More careful calculation can
decrease the “6” in 6Λ a bit, but this is immaterial for our purposes.) �

We will use the lemma in the form of the following corollary.

Corollary 18. Let n > 0 be an integer, Λ > 0 a real, and c > 0 a real with
c ≤ 1 + Λ. For any integers i, j > 0 with i < j ≤ 2i, setting α = i/n, we have

(21) Pr(∃k ∈ (i, j] : W ′(k) = 0) ≤ K exp

(−3α3n(1 − 6Λ/α)

24 − 8α

)

,

for some absolute constant K.
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Proof. Assume without loss of generality that j ≤ n. Let A be the event (W ′(i) >
0), let Z be the event (∃k ∈ (i, j] : W ′(k) = 0), and for k ∈ (i, j], define the event
Bk = (W ′(k) = 0)∩ (W ′(l) 6= 0∀l ∈ [k + 1, j]) (i.e., the last zero of W ′(·) in [i, j] is

at k). Then the events Bk are disjoint and Z =
⋃j

k=i+1 Bk.
By Lemma 17, it is sufficient to show that Pr(A | Z) ≥ 1/K, since then

Pr(A) ≥ Pr(A∩Z) = Pr(Z) Pr(A | Z) ≥ Pr(Z)/K, and the inequality follows from

(16). As the Bk are disjoint, Pr(A | Z) =
∑j

k=i+1 Pr(A | Bk) Pr(Bk | Z). Since
∑j

k=i+1 Pr(Bk | Z) = 1, it is enough to show that, for k ∈ (i, j], Pr(A | Bk) ≥ 1/K.

Now consider the random walk W ′(·). For k > 0, let e(k) = nk −
(

k+1
2

)

(the
number of edge exposures by time k). Then W ′(k) ∼ B(e(k), (1 + Λ)/n) − k + 1.

Thus Bk holds only if we have exactly k−1 successes in e(k) = nk−
(

k+1
2

)

Bernoulli
trials. Conditioning on Bk, A∩Bk is the event that X ≥ i, where X is the number
of these k− 1 successes which occur within the first e(i) trials. The k − 1 successes
are uniformly random over the e(k) trials, so X is a hypergeometric random variable
parametrized by e(k) trials, k − 1 successes, and e(i) samples. We wish to show
that Pr(X ≥ i) ≥ 1/K.

The times of the k − 1 successes may be simulated by drawing them randomly
without replacement from {1, . . . , n}, the rth success falling among the first e(i)
trials with probability at least (e(i)−(r−1))/(e(k)−(r−1)) (even if all the previous
r−1 successes fell among the first e(i) trials). Since (e(i)−(r−1))/(e(k)−(r−1)) ≥
e(i)/e(k) − (k − 1)/e(k) ≥ i/k − 2/n ≥ (i − 2)/k, X dominates a random variable
Y ∼ B(k − 1, (i − 2)/k), and it suffices to show that Pr(Y ≥ i) ≥ 1/K.

For any bounded k, Pr(Y ≥ i) ≥ Pr(Y = k − 1) is bounded away from 0,
so it suffices to consider k ≥ 1001. Since i ≥ k/2, the binomial’s “probability”
(i − 2)/k ≥ 0.49. We now consider two cases. If 1 − (i − 2)/k ≤ 100/(k − 1) then
Pr(Y ≥ i) ≥ Pr(Y = k − 1) ≥ (1 − 100/(k − 1))k−1 ≥ 10−50. Otherwise, Y has
variance σ2 ≥ (k − 1) · 0.49 · 100/(k − 1) = 49. By the Berry–Esseen theorem (see
for example [3]), the error in estimating Y from the corresponding Gaussian is at
most 1.88/σ. Since the Gaussian itself exceeds its mean by 3 with probability at

least 1/2−3/(
√

2π σ), Pr(Y ≥ i) ≥ Pr(Y ≥ EY + 3) ≥ 1/2−3/(
√

2π σ)−1.88/σ >
0.05. �

While we will not use it, we note that Lemma 17 has an immediate consequence
for a component of a random graph.

Corollary 19. Let n > 0 be an integer, Λ > 0 a real, and c > 0 a real with
c ≤ 1 + Λ. For any integer i > 0, setting α = i/n, the order of the component G1

containing vertex 1 in a random graph G(n, c/n) satisfies

Pr(|G1| > αn) ≤ exp

(−3α3n(1 − 6Λ/α)

24 − 8α

)

.

Lemma 20. Given an integer n ≥ 4 and any value c > 0, RW has the property

that, for any α ∈ (0, 1] and any β ≥ α2

8−4α + 4
n ,

Pr(W ′ ≥ βn | W ′(αn) = 0) ≤ exp

(

−(3 ln(3) − 2)

(

β − α2

8 − 4α
− 4

n

)2
n

α

)

.

(22)
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Proof. If W ′(αn) = 0 then W ′ ≤ maxt≤αn W ′(t). Since W ′(t) decreases by at most
1 per step, and is 0 at αn, we have W ′ ≤ αn and thus we may assume β ≤ α (or
else the result is trivial).

Switching from the vertex-exposure to the edge-exposure view for the random
walk, up to and including the tth step of RW, the total number of edge exposures
is

e(t) := (n − 1) + · · · + (n − t) = tn −
(

t + 1

2

)

,

and the total number of births is Z1 + · · · + Ze(t), where the Zs are i.i.d. Bernoulli
Be(c/n) random variables.

For the remainder of the proof, set i := αn. Since the number of deaths by the
tth vertex exposure is t, and the number of births is Z1 + · · · + Ze(t), and we start
with one live vertex, the condition W ′(i) = 0 means that the sequence Z1, Z2, . . .
is conditioned by Z1 + · · · + Ze(i) = i − 1.

For any time t ≤ i, the number of live vertices is given by

W ′(t) = Z1 + · · · + Ze(t) − (t − 1)(23)

=

[

Z1 + · · · + Ze(t) −
e(t)

e(i)
(i − 1)

]

+

[

e(t)

e(i)
(i − 1) − (t − 1)

]

;(24)

that is, the gap between the actual number born and its expectation (conditioned
on Z1 + · · · + Ze(i) = i− 1), plus the gap between the expectation and the number
of deaths.

This view may be more easily apprehended with reference to Figure 3. The

actual births
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Figure 3. Birth / death process

maximum of W ′(t), the number of live vertices at any time, is the largest gap
between this random walk and the death curve, which can be bounded as the
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maximum gap between the random walk and a linear interpolation of it, plus the
maximum gap between the linear interpolation and the death curve. The first of
these two gaps is a random quantity governed by Claim 12, while the second is a
deterministic function of α and n.

The second term in (24) may be bounded as

max
t≤i

[

e(t)

e(i)
(i − 1) − (t − 1)

]

≤ 1 + max
t≤i

[

e(t)

e(i)
i − t

]

= 1 + i2/[8n − 4i − 4]

(the maximum occurs at t = i/2), and with i = αn and n ≥ 2, it is easily checked
that this is

≤ α2n/(8 − 4α) + 2.

Thus, defining a “discrepancy” δ by δn = ⌊βn−α2n/(8−4α)−2⌋ ≥ βn−α2n/(8−
4α) − 3, we may rewrite (24) as W ′(t) ≤

[

Z1 + · · · + Ze(t) − e(t)
e(i) (i − 1)

]

+ βn− δn

to obtain

Pr
(

max
t≤αn

W ′(t) ≥ βn
∣

∣W ′(αn) = 0
)

≤ Pr

(

max
t≤αn

[

Z1 + · · · + Ze(t) −
e(t)

e(i)
(i − 1)

]

≥ δn
∣

∣W ′(αn) = 0

)

≤ Pr

(

max
j≤e(i)

[

Z1 + · · · + Zj −
j

e(i)
(i − 1)

]

≥ δn
∣

∣W ′(αn) = 0

)

.

Recalling that we have conditioned upon Z1 + · · ·+Ze(i) = i−1 = αn−1, we apply
Theorem 12, with S = i − 1 = αn − 1 and b = δn. (The Theorem’s “n” is e(i),
so its “p = S/n” is i−1

e(i) = i−1

in−(i+1

2 )
, and its hypothesis “p ≤ 1/2” is guaranteed by

n ≥ 4.) Using the notation B(n, p; k) for Bn,p(k), this shows the probability to be

≤ B
(

e(i), (i − 1)/e(i); (i − 1) + (2δn − 1)
)

B
(

e(i), (i − 1)/e(i); (i − 1)
) .(25)

By its definition, δn ≤ βn − 2, and we already argued that the probability is 0
unless β ≤ α, so we may assume δn ≤ βn − 2 ≤ αn − 2 = i − 2, and in particular,
2δn − 1 < 2(i − 1): the deviation of 2δn − 1 in (25) is less than twice the mean.
Thus we may apply Remark 13, showing the probability to be

≤ exp
(

−(3 ln(3) − 2)/4 · (2δn − 1)2/(αn − 1)
)

≤ exp

(

−(3 ln(3) − 2)

(

β − α2

8 − 4α
− 4

n

)2
n

α

)

.

�

We will use the lemma in the form of the following corollary.
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Corollary 21. Given an integer n ≥ 4 and any value c > 0, RW has the property

that, for any 0 < α0 ≤ α1 ≤ 1 and any β ≥ α2
0

8−4α0
+ 4

n ,

Pr(W ′ ≥ βn | ∃α ∈ [α0, α1] : W ′(αn) = 0)

≤ exp

(

−(3 ln(3) − 2)

(

β − α2
1

8 − 4α1
− 4

n

)2
n

α1

)

.(26)

Proof. Let Bk and Z be the events defined in the proof of Corollary 18, where we
take i = α0n and j = α1n, and let C be the event (W ′ ≥ βn). Then,

Pr(C | Z) =

j
∑

k=i

Pr(C | Bk) Pr(Bk | Z)

=

j
∑

k=i

Pr(C | W ′(k) = 0) Pr(Bk | Z) (W ′(·) is Markovian)

≤ max
k∈[i,j]

Pr(C | W ′(k) = 0).

We are now done, by Lemma 20. �

6. Remarks on the bounds

Recall that we are aiming to bound κ, the excess of the component of a random
graph containing the fixed vertex 1. That the tail bounds on κ must be done
carefully — that the constants count — is illustrated by considering the probability
that a large (linear-sized) excess arises simply because the random graph G(n, 1/n)
has many more edges than expected. Such a graph has (n+ǫn)/2 edges (rather than
the expected n/2) with probability exp(−Θ(ǫ2n)), and in this event the expected
value of κ is Θ(ǫ3n). Thus for ǫ = Θ(1), the probability of excess κ = ǫ3n is at
least exp(−Θ(n)), the running time is exp(Θ(n)), and it becomes critical which
of the two constants hidden in the respective Thetas is larger. In particular, it is
quite conceivable that it really might be essential to have our running-time bound
of 2κ/2 rather than the more naive 2κ that would be obtained by III-reducing on
all vertices of degree 3 or more. This example also shows that good tail bounds on
κ will be required even in the fantastically improbable regime κ = Θ(n).3

As remarked earlier, tail bounds on κ could also be computed by first-moment
methods. Writing C(u, u + κ) for the number of connected graphs with u vertices
and u+κ edges, and applying our algorithm to a random graph G(n, p), the expected
time spent on components of order u and excess κ is at most 2κ/2 times the expected
number of them, namely

2κ/2
(

n
u

)

C(u, u + κ)pu+κ(1 − p)u(n−u)+(u

2)−u−κ.(27)

Motivated by the preceding paragraph, we will consider the value of this expression
at p = 1/n, u = ǫn and κ = ǫ3n, with ǫ constant; we fix these values for the
remainder of this section.

3Were it not for the need to go up into the tails, we could capitalize on results such as those of
Aldous [1], that the joint distribution of the largest component’s order and excess is asymptotically
normal. In Aldous’s analysis, Brownian motion plays the same role as our random walk RW.
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Wright [32] shows that C(u, u + κ) is asymptotically equal to some explicit con-
stant times

(28) (A/κ)κ/2uu+(3κ−1)/2

where A = e/12 and the formula is valid for 1 ≪ κ ≪ u1/3, i.e., for κ → ∞ but
κ = o(u1/3). Since the algorithm’s expected time is at most (27) summed over all u
and κ, and Wright’s formula for C(u, u+κ) sacrifices only a constant factor, nothing
is given up (outside of the 2κ/2 term in (27)), and this method of calculation must
yield a suitable result (a value linear in n) in the range where Wright’s formula is
applicable. Unfortunately, this range does not include our u = ǫn, κ = ǫ3n.

Similarly,  Luczak [24] shows that for 0 ≪ κ ≪ u,

1/(e8
√

κ)(A/κ)κ/2uu+(3κ−1)/2 ≤ C(u, u + κ) ≤
√

u3/κ(A/κ)κ/2uu+(3κ−1)/2

where A = e/12+O(κ/u). With ǫ fixed, u = ǫn and κ = ǫ3n, this does not give the
needed explicit bound on A. It might be possible to extract such a bound, and also
to work with all parameter pairs (u, κ) (not just the demonstrative values we chose
here), but even then we would be left with the polynomial leading factors: unless
these can be banished, we would be unable to prove that the expected running time
is linear rather than merely polynomial.

Bollobás [4] (see also Bollobás [5, V.4]) shows that (28) is a universal upper
bound on C(u, u + κ) for some universal constant A. Substituting (28) into (27)
and evaluating at p = 1/n, u = ǫn and κ = ǫ3n gives (up to small polynomial

factors of n and ǫ) [c(ǫ)A]ǫ
3n/2, where c(ǫ) is an easily calculated explicit function.

For this method to show that the expected time (for this u and κ) is polynomial
in n, we would need a reasonably small upper bound on the constant A.

Bender, Canfield and McKay [2] (in the same journal issue as  Luczak’s [24]) give
extremely accurate estimates for C(u, u+κ), whose substitution into expression (27)
must in principle satisfy our needs. Their formula, though, is rather complex,
involves an implicitly defined function, and appears difficult to work with.

That is, while suitable tail bounds could presumably be proved by a first-moment
calculation, there are complications. We therefore chose to adopt the branching-
process approach.

The branching-process approach also provides some intuition. It is a classical
Erdős-Renyi result [12, 11] that a random graph at the critical density 1/n typically
has a giant component whose size is Θ(n2/3). Since our component sizes are given
as αn, the giant component (which is likely to be the most difficult component for
our algorithm to solve, and thus the component we should focus on) would have
αn = Θ(n2/3), α = Θ(n−1/3). The inequality (16) “allows” such a component,
giving its probability as exp(−Θ(1)).

Just above the scaling window, in a random graph G(n, p) with p = (1 + ǫ)/n
where n−1/3 ≪ ǫ ≪ 1 (or equivalently p = (1 + λn−1/3)/n where 1 ≪ λ ≪ n1/3),
up to constant factors the giant component’s order is typically ǫn = λn2/3 and
its excess typically ǫ3n = λ3, suggesting we consider α = λn−1/3 and κ = λ3.
(See Bollobás [5, Chapter VI] and particularly Janson,  Luczak and Rucinski [19,
Section 5.4] for this and related results.) Since our bound suggests that κ might
be about (αn)(βn)(c/n), this would suggest that the typical “width” (maximum
number of live vertices) βn of the giant component would have β = λ2n−2/3.
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Notice that (22) imposes no penalty on β until β = Θ(α2), and the above values
α = λn−1/3, β = λ2n−2/3 fall just at this point.

In short, we think that the branching-process analysis offers insight into the
likelihood or unlikelihood of observing graph components of given order and excess.
Especially if one takes as given the properties of binomial distributions and staircase
random walks proved in Section 4, the branching process analysis is not unduly
complicated, and is entirely self-contained.

7. Assembly

In this section we state and prove the main result, Theorem 22; note that The-
orem 1 follows as a special case.

Theorem 22. For any λ = λ(n) > 0 and c ≤ 1 + λn−1/3, let G ∈ G(n, c/n) be a
random graph, and let (G,S) be any weighted Max 2-CSP instance over this graph.
Then (G,S) can be solved exactly in expected time O(n) exp(O(1 + λ3)), and in
space O(m + n).

Proof. Consider Algorithm A applied to the graph G. We calculate the run-
ning time as follows: for each component G′ of G, let t(G′) be the time taken
by Algorithm A to find an optimal assignment for G′. For each vertex v of G′,
we define t(v) = t(G′)/|G′|. Then the total running time of Algorithm A is
O(m + n) +

∑

v∈V (G) t(v). Choosing any fixed vertex v ∈ V (G) (say, v = 1),

we see that the expected running time is at most

(29) O((1 + c)n) + nEt(v).

It therefore suffices to prove that

(30) E t(v) ≤ exp(O(1 + λ3)) = exp(O(1 + Λ3n)),

where Λ = λn−1/3.
Recall the random walk RW of Definition 14, with order U ′ and maximum

width W ′. We examine the contribution of each possible pair (U ′,W ′) to the
expectation. Specifically, for integers αn and βn, define E(α, β) to be the expected
time that the algorithm spends on cases with U ′ = αn and W ′ = βn. Recalling that
if U ′ < n then W ′ ≤ U ′, we compute the contribution separately for 0 ≤ β ≤ α < 1
(this forms the bulk of the argument to come, including Cases 1–4 below), and for
α = 1 (Case 5).

As we are computing asymptotics in n, we may assume that n is large (n ≥
10000). It is enough to prove that

∑

αn,βn

E(α, β) ≤ exp(O(1 + λ3)).(31)

To do so, we break [0, 1]2 into rectangular regions and bound the sum of E(α, β)
separately over each region. Assuming α < 1, the amortized running time of
Algorithm A is bounded by Claim 16. Thus for any rectangle R = [α0, α1] ×
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[β0, β1] ⊆ [0, 1) × [0, 1],
∑

(α,β)∈R

E(α, β) ≤ O(1) exp
{

max
R

[

(1 + Λ)(
√

2 − 1)αβ
]

n
}

Pr
(

(U ′/n,W ′/n) ∈ R
)

≤ O(1) exp
{

max
R

[

(1 + Λ)(
√

2 − 1)αβ
]

n
}

·

Pr
(

∃α ∈ [α0, α1] : W ′(αn) = 0
)

·
Pr
(

W ′/n ∈ [β0, β1]
∣

∣ ∃α ∈ [α0, α1] : W ′(αn) = 0
)

.

By Corollaries 18 and 21,

∑

(α,β)∈R

E(α, β) ≤ O(1) exp

{(

max
R

[

(1 + Λ)(
√

2 − 1)αβ
]

−
[

3α̃3(1 − 6Λ/α̃)

24 − 8α̃
I(α̃)

]

(32)

−
[

(3 ln(3) − 2)

(

β0 −
α2

1

8 − 4α1
− 4

n

)2
1

α1
J(α1, β0 −

4

n
)

]

)

n

}

,

where α̃ is α0 − 1/n (adjusting for the open interval of Corollary 18), I(α̃) is
the indicator function for α̃ > 6Λ, and J(α, β) is the indicator function for β ≥
α2/(8 − 4α). We reiterate that (32) bounds the sum of E(α, β) over R, not just
the maximum.

Without loss of generality we restrict Λ to Λ > n−1/3, since for smaller Λ the
quantity (32) decreases monotonically while the target bound n exp(O(1 + Λ3n))
does not decrease below n exp(O(1)). We may also restrict Λ to Λ < 0.01, since by
then the target bound n exp(O(0.013n)) allows time for the algorithm to III-reduce
on every vertex.

Given that Λ < 0.01 and α ≤ 1, in (32) we may replace each α̃ by α at the
expense of an O(1) factor outside the whole expression: if I(α̃) = I(α) = 1 this is
easy to check, while if I(α̃) = 0 but I(α) = 1 then 6Λ < α ≤ 6Λ + 1/n, and a short
calculation shows that the exponent (not forgetting the factor of n) changes by at
most O(1) and so the expression is multiplied by exp(O(1)) = O(1).

Also, given that Λ < 0.01 and α ≤ 1, on substituting β = β′+ 4
n into (32), the first

term (again taking into account the n inside the exponent) is ≤ exp{(1 + Λ)(
√

2 −
1)αβ′n + 4}, and we may simply move the exp(4) outside and subsume it into the
leading O(1). That is, we may simply ignore the 4

n in (32), extending the range of

summation to β ∈ [− 4
n , 1], and so summing, over rectangles R = [α0, α1]× [β0, β1],

O(1) times

exp

{(

max
R

[

(1 + Λ)(
√

2 − 1)αβ
]

−
[

3α3
0(1 − 6Λ/α0)

24 − 8α0
I(α0)

]

−
[

(3 ln(3) − 2)

(

β0 −
α2

1

8 − 4α1

)2
1

α1
J(α1, β0)

]

)

n

}

.(33)

We now consider five regimes of values (α, β), which together cover the space
[0, 1] × [− 4

n , 1]:

(1) α and β both small: (α, β) ∈ [0, 1000Λ] × [0, 1000000Λ2],
(2) β ≤ 0,
(3) α < 1 and 0 ≤ β ≤ 1.03α2/(8 − 4α) (and excluding Case 1),
(4) α < 1 and β ≥ 1.03α2/(8 − 4α) (and excluding Case 1),
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(5) α = 1.

Only the first case contains likely and significant pairs (α, β), and it defines the
bound in (31); the second case trivially makes a negligible contribution; the re-
maining cases also contribute negligibly but are a little trickier to analyze. Note
that the α = 1 case must be treated differently: if U ′ = αn = n we may have
W ′(αn) > 0, Corollary 21 (with α0 = α1 = 1) does not apply, and thus neither
does (33).

Case 1. R =
[

0, 1000Λ
]

×
[

0, 1000000Λ2
]

. This rectangle R contains likely pairs
(α, β), and we simply estimate R’s probability as 1. Thus (33) becomes
∑

R

E(α, β) ≤ exp
{

(1 + Λ)(
√

2 − 1) · 1000Λ · 1000000Λ2 · n
}

= exp(O(Λ3n)).

Case 2. R =
[

0, 1
]

×
[

− 4
n , 1
]

. Again we simply estimate R’s probability as 1;
since β ≤ 0, the exponential’s value is at most 1.

Case 3. Instead of considering only β ≤ 1.03α2/(8 − 4α), we will treat a larger
domain, β ≤ 1.03α2/4. If α ≤ 1000Λ this falls under Case 1, so we need only
consider α ≥ 1000Λ. We cover the space 1000Λ ≤ α ≤ 1, β ≤ 1.03α2/4 with
rectangles

Ri = [α⋆
i , 1.01α⋆

i ] × [0, 1.03(1.01α⋆
i )2/4],

with α⋆
i = 1000Λ · 1.01i, i = 0, 1, . . . , I − 1, where α⋆

I is the first term larger than 1.
Within any such rectangle R, writing α⋆ for α⋆

i (and noting that α⋆ ≤ 1), (33) is
at most

exp

{(

[

(1 + Λ)(
√

2 − 1) · 1.013 · 1.03 α⋆3/4
]

−
[

3α⋆3(1 − 6Λ/α⋆)

24 − 8α⋆

])

n

}

≤ exp

{(

[

1.01 (
√

2 − 1) · 1.013 · 1.03/4
]

−
[

3(1 − 6/1000)

24

])

α⋆3n

}

≤ exp
(

−0.013α⋆3n
)

.

Recalling that α⋆
i = 1000Λ · 1.01i and that Λ ≥ n−1/3, the contribution to the

overall sum (31) is at most

∞
∑

i=0

exp
(

−0.013 · 10003Λ3 · 1.013in
)

≤
∞
∑

i=0

exp
(

−13000000 · 1.03i
)

= O(1).

Case 4. We divide this case into two sub-cases, α ≤ 100Λ and α > 100Λ.
Sub-case: α ≤ 100Λ. If β ≤ 1000000Λ2 then Case 1 applies, so we need only
consider β > 1000000Λ2. Break this domain into rectangles

Rj = [0, 100Λ] × [β⋆
j , 1.01β⋆

j ],

with β⋆
j = 1000000Λ2 · 1.01j , j = 0, 1, . . .; it does no harm to let j run to infinity.

For any such rectangle R, writing β⋆ for β⋆
j , a crude upper bound on (33) is given

by

exp

{(

[

(1 + Λ)(
√

2 − 1)100Λ · 1.01β⋆
]

−
[

(3 ln(3) − 2)
(

β⋆ − (100Λ)2
)2 1

100Λ

])

n

}

.
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Since Λ ≤ 0.01 and, by definition of β⋆
0 , (100Λ)2 ≤ 0.01β⋆, this is

≤ exp
{([

(
√

2 − 1)1.012(100Λ)β⋆
]

−
[

(3 ln(3) − 2) (0.99β⋆)2/100Λ
]

)

n
}

.

Noting that β⋆/100Λ ≥ 10000Λ, and factoring out Λβ⋆, this is

≤ exp
{([

(
√

2 − 1)1.012 · 100
]

−
[

(3 ln(3) − 2) 0.992 · 10000
]

)

Λβ⋆n
}

≤ exp (−12000Λβ⋆n) .

Summing over the rectangles Rj with β⋆
j = 1000000Λ2 · 1.01j , gives a contribution

to (31) of at most

∞
∑

j=0

exp
(

−12000Λ31.01jn
)

≤
∞
∑

j=0

exp
(

−12000 · 1.01j
)

= O(1).

Sub-case: α > 100Λ. This case, with α > 100Λ and β > 1.03α2/(8 − 4α), is the
most delicate. Observations of such values α, and of β conditioned upon α, are
both unlikely, and we need to keep all three terms in (33).

In this case, we break down (a superset of) the domain into rectangles

Rij = [α⋆
i , 1.001α⋆

i ] × [β⋆
ij , 1.01β⋆

ij ],

with α⋆
i = 100Λ·1.001i and β⋆

ij = 1.03(α⋆
i )2/(8−4α⋆

i )·1.01j , over i = 0, . . . , I−1 and
j = 0, . . . , J(i)−1, where I is the first value for which αI > 1, and J(i) the first value
for which βi,J(i) > 1. Within any such rectangle R given by α⋆ = α⋆

i and β⋆ = β⋆
ij ,

we have J(1.001α⋆, β⋆) = 1 (from 1.03α⋆2/(8− 4α) ≥ 1.0012α⋆2/(8− 4 · 1.001α⋆)),
and thus (33) is at most

exp

{(

[

(1.01)(
√

2 − 1) · 1.001α⋆ · 1.01β⋆
]

−
[

3α⋆3(1 − 6/100)

24 − 8α⋆

]

−
[

(3 ln(3) − 2)

(

β⋆ − 1.0012α⋆2

8 − 4 · 1.001α⋆

)2
1

1.001α⋆

]

)

n

}

=: exp(−f(α⋆, β⋆) n),(34)

and we claim that f(α, β) ≥ 0.07αβ for all 0 ≤ α ≤ 1, 1.03α2/(8 − 4α) ≤ β ≤ 1.
Verifying this is fairly straightforward. f(α, β)/(αβ) is, for a given α, extremized

either by an extreme value of β — namely β = 1 or β = 1.03α2/(8 − 4α) — or
by the point where its derivative ∂

∂β vanishes. The derivative can be computed in

closed form (a computer-algebra package helps), and is a rational expression whose
numerator is a quadratic expression (with no linear term) in β, whose positive root
may thus be written down as an explicit function β = β(α). Substituting β = 1,
β = 1.03α2/(8 − 4α), or β = β(α) into f(α, β)/(αβ) yields in each case a function
which is tractable over α ∈ [0, 1]. When the three are graphed, it is easily seen that
the smallest value is achieved at α = 1, β = β(α), where f(α, β)/(αβ) > 0.07 (it
is about 0.0704). This observation can be confirmed straighforwardly if tediously.
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Now, summing the contributions of the rectangles Rij to (31) is done as in the
previous cases. It is at most

I
∑

i=0

J(i)
∑

j=0

exp(−f(α⋆
i , β

⋆
ij)n)

≤
∞
∑

i=0

∞
∑

j=0

exp(−0.07α⋆
i β

⋆
ijn)

≤
∞
∑

i=0

∞
∑

j=0

exp
(

− 0.07 · (100Λ · 1.001i) · (1.03 · [100Λ · 1.001i]2)/8 · 1.01j · n
)

≤
∞
∑

i=0

∞
∑

j=0

exp(−9000 Λ31.003i 1.01j n)

≤
∞
∑

i=0

∞
∑

j=0

exp(−9000 · 1.003i 1.01j)

= O(1).

Case 5. If U ′ = n then W ′(n) ≥ 0, and so we must have had at least n − 1 births
among the

(

n
2

)

Bernoulli random variables comprising RW. Denote this (random)

number of births by M ′ ∼ B
((

n
2

)

, c/n
)

. Let M ∼ B
((

n
2

)

, c/n
)

be the number of
edges in the whole graph. (M ′ and M have the same distribution but represent
different quantities.) From Theorem 5, the amortized running time for v is at most
2M/4. It suffices to show that E

(

2M/4 · 1M ′≥n−1

)

= o(1), where 1 denotes the
indicator function of an event.

Recall that without loss of generality we are assuming Λ ≤ 0.01 and n ≥ 10000
(so n − 1 ≥ 0.9999n). Thus it suffices to compute an upper bound on

E
(

2M/4 · 1M ′≥0.9999n

)

= E
(

2M/4 · 1M<1.053n 1M ′≥0.9999n

)

+ E
(

2M/4 · 1M≥1.053n 1M ′≥0.9999n

)

≤ E
(

21.053n/4 · 1M ′≥0.9999n

)

+ E
(

2M/4 · 1M≥1.053n

)

.

We apply Chernoff’s inequality (14) to both terms. Note that EM ′ = EM =
(

n
2

)

· c/n ≤ 1
2 · 1.01n = 0.505n.

For the first term, M ′ ≥ 0.9999n means that M ′ − EM ′ ≥ 0.4949n, so

E
(

21.053n/4 · 1M ′≥0.9999n

)

= 21.053n/4 Pr(M ′ ≥ 0.9999n)

≤ 21.053n/4 exp

(

− (0.4949n)2

2 · 0.505n + 2/3 · 0.4949n

)

≤ exp(1.053 ln(2) n/4) · exp(−0.1827n)

≤ exp(−0.0002n)

= o(1).
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Noting that EM − 0.505n ≤ 0, the second term is at most
∑

m≥1.053n

2m/4 Pr(M ≥ EM + m − 0.505n)

= 20.505n/4
∑

t≥0.548n

2t/4 Pr(M ≥ EM + t)

≤ 20.505n/4
∑

t≥0.548n

2t/4 exp

( −t2

2 · 0.505n + 2t/3

)

.(35)

Writing t = γn, we see that the logarithm of the summand is

t

4
ln 2 − t2

1.01n + 2t/3
=

(

γ ln 2

4
− γ2

1.01 + 2γ/3

)

n ≤ −0.123n

for γ ≥ 0.548. Since Pr
(

M ≥ EM + t) = 0 for t >
(

n
2

)

, expression (35) is at most
(

n
2

)

20.505n/4 exp(−0.123n) ≤ 1
2n2 exp

(

(0.505/4 ln 2 − 0.123)n
)

≤ 1
2n2 exp(−0.03n)

= o(1).

Thus, the case U ′ = n contributes o(1) to the amortized time.

It follows that, in each of the five cases above, the contributions of the corre-
sponding U ′ = αn, W ′ = βn sum to exp(O(1 + λ3)), and the result is proved. �

8. Conclusions

In the present paper we focus on Max Cut. Our result for random “sparse”
instances is strong in that it applies not only right up to c = 1, but through the
scaling window c = 1 + λn−1/3.

We believe that our methods can be extended to Max 2-Sat, but the analysis is
certainly more complicated. In fact our results already apply to any Max 2-CSP,
and in particular to Max 2-Sat, but only in the regime where there are about n/2
clauses on n variables; since it is likely that random Max 2-Sat instances with up to
about n clauses can be solved efficiently on average (the Max 2-Sat phase transition
occurs around n clauses), our present result for Max 2-Sat is relatively weak. As
was the case with Max Cut, it is easy to see that with m = cn and c < 1 it is
almost always easy to solve Max 2-Sat for a random formula with m clauses on n
variables; this follows immediately from the facts that decision 2-Sat is easy and
that with high probability such a formula is completely satisfiable. The hard part
is to show that it is easy not just with high probability but in expectation.

Since Max Cut is in general NP-hard (and even NP-hard to approximate to better
than a 16/17 factor; see Trevisan, Sorkin, Sudan and Williamson [30]), it would be
interesting to resolve whether random instances above the giant-component thresh-
old can be solved in polynomial expected time (as we have shown for those below
the threshold); we conjecture that they cannot. A related question is whether it is
possible to solve Max Cut for a random cubic graph in polynomial expected time;
again, we conjecture that it is not. It would also be interesting to know if there
is a “mildly exponential” algorithm for such graphs (e.g. one with running time
exp(O(

√
n )). If not, because the “kernel” of a random graph just above the giant-

component threshold is close to being a random cubic graph (see Janson,  Luzcak
and Rucinski [19, Section 5.4]), our running time of O(n) exp(O(1 + λ3)) may be
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the best possible. Questions about average-case hardness are of broad interest, but
no quick resolution is in sight.
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