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Abstract

We determine the maximum number of induced cycles that can be contained in a
graph on n ≥ n0 vertices, and show that there is a unique graph that achieves this
maximum. This answers a question of Chvátal and Tuza from the 1980s. We also
determine the maximum number of odd or even induced cycles that can be contained
in a graph on n ≥ n0 vertices and characterise the extremal graphs. This resolves a
conjecture of Chvátal and Tuza from 1988.

1 Introduction

What is the maximum number of induced cycles in a graph on n vertices? For cycles of fixed
length, this problem has been extensively studied. Indeed, for any fixed graph H, let the
induced density of H in a graph G be the number of induced copies of H in G divided by(|G|
|H|

)
; let I(H;n) be the maximum induced density of H over all graphs G on n vertices; and

let the inducibility of H be the limit limn→∞ I(H;n). In 1975, Pippinger and Golumbic [12]
made the following conjecture.

Conjecture 1.1. [12] For k ≥ 5, the inducibility of the cycle Ck is k!/(kk − k).

Balogh, Hu, Lidický and Pfender [2] recently proved this conjecture in the case k = 5
via a flag algebra method, and showed that the maximum density was achieved by a unique
graph. Apart from this case, the problem remains open (though see [3, 4, 5, 6, 7, 8, 9] for
results on inducibility of other graphs).

In this paper, we consider the total number of induced cycles, without restriction on
length. This problem was raised in the 1980s by Chvátal and Tuza (see [15] and [16]), who
asked for the maximum possible number of induced cycles in a graph with n vertices. The
problem was investigated independently in unpublished work of Robson, who showed in the
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1980s that a graph on n vertices has at most 3(1+o(1))n/3 induced cycles ([10, 13]). Tuza
also raised a second, closely related problem on induced cycles. In 1988 he conjectured with
Chvátal (see [14], [15] and [16]) that the maximum possible number of odd induced cycles
in a graph on n vertices is 3n/3.

In this paper we resolve both problems, proving exact bounds for all sufficiently large
n, and determining the extremal graphs. Our methods work for a number of problems of
this type: thus we will determine, for sufficiently large n, the graphs with n vertices that
maximize the number of induced cycles (Theorem 1.2); we will also determine the graphs
with the maximum number of even induced cycles, the maximum number of odd induced
cycles (Theorem 1.6), and in Theorem 1.7, the maximum number of odd holes (i.e. induced
odd cycles of length at least 5).

In order to state our results, it is helpful to have a couple of definitions. As usual, for G
a graph define the neighbourhood of x to be NG(x) := {y ∈ V (G) : xy ∈ E(G)}. A graph
B is called a cyclic braid if there exists k ≥ 3 and a partition B1, . . . , Bk of V (B) such that
for every 1 ≤ i ≤ k and every x ∈ Bi, we have Bi−1 ∪ Bi+1 ⊆ NB(x) ⊆ Bi−1 ∪ Bi ∪ Bi+1

where indices are taken modulo k. For such a partition, the notation B = (B1, . . . , Bk) is
used. The sets Bi are called clusters of B; the length of the cyclic braid is the number of
clusters. If a cyclic braid contains no edges within its clusters, it is called an empty cyclic
braid. Observe that an empty cyclic braid is k-partite and, when k > 3, is triangle free. If a
cyclic braid contains every possible edge within each cluster, then it is called full. A pair of
clusters B1 and B2 are adjacent in G if v1v2 ∈ E(G) for all v1 ∈ B1 and v2 ∈ B2. A triple of
clusters B1, B2, B3 are consecutive if B1 is adjacent to B2 and B2 is adjacent to B3.

As it turns out, the structure of the extremal graph depends on the value of n modulo
3. For n ≥ 8 define an n-vertex graph Hn separately for each value of n modulo 3. Let
k ≥ 3. Define H3k to be the empty cyclic braid of length k where every cluster has size 3.
Define H3k+1 to be the empty cyclic braid containing k − 1 clusters of size 3 and one of size
4. Finally, define H3k−1 to be the empty cyclic braid containing k − 1 clusters of size 3 and
one of size 2.

Let m(n) be the maximum number of induced cycles that can be contained in a graph
on n vertices. The main result of our paper is the following.

Theorem 1.2. There exists n0 such that, for all n ≥ n0, Hn is the unique graph on n
vertices containing m(n) induced cycles.

More precisely,

Corollary 1.3. There exists n0 such that, for all n ≥ n0:

m(n) =


3n/3 + 12n for n ≡ 0 modulo 3;

4 · 3(n−4)/3 + 12n+ 51 for n ≡ 1 modulo 3;
2 · 3(n−2)/3 + 12n− 36 for n ≡ 2 modulo 3.

Corollary 1.3 implies that m(n) = Θ(3n/3).
A hole is an induced cycle of length at least 4. For n ≥ 10, the graph Hn is triangle free

and each induced cycle is a hole, so Theorem 1.2 implies the following.
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Corollary 1.4. There exists n0 such that, for all n ≥ n0, Hn is the unique graph on n
vertices with the maximum number of holes.

Using similar arguments to those in the proof of Theorem 1.2 we also prove a stability-
type result.

Theorem 1.5. Fix 0 < α < 1. There exists a constant C = C(α) and n0 = n0(α) such
that for any n ≥ n0, if a graph F on n vertices contains at least α · m(n) induced cycles,
then by adding or deleting edges incident to at most C(α) vertices of F , the graph F can be
transformed into a cyclic braid with the same cluster sizes as Hn.

The arguments used to prove Theorem 1.2 can be adapted to give results about other
sets of induced cycles, for instance induced cycles of given parity. We say that a path or
cycle is odd if it contains an odd number of vertices (even if it contains an even number).

Let mo(n) be the maximum number of induced odd cycles that can be contained in a
graph on n vertices. The value of mo(n) and the structure of the extremal graphs depend
on the value of n modulo 6.

Define Gn to be the full cyclic braid on n vertices whose clusters all have size 3 except
for:

• three consecutive clusters of size 2, when n ≡ 0 modulo 6;

• two adjacent clusters of size 2, when n ≡ 1 modulo 6;

• one cluster of size 2, when n ≡ 2 modulo 6;

• one cluster of size 4, when n ≡ 4 modulo 6;

• two adjacent clusters of size 4, when n ≡ 5 modulo 6.

We will prove the following.

Theorem 1.6. There exists n0 such that, for all n ≥ n0, Gn is the unique n-vertex graph
containing mo(n) induced odd cycles.

This resolves the conjecture of Chvátal and Tuza (see [14], [15] and [16]), showing that
mo(n) is within an O(n) additive term of the conjectured 3n/3 when n ≡ 3 modulo 6 and
within a constant factor when n 6≡ 3 modulo 6.

If we consider odd holes (induced odd cycles of length at least 5), we get the same bound
but a larger family of extremal graphs. Let mh

o(n) be the maximum number of odd holes that
can be contained in a graph on n vertices. Define Gn to be the family of cyclic braids on n
vertices whose cluster sizes are the same as the cluster sizes in Gn, but with no restrictions on
which clusters are adjacent or consecutive, or on which edges are present inside the clusters;
in addition, when n ≡ 5 modulo 6, we also include the cyclic braids whose clusters all have
size 3 except for four clusters of size 2.

A modification of the proof of Theorem 1.6 gives the following.
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Theorem 1.7. There exists n0 such that, for all n ≥ n0, the family of n-vertex graphs that
contain mh

o(n) odd holes is Gn.

Let me(n) be the maximum number of induced even cycles that can be contained in a
graph on n vertices, and define En to be the empty cyclic braid on n vertices whose clusters
all have size 3 except for:

• one cluster of size 4, when n ≡ 1 modulo 6;

• two adjacent clusters of size 4, when n ≡ 2 modulo 6;

• three consecutive clusters of size 2, when n ≡ 3 modulo 6;

• two adjacent clusters of size 2, when n ≡ 4 modulo 6; and

• one cluster of size 2, when n ≡ 5 modulo 6.

The proof of Theorem 1.6, adapted to consider even rather than odd induced cycles, gives
the following.

Theorem 1.8. There exists n0 such that, for all n ≥ n0, En is the unique n-vertex graph
containing me(n) induced even cycles.

As in the case of mo(n), we have me(n) = Θ(3n/3).
The paper is structured as follows. In Section 2 we prove a preliminary result (The-

orem 2.1) determining the structure of the n-vertex graphs that maximise the number of
induced paths between a particular pair of vertices. During the proof of this result we will
introduce several of the key ideas needed later. The proof of the main theorem (Theorem 1.2,
maximising the number of induced cycles) is given in Section 3. The proof uses Theorem
2.1 from Section 2, but otherwise is entirely contained in Section 3. A number of lemmas
proved in Section 3 are proved in more generality than is strictly needed. This is because
the more general versions will be used in Section 4, where we prove Theorem 1.5. The proofs
of Theorem 1.6, Theorem 1.7 and Theorem 1.8 are given in Section 5. However, all the key
ideas for the proofs are the same as those in the proof of Theorem 1.2. Finally, in Section 6
we conclude by discussing some open questions.

2 Induced paths between a pair of vertices

Let G be a finite graph and let x and y be distinct vertices in V (G). Define p2(G;x, y) to
be the number of induced paths in G beginning at x and ending at y. Also define:

p2(G) := max{p2(G;x, y) : x, y ∈ V (G)},

and
p2(n) := max{p2(G) : |V (G)| = n}.
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We use the notation p2(·), as it indicates that we are counting the maximum number of
induced paths between two fixed vertices.

Our first goal in this section is to determine the structure of the n-vertex graphs that
contain p2(n) induced paths between some pair of vertices. We show that these extremal
graphs have a particular structure that depends on the value of n modulo 3. We then prove
analogous results for odd and even length paths. The strategy and notation used in this
section for paths are later developed for induced cycles in Section 3.

Let F be a graph and let B1, . . . , Bk be disjoint subsets of V (F ). A subgraph B ⊆ F
is a braid in F if there exists k ≥ 2 and a partition B1, . . . , Bk of V (B) such that for each
2 ≤ i ≤ k − 1 and for every x ∈ Bi we have Bi−1 ∪ Bi+1 ⊆ NF (x) ⊆ Bi−1 ∪ Bi ∪ Bi+1. If
V (F ) =

⋃k
i=1Bi, we say that F is a braid. For such a partition, the notationB = (B1, . . . , Bk)

is used. The sets Bi are called clusters. If i ∈ {1, k} we say Bi is an end cluster ; otherwise
we say Bi is a central cluster. The length of a braid is the number of clusters it contains.

Let n ≥ 4. Define Fn to be the set of all braids B with the following properties:

• |V (B)| = n.

• B has end clusters of size one.

• If n ≡ 0 modulo 3, then either one central cluster has size 4 and the rest have size 3,
or two have size two and the rest have size 3.

• If n ≡ 1 modulo 3, then one central cluster has size 2 and the rest have size 3.

• If n ≡ 2 modulo 3, all clusters have size 3.

Observe that there are no conditions on whether clusters in the braid contain edges. See
Figure 1 for an example of a braid in F10.

Figure 1: An example of a braid in F10.

Let the end clusters be {x} and {y}. Every graph in Fn contains the same number of
induced paths between x and y and so we define

f2(n) =


3(n−2)/3 for n ≡ 2 modulo 3

4 · 3(n−6)/3 for n ≡ 0 modulo 3
2 · 3(n−4)/3 for n ≡ 1 modulo 3
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and observe that p2(F ) = p2(F ;x, y) = f2(n) for all F ∈ Fn.
In this section we prove the following.

Theorem 2.1. Let G be a finite graph on n ≥ 4 vertices and let x and y be distinct vertices
of G. Suppose that G contains p2(n) induced paths between x and y. Then G is isomorphic
to a graph in Fn with end clusters {x} and {y}.

In particular, this gives the following.

Corollary 2.2. For all n ≥ 4, we have p2(n) = f2(n).

Before proving Theorem 2.1, we introduce some preliminary notation and definitions.

Definition 2.3. Define N [v] := N(v) ∪ {v}. Also, for a set X ⊆ V (G), let N(X) :=⋃
x∈X N(x), and N [X] :=

⋃
x∈X N [x]. Note that X ⊆ N [X], and X ∩N(X) may or may not

be empty. For a subgraph H ⊆ G, define N(H) := N(V (H)) and N [H] := N [V (H)].

In order to prove Theorem 2.1 (counting induced paths), the following definition is used.
A similar definition is given in Definition 3.6 to prove Theorem 1.2 (counting induced cycles).

Definition 2.4. Let G be a finite graph and fix x, y ∈ V (G), with y /∈ N [x]. The x-y-path
tree of G is a tree T = T (x, y) together with a function t : V (T )→ V (G) defined as follows.

• T is a tree with vertex set V (T ) disjoint from V (G).

• The vertices of T correspond to induced paths P := x, x1 . . . , xj in G such that y /∈
NG({x1, . . . , xj−2}) and y ∈ N(xj−1) only if xj = y. For every such P define a vertex
wP in T , and set t(wP ) = xj. We say that P is the G-path of wP . These vertices are
the only vertices in T . Define the root of the tree to be v0 := wx.

• Given a vertex w ∈ V (T ) with G-path x, x1 . . . , xj we define C(w), the children of
w, to be the set of vertices in T whose G-path is x, x1, . . . , xj, z, for some z ∈ G.
Define NT (v0) = C(v0). For w ∈ V (T )\{v0} define NT (w) := C(w) ∪ {u} where u is
the unique vertex in T with G-path x, x1 . . . , xj−1. (So two vertices are adjacent in T
precisely when one of their G-paths extends the other by one vertex.)

We write t(S) := {t(s) : x ∈ S} for any subset S ⊆ V (T ) and t(H) := G[{t(x) : x ∈ V (H)}]
for any subgraph H ⊆ T . Given a set S ⊆ V (T ), we say that S sees a vertex w ∈ V (G) (or
w is seen by S) if w ∈ NG[t(S)]. An empty set does not see any vertex. If w 6∈ NG[t(S)], we
say that w is unseen by S (or that S does not see w).

See Figure 2 for an example of an x-y-path tree. We get the following proposition as an
easy consequence of Definition 2.3.

Proposition 2.5. Let G be a graph containing vertices x and y such that y /∈ N [x]. Let T
be the x-y-path tree of G rooted at v0. Let P be a path in T starting at v0. If V (P ) sees a
vertex w ∈ V (G), then there exists a unique u ∈ NT [V (P )] such that t(u) = w.
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Figure 2: A graph and its x-y-path tree. Each vertex w in the tree is labelled with t(w).

Proof. This follows immediately from the construction of T : u is a child in T of the first
vertex v in P such that t(v) is adjacent to w in G.

The following terminology will also be used later during the proof of Theorem 1.2 (max-
imising induced cycles), as well as in this section for the proof of Theorem 2.1 (maximising
induced paths between a pair of vertices).

Definition 2.6. Let G be a graph containing vertices x and y such that y /∈ N [x]. Let T
be the x-y-path tree of G. For any z ∈ V (T ), z is the child of a unique vertex w. Define
B(z), the branch rooted at z, to be the component of T\{wz} containing z. Also, define
L(z) to be the number of leaves of T that are contained in B(z) and define Ly(z) to be the
number of leaves l in T contained in B(z) such that t(l) = y. If it is unclear which tree we
are considering, we will write BT (z), LT (z), etc.

Observe that for w ∈ T , t(w) = y only if w is a leaf. It directly follows from Definition
2.3 that

p2(G;x, y) = Ly(v0). (2.1)

In order to prove Theorem 2.1, we use the following lemma about x-y-path trees. For
w ∈ V (T ), we write D(w) := |C(w)|.

Lemma 2.7. Let G be a graph on n ≥ 4 vertices. Let x and y be distinct vertices in V (G),
with y /∈ N [x] and p2(G;x, y) > 0. Let T be the x-y-path tree rooted at v0 and P := v0, . . . , vk
be any path in T where vk is a leaf. Then:

(i) Ly(v0) ≤ f2(n).

(ii) If Ly(v0) = f2(n), then:

(a) for any vj and for all u,w ∈ C(vj), we have Ly(u) = Ly(w);

(b) V (P )\{vk} sees every vertex of G and t(vk) = y.
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Proof. Sequentially choose a path v0, v1, . . . , vk ⊆ V (T ), where vk is a leaf. At vertex vj we
choose vj+1 to be some z ∈ C(vj) such that Ly(z) = max{Ly(x) : x ∈ C(vj)}. Let P be the
set of paths that can be obtained in this manner and fix P := v0, . . . , vk ∈ P .

We first show that t(vk) = y. Suppose otherwise that t(vk) 6= y. As p2(G;x, y) > 0, by
construction of P we have Ly(vk−1) > 0. If vk−1 had a child u with t(u) = y, by construction
of T this would be the only child of vk−1. Thus vk−1 has no such child. This fact, along with
the fact Ly(vk−1) > 0 implies that vk−1 has a child z with Ly(z) > 0. As Ly(vk) = 0, we
have Ly(z) > Ly(vk), a contradiction.

For 0 ≤ i ≤ k − 1, we have

Ly(vi) =
∑

z∈C(vi)

Ly(z) ≤ D(vi) max{Ly(z) : z ∈ C(vi)} = D(vi)Ly(vi+1). (2.2)

By repeatedly applying (2.2) we get

Ly(v0) ≤ D(v0) max{Ly(z) : z ∈ C(v0)} ≤ . . . ≤ Ly(vk−1)
k−2∏
i=0

D(vi). (2.3)

As t(vk) = y, vk is the only child of vk−1 (by construction of T ) and Ly(vk−1) = 1. Thus

Ly(v0) ≤
k−2∏
i=0

D(vi), (2.4)

where
∑k−2

i=0 D(vi) ≤ n − 2, as v0, . . . , vk−2 have disjoint sets of children in G\{x, y} by
Propostion 2.5.

A quick check shows that the maximal value of
∏k−2

i=0 D(vi) subject to
∑k−2

i=0 D(vi) ≤ n−2
occurs only in the following cases:

• If n ≡ 2 modulo 3, we have D(vi) = 3 for all i.

• If n ≡ 0 modulo 3, we have either D(vi) = 4 for exactly one i and D(vj) = 3 for
all j 6= i; or there are i1, i2 such that D(vi) = 2 for i = i1, i2, and D(vj) = 3 for all
i /∈ {i1, i2}.

• If n ≡ 1 modulo 3, we have D(vi) = 2 for exactly one i, and D(vj) = 3 for all j 6= i.

Thus we see that the maximal possible value of
∏k−2

i=0 D(vi) is f2(n), and so Ly(v0) ≤ f2(n)
as required for (i).

When Ly(v0) = f2(n) we have

k−2∏
i=0

D(vi) = f2(n). (2.5)

This is only possible if
∑k−2

i=0 D(vi) = n − 2 and the D(vi) take the values defined in the
above cases. In addition, we have equality in (2.4) and hence in (2.2) for each value of
0 ≤ i ≤ k − 1. Therefore, for each i and for all z, w ∈ C(vi), we have Ly(z) = Ly(w).
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Suppose there exists a path X := x0, . . . , xk, where x0 = v0 and xk is a leaf, such that
X /∈ P . We will derive a contradiction and hence conclude that every such path is in P .

Choose P ′ := y0, . . . , yk ∈ P so that it coincides with X on the longest possible initial
segment, i.e., so that i is maximal such that y0, . . . , yi = x0, . . . , xi. As X /∈ P , for some
j we have Ly(xj) 6= Ly(yj), but xi = yi for i < j. But by the argument of the previous
paragraph, as P ′ ∈ P , we have that for each i, Ly(z) = Ly(w) for all z, w ∈ C(yi). Thus
as xj−1 = yj−1, we have xj ∈ C(yj−1) and Ly(xj) = Ly(yj), a contradiction. So X ∈ P , as
required. Again by the argument of the previous paragraph, for any xj and any u,w ∈ C(xj)
we have Ly(u) = Ly(w). This concludes part (ii a)

As X ∈ P , (2.5) holds for X (our choice of P ∈ P was arbitrary). But then we have∑k−2
j=0 D(xj) = n− 2 and so X\{xk} sees every vertex of G as required for (ii b). As X ∈ P ,

t(xk) = y. This concludes the proof of (ii b).

We now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Let T := T (x, y) be the x-y-path tree of G rooted at v0. By (2.1),
the number of induced paths between x and y is precisely the number of leaves l ∈ T such
that t(l) = y. As by Lemma 2.7(i) we know Ly(v0) ≤ f2(n) and moreover we know there
exist graphs H such that p2(H) = f2(n) (just pick H ∈ Fn), then Ly(v0) = f2(n). We will
show that G is in Fn. First we will show that G is a braid.

Let P := v0, . . . , vk be the shortest path in T such that t(v0) = x and t(vk) = y. For
i ∈ {0, . . . , k − 1}, define Ci+1 := C(vi) to be the set of children of vi in T (note that
vi+1 ∈ Ci+1). Define V0 := {x} and define Vi := t(Ci) for 1 ≤ i ≤ k. Therefore, Vk = {y}.
The sets Vi are disjoint by Proposition 2.5. We also have that

⋃k
i=0 Vi = V (G), as V (P ) sees

every vertex in G by Lemma 2.7(ii b). Theorem 2.1 will follow immediately from the next
claim.

Claim 2.8. G is the braid ({x}, V1, . . . , Vk−1, {y}).

Proof. We prove by reverse induction on j that the graph induced by
⋃k
i=j Vi is a braid

(Vj, . . . , Vk) in G. First, note that by Lemma 2.7(ii b), every leaf l ∈ T satisfies t(l) = y.
Thus no vertex in Ck−1 can be a leaf of T (else we would have a shorter path to y in G) and
every vertex in Ck−1 has a child. Since, by Lemma 2.7(ii b), V (P )\{vk} sees every vertex of
G, all vertices except y have been seen by v0, . . . , vk−2. Thus every child z of a vertex in Ck−1

satisfies t(z) = y, otherwise it would contradict Proposition 2.5. Therefore every vertex in
Ck−1 has exactly one child z and t(z) = y. Therefore (Vk−1, {y}) is a braid, completing our
base case.

We now show that NG(y) = Vk−1. Suppose there exist some 0 ≤ j < k − 1 and some
u ∈ Vj such that u ∈ N(y). Then there exists a vertex w in T such that w is a child of
vj−1, t(w) = u and w has a child z with t(z) = y. The path v0, . . . , vj−1, w, z ⊆ T is shorter

than P , a contradiction. So y is adjacent to no vertex in
⋃k−2
i=0 Vi. As by Lemma 2.7(ii b)

V (P )\{vk} sees every vertex of G\{y}, V (G) ⊆
⋃k−1
i=0 Vi and NG(y) = Vk−1.

Now suppose that for 1 ≤ s+ 1 ≤ k− 1, the inductive hypothesis holds for j = s+ 1. So
(Vs+1, . . . , Vk) is a braid in G. We will show that (Vs, . . . , Vk) is a braid in G. In order to do
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this, we need to show that for each s+ 1 ≤ r ≤ k − 1, and every u ∈ Vr:

Vr−1 ∪ Vr+1 ⊆ N(u) ⊆ Vr−1 ∪ Vr ∪ Vr+1. (2.6)

As by our inductive hypothesis (Vs+1, . . . , Vk) is a braid in G, we know that (2.6) is
satisfied for each s + 2 ≤ r ≤ k − 1 and every u ∈ Vr. We also know Vs+1 ⊆ N(u) for any
u ∈ Vs+2. So it suffices to show for each u ∈ Vs+1,

Vs ⊆ N(u) ⊆ Vs ∪ Vs+1 ∪ Vs+2.

We first show there are no edges between
⋃s−1
i=0 Vi and Vs+1. Suppose, for some i ≤ s− 1,

there exists a vertex v ∈ Ci with a child z such that t(z) ∈ Vs+1. Then there exists a shorter
path in T from v0 to vk: the path v0, . . . , vi−1, v, z, vs+2 . . . , vk. This contradicts our choice
of P as the shortest such path. Thus no such vertex v exists. So there are no edges between⋃s−1
i=0 Vi and Vs+1. As (Vs+1, . . . , Vk) is a braid in G, there are no edges between

⋃k
i=s+3 Vi

and Vs+1. Thus N(Vs+1) ⊆ Vs ∪ Vs+1 ∪ Vs+2.
It remains to show that {uw : u ∈ Vs, w ∈ Vs+1} ⊆ E(G). Suppose there exists some

v ∈ Cs\{vs} and some z ∈ Cs+1 such that t(v) is not adjacent to t(z) ∈ Vs+1.
We know t(v) 6= y, it would contradict the choice of P otherwise as s < k − 1. As by

Lemma 2.7 every leaf l satisfies t(l) = y, v is not a leaf and has a child u. We know that
t(u) is a neighbour of t(v) in G and that:

• t(u) /∈
⋃s
i=0 Vi, as t(u) is unseen by {v0, . . . , vs−1} by construction of T ;

• t(u) /∈
⋃k
i=s+2 Vi, as Vs+1, . . . , Vk forms a braid in G.

Thus t(u) ∈ Vs+1.
If s+ 2 = k (and so Vs+2 = Vk = {y}) then consider the path v0, v1, . . . , vs−1, v ∈ T . We

have Ly(v) = D(v) < D(vs) = Ly(vs), contradicting Lemma 2.7(ii a).
Therefore s + 2 < k. Since every leaf l ∈ T satisfies t(l) = y, by construction of T any

induced path x, x1, . . . , xj in G such that y /∈ N(xj) can be extended to an induced path
terminating at y.

We consider two cases (see Figure 3 for an illustration).
First suppose that t(u) is adjacent to t(z). Consider P := t(v0), . . . , t(vs−1), t(v), t(u), t(z),

an induced path in G. As t(z) ∈ Vs+1 and s+ 1 < k − 1, y is not adjacent to t(z) and so it
is possible to extend P to an induced path terminating at y. As (Vs+1, . . . , Vk) is a braid in
G, any extension of P to an induced path that terminates at y contains a vertex from Vs+2.
However, Vs+2 ⊆ NG(t(u)) (and so Vs+2 has been seen by V (Pu)). It is therefore impossible
to extend P to an induced path terminating at y, a contradiction.

Now suppose that t(u) is not adjacent to t(z). Let w be a neighbour of t(u) in Vs+2. Con-
sider the induced path P := t(v0), . . . , t(vs−1), t(v), t(u), w, t(z). Observe that y /∈ N(t(z)).
As t(z) ∈ Vs+1 and (Vs+1, . . . , Vk) is a braid in G, any extension of P from t(z) to an induced
path that terminates at y passes through Vs+2. However, Vs+2 ⊆ NG(t(u)) and so has been
seen by V (Pt(u)). It is therefore impossible to extend this P from t(z) to an induced path
terminating at y, a contradiction.
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t(v)

t(u)

t(z)

Vs Vs+1 Vs+2

t(v)

t(u)

t(z)

w

Vs Vs+1 Vs+2

Figure 3: Examples of the cases we get if t(v) is not adjacent to every vertex in Vs+1. The
upper picture is the case t(u) is adjacent to t(z). The lower picture is the case t(u) is not
adjacent to t(z). The dashed lines represent non-edges. The blue lines are the induced path we
take from t(v) in each case. The red edges depict which vertices have been seen by P\{t(z)}.

Thus {uw : u ∈ Vs, w ∈ Vs+1} ⊆ E(G). We conclude that the graph induced by
⋃k
i=s Vi

is indeed a braid (Vs, . . . , Vk) in G. Claim 2.8 now follows by induction.

We have |Vi| = D(vi−1). As
∏k−2

i=0 D(vi) = p2(F (n)), a straightforward check shows that
the braid is in Fn. Hence Theorem 2.1 follows.

2.1 Odd and even induced paths between a pair of vertices

Let G be a graph and let x and y be distinct vertices in V (G). We will define similar notions
for odd and even paths as we did for paths in general at the start of Section 2. Define
po2(G;x, y) to be the number of induced odd paths in G beginning at x and ending at y. Also
define:

po2(G) := max{po2(G;x, y) : x, y ∈ V (G)},
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and
po2(n) := max{po2(G) : |V (G)| = n}.

In addition, define pe2(G;x, y) to be the number of induced even paths in G beginning at x
and ending at y. In the even case, define pe2(G) and pe2(n) analogously to po2(G) and po2(n).

In this subsection we will determine the structure of the n-vertex graphs that contain
po2(n) induced odd paths (or pe2(n) induced even paths) between some pair of vertices (proving
Theorems 2.9 and 2.10). Theorem 2.9 will be used to prove Theorem 1.6. The extremal
graphs for this path problem will have a certain structure that depends on the value of n
modulo 6. For n ≥ 10, define Fon to be the set of all braids B with the following properties.

• |V (B)| = n.

• B has end clusters of size 1.

• All central clusters of B have size three except:

– a single cluster of size 4, when n ≡ 0 modulo 6;

– either two clusters of size 4 or four clusters of size 2, when n ≡ 1 modulo 6;

– three clusters of size 2, when n ≡ 2 modulo 6;

– two clusters of size 2, when n ≡ 3 modulo 6; and

– one cluster of size 2, when n ≡ 4 modulo 6.

Let F ∈ Fon and suppose that the end clusters are {x} and {y}. Observe that every
induced path between x and y is odd. It is not difficult to check that for all F ∈ Fon we have
po2(F ) = po2(F ;x, y). Every graph in Fon contains the same number of induced paths between
x and y and so we define:

f o2 (n) =



4 · 3(n−6)/3 for n ≡ 0 modulo 6
24 · 3(n−10)/3 for n ≡ 1 modulo 6
23 · 3(n−8)/3 for n ≡ 2 modulo 6
22 · 3(n−6)/3 for n ≡ 3 modulo 6
2 · 3(n−4)/3 for n ≡ 4 modulo 6

3(n−2)/3 for n ≡ 5 modulo 6.

The following is a theorem for odd paths analogous to Theorem 2.1.

Theorem 2.9. Let G be a finite graph on n ≥ 10 vertices and let x and y be distinct vertices
of G. Suppose that po2(G;x, y) = po2(n). Then G is isomorphic to a graph in Fon with end
clusters {x} and {y}.

The proof of this theorem is very similar to the proof of Theorem 2.1 and a sketch will
be given later in this subsection.

We will also state a version of Theorem 2.9 for even length paths (Theorem 2.10). As
one would expect, the extremal graphs differ from those in the odd case. Thus for n ≥ 10,
define F en to be the set of all braids B with the following properties.

12



Figure 4: An example of a braid in F e13 and a braid in Fo10. There may or may not be edges
within the clusters.

• |V (B)| = n.

• B has end clusters of size 1.

• All central clusters of B have size three except:

– two clusters of size 2, when n ≡ 0 modulo 6;

– one cluster of size 2, when n ≡ 1 modulo 6;

– a single cluster of size 4, when n ≡ 3 modulo 6;

– either two clusters of size 4 or four clusters of size 2, when n ≡ 4 modulo 6; and

– three clusters of size 2, when n ≡ 5 modulo 6.

Observe that the extremal graphs in the odd and even cases are essentially the same (shifting
by 3 modulo 6), as when n ≥ 13 we can delete a cluster of size 3 to get from an extremal
graph for the odd case to an extremal graph for the even case (or vice versa). See Figure 4
for an example.

Theorem 2.10. Let G be a finite graph on n ≥ 10 vertices and let x and y be distinct
vertices of G. Suppose that pe2(G;x, y) = pe2(n). Then G is isomorphic to a graph in F en with
end clusters {x} and {y}.

To obtain the proof of Theorem 1.6, we only need Theorem 2.9. We remark that the
proof of Theorem 2.9 can easily be adapted to prove Theorem 2.10, so we omit the proof of
Theorem 2.10.
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Sketch proof of Theorem 2.9. Fix x and y to be distinct vertices of G with y /∈ N [x]. Let T
be the x-y-path tree rooted at v0. For z ∈ V (T ) define Lo(z) to be the number of leaves l
contained in B(z) such that t(l) = y and the path from v0 to l is odd.

We first prove an odd-path version of Lemma 2.7.

Claim 2.11 (Odd-path version of Lemma 2.7). Let G be a graph on n ≥ 10 vertices. Let x
and y be distinct vertices in V (G) with y /∈ N [x] and po2(G;x, y) > 0. Let T be the x−y-path
tree rooted at v0 and P := x1, . . . , xk be any path in T where x0 = v0 and xk is a leaf. Then:

(i) Lo(v0) ≤ f o2 (n).

(ii) If Lo(v0) = f o2 (n), then:

(a) for any xj and for all u,w ∈ C(xj), we have Lo(u) = Lo(w);

(b) k is even;

(c) V (P )\{xk} sees every vertex of G and t(xk) = y.

Proof of Claim. We essentially mimic the proof of Lemma 2.7, replacing Fn with Fon and
Ly(z) with Lo(z) for any z ∈ T .

Sequentially choose a path v0, . . . , vk ⊆ V (T ), where vk is a leaf. At vertex vj we choose
vj+1 to be some z ∈ C(vj) such that Lo(z) = max{Lo(x) : x ∈ C(vj)}. Let P be the set of
paths that can be obtained in this manner and fix P := v0, . . . , vk ∈ P .

We now show that k is even and t(vk) = y. Suppose first that k is odd. Thus any
path from v0 to some leaf neighbour of vk−1 is even. As po2(G;x, y) > 0, by construction
of P we have Lo(vk−1) > 0. So vk−1 has some non-leaf child z with Lo(z) > 0. But then
Lo(z) > Lo(vk) = 0, a contradiction. So k is even. The fact that t(vk) = y follows from
exactly the same argument as in Lemma 2.7.

Arguing as in (2.3), we see that

Lo(v0) ≤
k−2∏
i=0

D(vi), (2.7)

where k is even and
∑k−2

i=0 D(vi) ≤ n − 2, as v0, . . . , vk−2 have disjoint sets of children in
G\{x, y} by proposition 2.5.

It is not difficult to check that the maximal value of
∏k−2

i=0 D(vi) subject to
∑k−2

i=0 D(vi) ≤
n− 2, where k is even is f o2 (n). This concludes the proof of (i).

When Lo(v0) = f o2 (n) we have for even k:

k−2∏
i=0

D(vi) = f o2 (n).

Statement (ii a) follows from an analogous argument to the proof of (ii a) in Lemma 2.7.
Also (using an identical argument to the one used in Lemma 2.7) we have that any path
X := x0, . . . , xj, where x0 = v0 and xk is a leaf, is in P . Thus j is even, as required for (ii
b), and t(vk) = y. The other claim in statement (ii c) follows an analogous argument to the
proof of (ii b) in Lemma 2.7. This completes the proof of the claim.
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In particular, we know that any path v0 . . . vk, where vk is a leaf, is odd and satisfies
t(vk) = y. We now use analogous arguments to those used in the proof of Theorem 2.1
replacing Fn with Fon, replacing Ly(z) with Lo(z) for any z ∈ T and applying Claim 2.11 in
the place of Lemma 2.7, to show that G is a braid in Fon.

3 Proof of Theorem 1.2

We fix a large constant n0 and let Gmax be a graph on n ≥ n0 vertices, that contains m(n)
induced cycles. In what follows we will take n0 (and thus n) to be sufficiently large when
required and we will make no attempts to optimise the constants in our arguments. We will
show that the graph Gmax is isomorphic to Hn. As it turns out, Theorem 1.5 (the stability
result) will follow almost immediately from the arguments required for the proof of Theorem
1.2. Therefore, in this section several lemmas are proved in more generality than is needed
for the proof of Theorem 1.2: they will be used in their more general form in the next section.

Given a graph H, let f(H) denote the number of induced cycles in H and for a vertex
v ∈ H, let fv(H) denote the number of induced cycles in H containing v. Observe that we
have:

f(Gmax) = m(n) ≥ f(Hn) ≥


3n/3 if n ≡ 0 modulo 3

4 · 3(n−4)/3 if n ≡ 1 modulo 3

2 · 3(n−2)/3 if n ≡ 2 modulo 3.

(3.1)

Any Gmax is connected (if it were disconnected we could add edges between two compo-
nents to increase the number of induced cycles). We begin by proving several lemmas which
determine information about the structure of Gmax.

Lemma 3.1. Let F be an n-vertex graph. For v ∈ V (F ), we have fv(F ) ≤
(
d(v)

2

)
3(n−d(v)−1)/3.

Proof. Each induced cycle containing v contains exactly two neighbours of v. Fix a pair of
vertices u,w ∈ N(v). By Corollary 2.2 there are at most 3(n−d(v)−1)/3 induced paths between
u and w in (F\N [v]) ∪ {u,w}. Thus there can be at most 3(n−d(v)−1)/3 induced cycles in F
containing {v, u, w}. As there are

(
d(v)

2

)
distinct pairs of neighbours of v, we have,

fv(F ) ≤
(
d(v)

2

)
3(n−d(v)−1)/3

as required.

The next lemma tells us that any vertex in Gmax is contained in a constant proportion
of f(Gmax) induced cycles.

Lemma 3.2. Let 0 < c ≤ 1 and let α = 0.11. Let F be an n-vertex graph with f(F ) ≥
c ·m(n). Then:
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(i) (1− o(1))f(F ) induced cycles in F have length at least αn.

(ii) F contains a vertex v such that fv(F ) ≥ c
10
m(n).

(iii) Every vertex w ∈ V (Gmax) satisfies fw(Gmax) ≥ c
20
m(n).

Proof. F contains at most
∑bαnc

i=1

(
n
i

)
induced cycles of length at most αn (for any W ⊆

V (F ), there exists at most one induced cycle C such that V (C) = W ). Using Stirling’s
approximation, we get

bαnc∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
≤ (1 + o(1))

√
αn√

2π(1− α)

[
1

αα(1− α)1−α

]n
.

As
1

αα(1− α)1−α < 31/3,

we get
bαnc∑
i=1

(
n

i

)
= o

(
3n/3

)
.

By (3.1), f(F ) = Ω(3n/3), so (1− o(1))f(F ) induced cycles in F have length at least αn, as
required for (i).

Provided n0 is sufficiently large, we have for all n > n0,

bαnc∑
i=1

(
n

i

)
<

c

1000
· 3n/3 < c

100
m(n),

where the second inequality follows from (3.1). Thus there exists a vertex v such that

fv(F ) ≥ 99αc

100
m(n) ≥ c

10
m(n),

proving (ii).
Now suppose that there exists some vertex w ∈ V (Gmax) with fw(Gmax) < c

20
m(n).

Consider the graph G′ obtained from Gmax by duplicating the vertex v and removing the
vertex w. We have that

f(G′) ≥ f(Gmax) + fv(Gmax)− 2fw(Gmax) > f(Gmax),

a contradiction. This proves (iii).

Now consider the graph obtained from Gmax by duplicating a vertex. By applying Lemma
3.2, we have

m(n+ 1) ≥
(

1 +
1

20

)
m(n). (3.2)

We now use this to show that the graph Gmax has maximum degree bounded by a
constant.
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Lemma 3.3. ∆(Gmax) < 30.

Proof. Let v be a vertex of maximal degree. Given v, split the induced cycles in Gmax into
those contained in Gmax\{v}, and those containing v. Using Lemma 3.1 we have

m(n) ≤ m(n− 1) +

(
d(v)

2

)
3(n−d(v)−1)/3.

Using (3.2) to bound m(n− 1) gives,

m(n) ≤ m(n)

(
1 +

1

20

)−1

+

(
d(v)

2

)
3(n−d(v)−1)/3.

This expression rearranges to give

m(n) ≤ 21

(
d(v)

2

)
3(n−d(v)−1)/3.

For d(v) ≥ 30, this implies m(n) < 3(n−6)/3, a contradiction (as m(n) ≥ f(Hn) > 3(n−6)/3).

Combining Lemma 3.1 with Lemma 3.3 shows, for any v ∈ V (Gmax), we have fv(Gmax) ≤(
30
2

)
3(n−3)/3. By Lemma 3.2 (i), we know (1− o(1))m(n) induced cycles in Gmax have length

at least 0.11n. Thus

(1− o(1))m(n) ≤ 1

0.11n

∑
v∈V (G)

fv(Gmax) = O(3n/3).

This along with (3.1) implies
m(n) = Θ(3n/3). (3.3)

The next stage of our proof involves showing that all but a constant number of vertices v
in our graph have the property that their closed second neighbourhood N2[v] has the same
local structure as the closed second neighbourhood of a vertex in Hn. We introduce some
preliminary definitions.

Given a graph F and a set S ⊆ V (F ), we say that a vertex v ∈ V (F ) is seen by
S if v ∈ N [S] and v is unseen by S otherwise. Given a subgraph H ⊆ F , we say v is
seen by H if v ∈ N [H]. When it is clear which set/subgraph we are referring to, we will
just say v is (un)seen. For a vertex v ∈ V (G), let N i(v) be the set of points at distance
exactly i from v. Define Nk[v] to be the set of points within distance k of v (for example
N3[v] = {v} ∪

⋃3
i=1 N

i(v) and N1[v] := N [v]).
In order to determine what sort of local structure a ‘typical’ vertex in Gmax should have,

we define a game on F .

Definition 3.4. Let F be a finite graph, let v ∈ V (F ) and let w ∈ V (F )\N4[v]. We define
the w-typical-game on (F, v) as follows. There are two players, Adversary and Builder. The
game starts at vertex u1 := v and the players choose a sequence of vertices {u2, . . . , uk}
under the following set of rules. At vertex ui:
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• If ui ∈ N4[w], then Adversary is the active player, otherwise Builder is.

• The active player chooses a neighbour ui+1 of ui that is unseen by {u1, . . . , ui−1}.

• The game terminates when a vertex uj is chosen such that uj has no neighbours unseen
by {u1, . . . , uj−1}.

• If, for some j, the vertex uj does not have exactly 3 neighbours unseen by {u1, . . . , uj−1},
we call uj bad ; we call uj good otherwise.

• Adversary wins if either:

– for some j, the vertex uj is in N4[w] and is bad; or

– upon termination of the game at vertex uk, there exists a vertex in N4[w] that is
unseen by {u1, . . . , uk}.

Builder wins otherwise.

A vertex w ∈ V (F )\N4[v] is v-typical in F if there exists a winning strategy for Builder
in the w-typical-game on (F, v). A vertex is v-atypical otherwise. When it is clear which
vertex has been chosen to play the role of v, we simply say that w is (a)typical. Note that
the set of vertices {u1, . . . , uk} chosen during the game induces a path in F . Also, if we play
this game on Hn starting at any vertex, most of the chosen vertices are good.

The next lemma shows a v-typical vertex has the required local structure (see Figure 5).

Lemma 3.5. Let F be a graph and let v be a vertex in F . Suppose that z = z1 ∈ V (F )\N4[v]
is a v-typical vertex. Then there exist disjoint sets of vertices Z := {z1, z2, z3}, V :=
{v1, v2, v3}, and W := {w1, w2, w3} such that:

(i) for i, j ∈ {1, 2, 3}, we have N(vi) ∩N(wj) = Z;

(ii) for all i, we have V ∪W ⊆ N(zi) ⊆ V ∪W ∪ Z;

(iii) there are no edges between V and W .

Proof. We play as Adversary in the z-typical-game on (F, v). As z is v-typical, Builder has
a winning strategy σ. We assume that Builder uses strategy σ, and deduce information
about the structure of F from the results of our choices of vertices as Adversary (we know
we cannot win so whatever choices we make have certain consequences). For each vertex ui
that is chosen, let Pui denote the subgraph induced by {u1, . . . , ui}, where u1 = v. So Pui is
an induced path between v and ui.

Suppose that uk is the first vertex chosen such that uk ∈ N4(z) (as z is typical, at
some point such a vertex will be chosen). We arbitrarily choose the next two vertices
uk+1 ∈ N3(z) ∩ N(uk) and uk+2 ∈ N2(z) ∩ N(uk+1). Let x := uk+2. This vertex is unseen
by Puk as uk+1 was the first vertex we chose in N3(z). We also have, by choice of uk,
that x /∈ N(z). As z is typical, x has 3 neighbours V := {v1, v2, v3} unseen by Puk+1

.
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v1

v2

v3

z1

z2

z3

w1

w2

w3

V Z W

Figure 5: The local structure around a v-typical vertex z1. Note that we have not yet deter-
mined the edges within the sets V , Z and W .

As x ∈ N2(z), for some i we have vi ∈ N(x) ∩ N(z). Without loss of generality suppose
v1 ∈ N(x)∩N(z). Since we could choose uk+3 to be v1, the vertex v1 has 3 neighbours unseen
by Px, one of which is z, so let the set of neighbours of v1 unseen by Px be Z := {z1, z2, z3}.

If we choose uk+3 := v1 and then uk+4 := z, we have that z has 3 neighbours unseen by
Pv1 . Thus z has at most 5 neighbours unseen by Px (as z could be adjacent to z2 or z3).

We now prove that N(x) ∩ N(z) = V . Suppose otherwise, so without loss of generality
we have v3 /∈ N(z). Now we describe the set of choices we make for the remainder of the
game (recall that Builder always plays by strategy σ). Choose uk+3 := v3. Now consider a
later step in the game, but before z has been chosen, and suppose the most recently chosen
vertex is ui ∈ N4[z], where i ≥ k + 3. Then:

(1) If there is no vertex in N(ui) ∩N(z) that is unseen by Pui−1
, choose ui+1 arbitrarily.

(2) If, for some r, the vertex z has r neighbours unseen by Pui−1
(by the argument above,

r ≤ 5) and ui is adjacent to j ≥ 1 of these neighbours:

(i) If r − j < 3, choose ui+1 ∈ N(ui) ∩N(z) and ui+2 := z. As z now has at most 2
neighbours unseen by Pui+1

we reach a contradiction.

(ii) If r − j ≥ 3, then j ≤ 2 and ui has an unseen neighbour s that is not adjacent
to z (otherwise ui is bad, which contradicts the fact that Builder has a winning
strategy). Choose ui+1 := s. Observe that the vertex z is not seen by Ps.

Once we have chosen z, we play arbitrarily.
We now analyse the results of making these choices. As z is typical, we will at some

point enter case (2). If we are in case (2ii), we pick ui+1 and the number of neighbours
unseen by z decreases, so eventually we enter case (2i) where we reach a contradiction. Thus
N(x) ∩N(z) = V , as required.
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We now know that N(x) ∩ N(z) = V . As in the first part, if we choose uk+3 := v1

and uk+4 := z, the vertex z has 3 neighbours unseen by Pv1 . Call these neighbours W :=
{w1, w2, w3}. Thus N(z) ⊇ V ∪W as required. Observe that by choice of W , there are no
edges between V and W , thus proving the third statement of the lemma. From the argument
above we have N(z) ⊆ V ∪W ∪ Z.

Let wj ∈ W , for j ∈ {1, 2, 3}. We will first show that N(v1) ∩ N(wj) = Z. Again we
play as Adversary in a new z-typical-game on (F, v) and assume that Builder uses the same
winning strategy σ as above.

By playing the same strategy as in the game above, uk+1 is the first vertex chosen in
N3(z) and that the first vertex chosen in N2(z) is x. We know that N(x)∩N(z) = V . Now
we choose uk+3 := v1. Let y be the first vertex chosen in N2(wj). Observe that as wj ∈ N(z),
we have N2(wj) ⊆ N3[z]. So y ∈ {uk+1, x, v1}. We will show that y = v1.

By repeating the same argument as above (where we showed N(x) ∩N(z) = V ) with y
in place of x and wj in place of z, we see that y and wj have exactly 3 common neighbours.
The assumptions we needed to apply the argument above will hold here: we require that y is
the first vertex chosen in N2(wj) and that we are able to make moves at vertices in N2[wj].
The latter holds as N2[wj] ⊆ N4[z] and, in the z-typical game on (F, v), Adversary makes
moves at vertices in N4[z].

Suppose that y = uk+1. Then |N(uk+1) ∩ N(wj)| = 3 and in particular wj is adjacent
to x. This is a contradiction as wj /∈ V . Now suppose that y = x. This implies that wj is
adjacent to v1. As wj /∈ Z, this is a contradiction. Therefore y = v1 and N(v1)∩N(wj) = Z
for each j ∈ {1, 2, 3} (by the analogous argument to where we show N(x)∩N(z) = V , with
v1 in place of x, wj in place of z and Z in place of V ).

We now show that, for i, j ∈ {2, 3}, each vi is adjacent to each zj. Suppose that vi is not
adjacent to zj for some i, j ∈ {2, 3}. Again we play as Adversary in a new z-typical-game
on (F, v). We assume that Builder uses the same winning strategy σ as above. By playing
the same strategy as in both games above, the first vertex chosen in N2[z] is x and x = uk+2

in the sequence of vertices chosen. It is deduced from analogous arguments to those above
that the only neighbours of zj that are unseen by Px are contained in V ∪ Z ∪ W . We
know that N(x) ∩ N(z) = V . Now choose uk+3 := vi and uk+4 := z. If z is adjacent to
zj, pick uk+5 := zj. Otherwise, pick uk+5 := w1 and uk+6 := zj. In both cases, all vertices
of W ∪ V have been seen when zj is chosen. Therefore zj has at most one neighbour (the
vertex in Z\{z, zj}) unseen by Pzj\{zj}. This contradicts z being typical. Thus we have
N(vi) ∩N(wj) = Z, completing the proof of (i).

It remains to show that N(zi) ⊆ V ∪W ∪Z for i ∈ {2, 3}. Suppose otherwise, that zi has
a neighbour u /∈ V ∪Z ∪W . By the above arguments, u is seen by Px. u is not a neighbour
of x, and as u ∈ N3[z], u is either a neighbour of uk or uk+1. Now consider a new z-typical
game on (F, v). Builder still plays by the winning strategy σ. This time, we play as before
until we are the first vertex u′ which is a neighbour of u (so u′ is either uk or uk+1). At
u′, we choose u and then zi. Observe that N(zi) ⊇ W ∪ V . By the arguments above, no
vertices in W ∪ V are seen by Pu′ . As zi is typical it has exactly 3 neighbours unseen by Pu,
this implies that at least 3 vertices of W ∪ V are neighbours of u. However, this means that
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u has 4 neighbours unseen by Pu′ (these 3 and zi), contradicting z being typical. Thus for
i ∈ {2, 3}, N(zi) ⊆ V ∪W ∪ Z. This completes the proof of the lemma.

We will now show that, for any v ∈ V (Gmax), all but a bounded number of vertices in
Gmax are v-typical. We do this in the following manner. For each vertex v in Gmax we define
a tree T (v) that will ‘explore’ the graph Gmax outwards from v. As we will see, leaves on
this tree will correspond to induced paths or cycles in Gmax containing v. Every vertex on
T represents some vertex in Gmax (and many vertices in T may represent the same vertex
of Gmax). Our proof proceeds by showing that T has a particular structure, which in turn
implies conditions on the structure of Gmax.

The next definition contains similar concepts to those introduced in the definition of an
x-y-path-tree in Section 2. The main difference is that previously the vertex y played a
special role in the creation of leaves of our tree. Now there is no such significant vertex.

Definition 3.6. For F a finite graph and v ∈ V (F ), the exploration tree from v is a tree
T = T (v) together with a function t : V (T )→ V (F ) defined as follows.

• T is a tree with vertex set V (T ) disjoint from V (F ).

• The vertices in T correspond to sets S := {v, v1, . . . , vj} ⊆ V (F ) such that F [S] is an
induced path v, v1, . . . , vj or induced cycle v, v1, . . . , vj, v. For each S where F [S] is an
induced path, define a vertex wS ∈ T and set t(wS) = vj. For each S where F [S] is
an induced cycle (where an edge is not considered to be a cycle), define two vertices
w1
S, w

2
S ∈ T and set t(w1

S) = v1 and t(w2
S) = vj. We call S the F-set of w (or F -set of

w1
S and w2

S, if F [S] is a cycle). These vertices are the only vertices in T . Define the
root of the tree to be v0 := wx.

• Given a vertex w ∈ V (T ) with F -set {v, v1, . . . , vj} we define C(w), the children of
w, to be the set of vertices in T whose F -set is {v, v1, . . . , vj, z} for some z ∈ V (F ).
Define NT (v0) := C(v0). For w ∈ V (T )\{v0} define NT (w) := C(w) ∪ {u}, where u is
the unique vertex in T with F -set {v, v1, . . . , vj−1}. (So two vertices are adjacent in
T precisely when one of their F -sets extends the other by one vertex. A vertex whose
F -set induces a cycle in F will be a leaf of T . )

We write t(S) := {t(x) : x ∈ S} for any subset S ⊆ V (T ) and t(H) := {t(x) : x ∈ V (H)}
for any subgraph H ⊆ T . Given a set P ⊆ V (T ) we say that it sees a vertex w ∈ V (F ) if
w ∈ NF [t(P )]. If w /∈ NF [t(P )] we say w is unseen by P . Note that if some set P sees w
then there exists u ∈ NT [P ] such that t(u) = w.

As in Definition 2.6, define a branch and L(u) for u ∈ V (T ) with respect to this tree. We
now describe a correspondence between certain leaves on T and induced cycles in F . For
z ∈ T , let L(z) be the number of leaves of T contained in B(z).

See Figure 6 for an example of an exploration tree.
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x y

v1 z1

v2 z2

v1

z1 z2 x

y v2 y v2 y v2

x z2 x z2 x z1 x z1 z1 z2 z1 z2

Figure 6: A graph and its exploration tree (from v1). Each vertex w in the tree is labelled by
t(w).

Lemma 3.7. For F a finite graph and v ∈ V (F ), let T be the exploration tree from v rooted
at v0. We have fv(F ) ≤ 1

2
L(v0).

Proof. In the construction of T , for every induced cycle containing v in F we define two
vertices of T . Again by construction, these two vertices are leaves of T . The result follows.

Call a vertex v ∈ T is good if it has exactly three children: call it bad otherwise. We now
define a game on T , as we did previously in this section for a graph. We use the game to
define vertices that are ‘(a)typical’ for T . The following definition is the analogue in T of
Definition 3.4 for a graph.

Definition 3.8. Let F be a finite graph and let T be the exploration tree from v in F . Let
w be a vertex in V (F )\N4[v]. We define the w-typical-game on T as follows. There are
two players, Adversary and Builder. The game starts at vertex u0 := v0 (v0 = t(v)) and
the players choose a sequence of vertices {u1, u2, . . . , uk} ⊆ V (T ) under the following set of
rules. At vertex ui:

• If t(ui) ∈ N4[w], then Adversary is the active player, otherwise Builder is.

• The active player chooses a child ui+1 of ui.
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• The game terminates when a vertex uj is chosen such that uj is a leaf.

• Adversary wins if either for some j, we have that t(uj) ∈ N4[w] and uj is bad, or if
upon termination of the game at vertex uk there exists a vertex in N4[w] that is unseen
by {u0, . . . , uk}. Builder wins otherwise.

A vertex w ∈ V (F )\N4[v] is typical for T if there exists a winning strategy for Builder
in the w-typical-game on T . A vertex is atypical for T otherwise. Observe that a vertex in
V (F )\N4[v] is atypical for T (v) if and only if it is v-atypical in F . Also, note that a vertex w
being atypical for T means that Adversary has a strategy to ensure that, whatever strategy
Builder chooses, either a bad vertex in N4[w] is chosen, or that there exists some vertex in
N4[w] that remains unseen by {u1, . . . , uk} upon termination at vertex uk.

Now let c > 0 and F be any n-vertex graph with f(F ) ≥ c ·3n/3 and ∆(F ) ≤ ∆, for some
constant ∆ (Gmax satisfies these conditions as ∆(Gmax) is bounded by Lemma 3.3). Our
next aim is to prove that, for any vertex v ∈ V (F ), only a bounded number of vertices are
atypical for T (v). Using this fact with Lemma 3.5 implies that the majority of the structure
of Gmax is close to the structure of Hn. The remainder of the proof consists of ‘cleaning’
Gmax to show that it is in fact isomorphic to Hn.

We first outline how the proof will proceed before giving the details. We assume (in
order to get a contradiction) that there is a large set A ⊆ V (F ) of vertices atypical for T (v),
such that for each a, a′ ∈ A we have N4[a] ∩ N4[a′] = ∅ (for any set of atypical vertices
there exists a subset of constant proportion with this property as ∆(F ) is bounded). We
will sequentially choose a path in T of vertices u0, . . . , uk where u0 := v0 and uk is a leaf.

For each a ∈ A, there exists a winning strategy τa for Adversary in the a-typical game
on T (v). This means that whatever vertices ui with t(ui) /∈

⋃
a∈AN

4[a], are chosen in the
path, for every a ∈ A we are able to ensure that either:

(i) we choose a bad vertex ui with t(ui) ∈ N4[a], or

(ii) there is some vertex in N4[a] that remains unseen by {u0, . . . , uk}.

We assume at the start that L(v0) is bounded below by c · 3n/3, for some constant c. As
we move down the tree we keep track of the number of leaves that the branch we are in
contains. If we are at a vertex ui, such that t(ui) is not in N4[a] for any a ∈ A, we choose
the branch that has the most leaves. When t(ui) is in N4[a] for some a ∈ A, we play the
winning strategy τa to move towards the outcomes (i) or (ii), unless there is a sub-branch
that contains a large proportion of the leaves in our current branch. These outcomes mean
that the tree is ‘unbalanced’ in some way, and the strategy that achieves these outcomes
picks branches that contain more leaves than average. As it turns out, when we reach a leaf
and the process ends, if |A| was too large we find that the branch we are in ought to contain
more than one leaf, a contradiction.

Lemma 3.9. Fix c > 0. Let F be an n-vertex graph with ∆ := ∆(F ) > 1 and let ε := 2−∆100
.

Let v ∈ V (F ) and let T = T (v) be the exploration tree from v in F with root v0. Let
A ⊆ V (F )\N4[v] be a set of atypical vertices for T such that for all a, a′ ∈ A, we have
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N4[a] ∩N4[a′] = ∅. If L(v0) ≥ c · 3n/3, then |A| < M , where M is the smallest integer such
that c · 31/3(1 + ε)M > ∆.

Proof. Suppose, in order to obtain a contradiction, that |A| ≥M . For each a ∈ A, Adversary
has a winning strategy τa played on vertices of N4[a] in the a-typical game on T . As for all
a, a′ ∈ A, we have N4[a]∩N4[a′] = ∅, these strategies are played on disjoint sets of vertices.

We sequentially choose a path v0, u1, . . . , uk of vertices through the tree where uk is a
leaf. At each stage i, we choose a vertex ui and define Ai (the subset of A that we still care
about tracking). We also define Ci(a) for each a ∈ A. For each a ∈ A define C1(a) := 1.
Also define

Ci :=
c · 31/3

∆

∏
a∈A

Ci(a) and qi := Ci3
n−mi−1

3 , (3.4)

where mi is the number of vertices of V (F )\{v} seen by V (Pui−1
)\{u0} (thus n − mi − 1

vertices of V (F )\{v} are unseen by V (Pui−1
)\{u0}). So q1 = c·31/3

∆
3(n−1)/3. Throughout the

process we maintain the property that L(ui) ≥ qi for each i.
We now describe an algorithm that determines our choice of vertices. For r ≥ 1, let

εr = 22(r−1)ε.

Vertex Choice Algorithm

We pick u1 ∈ N(v0) such that L(u1) is maximised, and define A1 := A. Suppose the
most recently chosen vertex is ui and that mi vertices of V (F )\{v} have been seen by
{u1, . . . , ui−1}. If ui is not a leaf; we have two cases:

Case 1: t(ui) ∈ N4[a] for some a ∈ Ai.

Suppose it is the r-th time we have chosen a vertex y such that t(y) ∈ N4[a]. We have
two subcases:

Subcase 1: ui is good.

In this case ui has exactly three children y1, y2, y3.

(i) If there exists j such that L(yj) ≥ 1
3
(1 + εr)Ci3

(n−mi−1)/3 then choose ui+1 := yj.

- Set Ci+1(a) := (1 + εr)Ci(a) and Ci+1(y) := Ci(y), for all y ∈ A\{a}.
- Set Ai+1 := Ai\{a}.

(ii) Else, every yj satisfies L(yj) > 1
3
(1 − 2εr)Ci3

(n−mi−1)/3. In this case, choose ui+1

according to strategy τa.

- Set Ci+1(a) := (1− 2εr)Ci(a) and Ci+1(y) := Ci(y), for all y ∈ A\{a}.
- Set Ai+1 := Ai.

Subcase 2: ui is bad.
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In this case ui does not have exactly 3 children. Suppose ui has children y1, . . . , yk for some
k 6= 3. Pick j such that L(yj) is maximised and set ui+1 := yj.

- Set Ci+1(a) = (1 + εr)Ci(a) and Ci+1(y) := Ci(y), for all y ∈ A\{a}.
- Set Ai+1 := Ai\{a}.

Case 2: t(ui) 6∈ N4[a] for any a ∈ Ai:

Then v has children y1, . . . yk for some k ≥ 1. Pick j such that L(yj) is maximised and
set ui+1 = yj.

- Set Ci+1(y) := Ci(y), for all y ∈ A.

- Set Ai+1 := Ai.

The process terminates when ui is a leaf.

We now analyse the consequences of choosing vertices in this manner.

Claim 3.10. For each vertex ui chosen during the Vertex Choice Algorithm, we have L(ui) ≥
qi.

Proof of Claim 3.10. We argue by induction on i; the case i = 1 holds as we chose u1 ∈ N(v0)
to maximise L(u1). Suppose L(ui) ≥ qi = Ci3

(n−mi−1)/3. Now for the inductive step: we
consider each case of the algorithm separately, and prove that the statement holds there.

In Subcase 1(i) we have:

L(ui+1) ≥ 1

3
(1 + εr)Ci3

n−mi−1

3 = Ci+13
n−mi+1−1

3 = qi+1.

In Subcase 1(ii) we have:

L(ui+1) >
1

3
(1− 2εr)Ci3

n−mi−1

3 = Ci+13
n−mi+1−1

3 = qi+1.

In Subcase 2, recall that ui has neighbours y1, . . . , yk (for k 6= 3) and we pick ui+1 to be
the yj which maximises L(yj). Thus we have:

L(ui+1) ≥ Ci
k

3
n−mi−1

3 = Ci
3k/3

k
3

n−mi−k−1

3 .

The value of 3k/3

k
is minimised for k 6= 3 at k = 2. Thus,

L(ui+1) ≥ Ci
32/3

2
3

n−mi−k−1

3 ≥ Ci(1 + εr)3
n−mi−k−1

3 = Ci+13
n−mi+1−1

3 = qi+1.

In Case 2, recall that ui has neighbours y1, . . . , yk and we pick ui+1 to be the yj which
maximises L(yj). Thus we have:
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L(ui+1) ≥ Ci
k

3
n−mi−1

3 = Ci
3k/3

k
3

n−mi−k−1

3 ≥ Ci3
n−mi−k−1

3 = Ci+13
n−mi+1−1

3 = qi+1,

where the last inequality is strict unless k = 3.

We are now equipped to analyse what remains once the algorithm terminates at a leaf
uk. For each a ∈ A at least one of the following outcomes occurs upon termination of the
algorithm.

(O1) During the algorithm, at a vertex a ∈ N4[a], we either chose a branch with a large
proportion of leaves via Case 1(i) or we chose a bad vertex via Subcase 2.

(O2) There is some vertex w ∈ N4[a] that is unseen by V (Puk) upon termination of the
algorithm.

First observe that for all s ≤ ∆5 + 1,

(1− 2ε1)(1− 2ε2) . . . (1− 2εs)(1 + εs+1) > (1 + ε). (3.5)

Our choice of ε ensures that each factor on the left hand side is greater than zero.
Suppose a /∈ Ak. Then there exists some j such that a ∈ Aj but a /∈ Aj+1. Thus at

the jth stage of the algorithm we had t(uj) ∈ N4[a] and we either chose a branch with a
large proportion of leaves via Subcase 1(i) or we chose a bad vertex via Subcase 2. Let
t := |t({u1, . . . , uj}) ∩N4[a]| be the number of vertices, x ∈ T with t(x) ∈ N4[a], chosen up
to the jth stage. From the algorithm we see

Ck(a) = Cj+1(a) = (1− 2ε1)(1− 2ε2) . . . (1− 2εt)(1 + εt+1). (3.6)

As |N4[a]| ≤ ∆5, we have t ≤ ∆5, and so by (3.5) we have for a /∈ Ak

Ck(a) > (1 + ε). (3.7)

Now suppose a ∈ Ak. Let t := |t({u1, . . . , uk−1}) ∩ N4[a]|. By following the algorithm
we see that whenever we are at a vertex u ∈ N4[a], we do not pass through Subcase 1(i) or
Subcase 2, as this would imply a /∈ Ak. Thus Ck(a) =

∏t
i=1(1− 2εi). By choice of ε, for all

s ≤ ∆5 we have
31/3 > 1 + 22sε,

so by (3.5) and the observation that t ≤ ∆5,

31/3 · Ck(a) > (1 + ε). (3.8)

For each a ∈ Ak, the set V (Puk) does not see all of N4[a], as we either achieve outcome
(O1) or (O2) for a, and if we achieved (O1), then a would not be in Ak. So at termination
we have n−mk − 1 ≥ |Ak| and so by the definition of qk (3.4) we have:

qk ≥ Ck3
|Ak|
3 . (3.9)
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By (3.7), we have: ∏
a∈A

Ck(a) ≥ (1 + ε)|A\Ak|
∏
a∈Ak

Ck(a),

and so by substituting for Ck in (3.9) and applying (3.8), we have:

qk ≥
c · 31/3

∆
3
|Ak|
3

∏
a∈A

Ck(a) ≥ c · 31/3

∆
(1 + ε)M−|Ak|3

|Ak|
3

∏
a∈Ak

Ck(a) ≥ c · 31/3

∆
(1 + ε)M > 1.

This contradicts Claim 3.10, as uk is a leaf and thus L(uk) = 1. Thus |A| < M , concluding
the proof of Lemma 3.9.

Corollary 3.11. Fix c > 0. Let F be an n-vertex graph with f(F ) ≥ 2c · 3n/3 and ∆ :=
∆(F ) > 1. Then for any v ∈ V (F ), there exists a constant C = C(∆, c) such that at most
C vertices are atypical for T (v), the exploration tree from v in F .

Proof. Let A be the set of vertices that are atypical for T . Let U be the largest subset of A
such that for all a, a′ ∈ U , we have N4[a]∩N4[a′] = ∅. As |N4[x]| ≤ ∆5 for every x ∈ V (F ),
we have

|U | ≥ |A|
∆5

. (3.10)

We wish to apply Lemma 3.9 to F , T and U .
As f(F ) ≥ 2c ·m(n), by Lemma 3.2 fv(F ) ≥ c

10
m(n) for all v ∈ F . Combining this with

Lemma 3.7 gives

L(v0) ≥ 2fv(F ) ≥ c

5
m(n) ≥ c

20
3n/3,

for some constant c′ and where the last inequality follows from (3.3).
Applying Lemma 3.9 shows that |U | < M , where M is the smallest integer such that

c
20
· 31/3(1 + 2−∆100

)M > ∆. Combining this with (3.10) gives the required result.

Let B = (B1, . . . , Bk) be a braid in Gmax. If |Bi| = 3 for all i, we call B a 3-braid. For
a braid B of length at least 4, we say that an induced cycle passes through B if it contains
a vertex from every cluster of B. Call a braid maximal if it is not contained in any longer
braid. The following simple deduction will be used.

Lemma 3.12. There exists a constant C such that Gmax contains at most C maximal 3-
braids and a 3-braid B such that |V (B)| = Ω(n). Moreover, for any 3-braid B′ on rn vertices,
at least f(Hn)

(
1− 3−rn/6

)
induced cycles in Gmax pass through B′.

Proof. Let v ∈ V (Gmax). The only vertices which can be contained in more than one maximal
3-braid lie in end clusters. By Lemma 3.5, every v-typical vertex is contained in a central
cluster of exactly one maximal 3-braid. So any vertex in the end cluster of a maximal 3-braid
is v-atypical. By Corollary 3.11, there exists a constant c such that at most c vertices are
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v-atypical for Gmax. Each of these vertices is contained in at most ∆(Gmax) ≤ 30 maximal 3-
braids. So Gmax contains (crudely) at most 30c maximal 3-braids, proving the first statement
of the lemma.

The union of the maximal 3-braids in Gmax contains all the typical vertices and so it
contains at least n/2 vertices for large n. Therefore, when n is sufficiently large, as there are
at most 30c maximal 3-braids some 3-braid B = (B1, . . . , Bk) contains Ω(n) vertices.

For the final claim, observe that if an induced cycle does not pass through a 3-braid
B′ = (B′1, . . . , B

′
k) on rn vertices, then it is either a C4 contained in B (there are at most

O(n4) of these), or it is contained in V (Gmax)\
⋃k−2
i=3 B

′
i (by Lemma 3.1, there are at most

[(1− r)n+ 12]
(

30
2

)
3[(1−r)n+9]/3 of these). Therefore at most

[(1− r)n+ 12]

(
30

2

)
3[(1−r)n+9]/3 +O(n4)

induced cycles of Gmax do not pass through B. So for n0 sufficiently large, at least

f(Hn)
(
1− 3−rn/6

)
induced cycles pass through B.

The next lemma shows that Gmax is a cyclic braid. It will remain to determine the cluster
sizes and whether there are edges within the clusters of Gmax.

Lemma 3.13. Gmax is a cyclic braid.

Proof. Let B := (B1, . . . , BCn/3) be the longest 3-braid in Gmax. Let Q be the number of
induced cycles in Gmax that pass through B. By Lemma 3.12,

Q ≥ f(Hn)
(
1− 3−Cn/6

)
. (3.11)

Now let G′ := G[V (Gmax)\
⋃Cn/3−1
i=2 Bi]. Let x and y be two new vertices and define H to

be the graph on vertex set V (H) := V (G′) ∪ {x, y}, and edge set

E(H) := E(G′) ∪ {xb : b ∈ B1} ∪ {yb : b ∈ BCn/3}.

We have
Q = 3(Cn−6)/3p2(H;x, y). (3.12)

Combining (3.11) and (3.12) gives

p2(H;x, y) ≥ 3−(Cn−6)/3 · f(Hn)
(
1− 3−Cn/6

)
. (3.13)

We now focus on the structure of H. Let us call a central cluster C of a maximal 3-braid
B supercentral if for any x ∈ C and y in an end cluster of B, d(x, y) ≥ 5. Define a new
graph H ′ via the following process.
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• Set F1 := H.

• Let i be maximal such that we have defined Fi. Suppose there exists a vertex vi ∈ Fi,
contained in a supercentral cluster Ci of a maximal 3-braid Mi, where Ci is adjacent
to clusters Ci

1 and Ci
2. Then define Fi+1 to be the graph obtained from Fi by deleting

Ci and adding every edge {uw : u ∈ Ci
1, w ∈ Ci

2}.

• If there exists no such vertex vi, define H ′ := Fi.

The process will terminate as H has a finite number of vertices. Observe that Fi+1 is a braid
if and only if Fi is a braid. In addition, when H ′ is a braid this process can be reversed to
find H. We now show that H ′ is a braid.

Any v-typical vertex in Fi that does not get deleted during the process is v-typical in
Fi+1. Hence any v-typical vertex in Gmax that does not get deleted is v-typical in H ′. By
Lemma 3.12, there exists a constant a such that Gmax contains a maximal 3-braids. O(a)
vertices from each of these braids will remain in H ′ when the process terminates. Any vertex
not contained in a 3-braid in Gmax is v-atypical in Gmax. By Corollary 3.11 there exists a
constant b such that there are at most b such vertices. As H ′ contains all the atypical vertices
of Gmax and at most O(a) vertices from each 3-braid in Gmax, there exists a constant β such
that |V (H ′)| ≤ β.

At stage i of the process, Fi+1 contains all induced cycles of Fi that do not pass through
Mi and a third of the number of cycles in Fi that do pass through Mi. Thus we have

p2(Fi+1;x, y) ≥ 3−1 · p2(Fi;x, y), (3.14)

and so
p2(H ′;x, y) ≥ 3−(|V (H)|−|V (H′)|)/3 · p2(H;x, y), (3.15)

Combining (3.13) and (3.15) and observing that |V (H)| = (1− C)n+ 8 gives

p2(H ′;x, y) ≥ 3(−n−2+|V (H′)|)/3 · f(Hn)
(
1− 3−Cn/6

)
. (3.16)

As
3(−n−2+|V (H′)|)/3f(Hn) = f2(|V (H ′)|) + o(1),

when n0 is sufficiently large we have

3(−n−2+|V (H′)|)/3 · f(Hn)
(
1− 3−Cn/6

)
> f2(|V (H ′)|)− 1. (3.17)

As p2(H ′;x, y) is an integer, by taking n0 to be sufficiently large, (3.16) and (3.17) give

p2(H ′;x, y) ≥ f2(|V (H ′)|).

Therefore, by Theorem 2.1, H ′ is isomorphic to a graph in F|V (H′)|. Thus H ′ is a braid.
By reversing the process applied above (adding back in the supercentral clusters) to recreate
H from H ′, we see that H is a graph in F|V (H)|, and hence Gmax is a cyclic braid.
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Corollary 3.14. We have the following:

• when n ≡ 0 modulo 3, Gmax has exactly n/3 clusters of size 3;

• when n ≡ 1 modulo 3, Gmax has either one cluster of size 4 and (n− 4)/3 of size 3, or
two of size two and (n− 4)/3 of size 3;

• when n ≡ 2 modulo 3, Gmax has exactly one cluster of size 2 and (n− 2)/3 of size 3.

We are now in a position to complete the proof of Theorem 1.2. The next lemma shows
that the clusters in Gmax do not contain any edges, and thus we will prove the required result
for n ≡ 0 or 2 modulo 3. In the remaining case we will need a short argument to decide
whether the graph contains two clusters of size two, or one of size four. In both cases, the
arguments are essentially routine checks.

Lemma 3.15. When n ≡ 0, 2 modulo 3, no cluster of Gmax contains edges.

Proof. First observe, that if e is an edge within a cluster, the only induced cycles containing
e can be triangles, either contained within the cluster, or containing exactly one vertex from
a neighbouring cluster; or induced copies of C4 within the cluster (in the case that the cluster
contains 4 vertices).

Let B be a cluster adjacent to clusters A and C. Suppose there exists an edge e = uv
where u, v ∈ V (B). The edge e is contained in at most |A|+ |C|+ (|B| − 2) induced cycles
within Gmax. The graph G′ = Gmax\{e} will contain at least |A||C| induced copies of C4

(for any x ∈ A, y ∈ C, the set {x, y, u, v} induces a C4) that are not induced cycles in Gmax.
As Gmax does not contain both a cluster of size 2 and a cluster of size 4, we have

|A||C| > |A|+ |C|+ (|B| − 2),

unless |B| = 3 and at least one of |A| or |C| is equal to 2. Except for this case, the number
of induced cycles in G′ = Gmax\{e} is greater than the number of induced cycles in Gmax, a
contradiction.

Now suppose |B| = 3 and suppose without loss of generality that A = {a1, a2}. First
consider the case where |C| = 3. Suppose B contains an edge e = uv. This edge is contained
in at most 6 triangles in Gmax. By the above argument, A does not contain an edge. The
graph G′ = Gmax\{e} will contain at least 7 induced copies of C4 that are not induced cycles
in Gmax (for any x ∈ A, y ∈ C, the sets {x, y, u, v} and {a1, a2, u, v} induce copies of C4).
Thus f(G′) > f(Gmax), a contradiction.

The remaining case to consider is when C = {c1, c2}. If B contains an edge e, this edge
is contained in at most 5 triangles in Gmax. The graph G′ = Gmax\{e} contains at least
6 induced copies of C4 that are not induced cycles in Gmax. Thus f(G′) > f(Gmax), a
contradiction. So no cluster in Gmax contains an edge.

We have proved Theorem 1.2 in the cases where n ≡ 0 or 2 modulo 3. It remains to
prove the result in the case n ≡ 1 modulo 3.
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Lemma 3.16. When n ≡ 1 modulo 3, Gmax is isomorphic to Hn.

Proof. By Corollary 3.14 and Lemma 3.15, we know that Gmax is one of two empty cyclic
braids. One possibility is that it is isomorphic to Hn. The other possibility is that Gmax is an
empty cyclic braid G2 with exactly two clusters of size 2, and the rest of size 3. An induced
cycle in Hn or G2 either contains exactly one vertex from each cluster, or is an induced copy
of C4. In both Hn and G2, the number of induced cycles containing exactly one vertex from
each cluster is 4 · 3(n−4)/3. Thus the only difference in f(Hn) and f(G2) comes from the
number of induced copies of C4.

There are two types of C4. Type 1 contains vertices from exactly two clusters. Type 2
contains vertices from three clusters. The graph Hn contains 3(n+ 5) induced type 1 cycles;
G2 contains at most 3n−14 of this form (fewer if the two clusters of size 2 are not adjacent).
The graph Hn contains 9(n+ 4) induced type 2 cycles; G2 contains at most 9n− 42 of this
form. Thus Hn contains more induced cycles than G2 and therefore Gmax is isomorphic to
Hn.

4 Proof of Theorem 1.5

The proof of Theorem 1.5 follows the same lines as the proof of Theorem 1.2. Before
proceeding with the details of the proof, we first give an outline of what is to come. Let
0 < α < 1 be any constant and let F be an n-vertex graph containing at least α · m(n)
induced cycles. We will show that it is possible to delete a constant number of vertices from
F to give a graph F ′ with maximum degree bounded by a constant. Applying Lemma 3.9
to F ′ then shows that the number of atypical vertices in F ′ is bounded by a constant. The
result will immediately follow. We cannot simply apply Lemma 3.9 to F , as F may contain
vertices of arbitrarily large degree.

Lemma 4.1. Fix 0 < α < 1 and define ∆∗ = ∆∗(α) to be the smallest integer such that
6
(

∆∗

2

)
3(1−∆∗)/3 < α · 4 · 3−4/3. For n sufficiently large, let F be an n-vertex graph with

f(F ) ≥ α ·m(n). Then there exists a constant C = C(α) such that deleting edges incident
to C vertices of F gives a graph H with ∆(H) ≤ ∆∗. Moreover, f(H) ≥ α

2
·m(n).

Proof. Suppose that ∆(F ) > ∆∗ (else we are trivially done). We create a new graph H,
with ∆(H) ≤ ∆∗, in the following manner. Define F1 := F . Let i be maximal such
that Fi has been defined. If there exists a vertex vi ∈ V (Fi) with d(vi) > ∆∗ then define
Fi+1 := Fi\{vi}. This process will terminate as F has a finite number of vertices. Suppose
the process terminates at a graph Fj. We have ∆(Fj) ≤ ∆∗. Define H := Fj.

To prove the first statement of the lemma it suffices to show that there exists some
constant C := C(α) such that j = C. To prove this, we will bound the size of f(F )− f(H)
and use this to show that when j > C, we have f(F ) < α ·m(n), a contradiction.

By Lemma 3.1,

fvi(Fi) ≤
(
dFi

(vi)

2

)
3(n−i−dFi

(vi)−1)/3 ≤
(

∆∗

2

)
3(n−i−∆∗−1)/3,
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where the second inequality follows as the function
(
x
2

)
3−x/3 is decreasing for x ≥ 6. So

f(H) = f(F )−
j−1∑
i=1

fvi(Fi)

≥ f(F )−
(

∆∗

2

)
3(n−∆∗+1)/3

j−1∑
i=1

3−i/3

≥ f(F )− 3

(
∆∗

2

)
3(n−∆∗+1)/3. (4.1)

As |V (H)| = n−j+1, for some constant c we have f(H) ≤ c ·3(n−j+1)/3 by (3.3). Combining
this with (4.1) gives:

f(F ) ≤ c · 3(n−j+1)/3 + 3

(
∆∗

2

)
3(n−∆∗+1)/3. (4.2)

There exists a constant C such that, whenever j > C and n is sufficiently large:

c · 3(n−j+1)/3 <
1

2
(α · 4 · 3−4/3)3n/3. (4.3)

Suppose that j ≥ C and let n be sufficiently large. Using the definition of ∆∗ and substituting
(4.3) into (4.2), gives

f(F ) < α · 4 · 3−4/33n/3 < α ·m(n),

where the final inequality is implied by (3.1). This contradicts the hypothesis that f(F ) ≥
α ·m(n). Therefore j < C, completing the proof of the first statement of the lemma.

We now prove the second statement. By (4.1) we have

f(H) ≥ f(F )− 3

(
∆∗

2

)
3(n−∆∗+1)/3.

Given the definition of ∆∗, we have f(H) ≥ α
2
m(n).

Proof of Theorem 1.5. Let F be an n-vertex graph containing at least α · m(n) induced
cycles. By Lemma 4.1, there exist constants c = c(α) and ∆∗ = ∆∗(α) such that deleting c
vertices from F gives a graph F ′ with ∆(F ′) ≤ ∆∗ and f(F ′) ≥ α

2
m(n). For any v ∈ V (F ′),

by Lemma 3.2 we have fv(F ) ≥ α
20

. Let A be the set of v-atypical vertices in F ′. By
applying Lemma 3.9 we deduce that |A| < M (where M = M(α) is defined as in Lemma
3.9). By Lemma 3.5, every v-typical vertex in F ′ is contained in a central cluster of exactly
one maximal 3-braid. We obtain H from F ′ by adding and deleting edges incident to vertices
in A. The result follows with C(α) = c+M .
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5 Induced odd or even cycles

In this section we prove Theorem 1.6. The proofs of Theorem 1.7 and Theorem 1.8 closely
follow that of Theorem 1.6.

Given a graph G, define fo(G) to be the number of induced odd cycles contained within
G. Similarly, for v ∈ G, define f vo (G) to be the number of induced odd cycles in G that
contain v. We have:

mo(n) ≥ fo(Gn) = Ω(3n/3), (5.1)

where Gn is defined as in Section 1. The proof of Theorem 1.6 follows from Theorem 1.5 and
some arguments analogous to those used in Theorem 1.2. For the latter, we refer back to
Sections 2 and 3 where necessary. The main difference is that, instead of applying Theorem
2.1, we use Theorem 2.9.

We fix a large constant n0 and let G be a graph on n ≥ n0 vertices that contains mo(n)
induced odd cycles. In what follows we let n0 be sufficiently large when required and we
make no attempts to optimise the constants given in our argument.

Sketch proof of Theorem 1.6. We first show that ∆(G) ≤ 35 using analogous arguments to
those in Theorem 1.2.

Lemma 3.2 holds (as (5.1) gives us the analogous bound to (3.1) that we need). Thus
every vertex is contained in at least 1

20
mo(n) induced odd cycles. Thus we have

mo(n+ 1) ≥
(

1 +
1

20

)
mo(n), (5.2)

as in (3.2).
We use the same argument as in Lemma 3.3, replacing m(n) with mo(n), to show that

∆(G) ≤ 35 (we get a different value for ∆ as we use the lower bound mo(Gn) ≥ 3(n−8)/3 and
this differs from the lower bound used for m(n)).

By (5.1) we have fo(Gn) = Ω(3n/3). Thus applying Theorem 1.5 shows that there exists a
constant c such that adding and deleting edges incident to c vertices of G gives a cyclic braid
H with the same cluster sizes as Hn. Using this and the knowledge that ∆(G) is bounded by
a fixed constant, it is seen that G contains a 3-braid B of even length such that |V (B)| = rn
for some constant r.

We now show that G is a cyclic braid. We use essentially the same argument as in Lemma
3.13 with fo(Gn) in place of f(Hn). However, when applying the process of deleting central
clusters, we delete a pair of adjacent clusters at a time (to maintain the count of odd cycles).
We again reach a graph H ′ such that there exists a constant β with |V (H ′)| = β. We make
the analogous deductions from there to reach the bound

f o2 (n) ≤ po2(H ′;x, y).

We then apply Theorem 2.9 to determine that H ′ ∈ Fo|V (H′)|. Reversing the process of
deleting central clusters to obtain H from H ′, we get that H ∈ Fo|V (H)|. Therefore G is a
cyclic braid, with clusters all of size 3 except:
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- three clusters of size 2, when n ≡ 0 modulo 6;

- two clusters of size 2, when n ≡ 1 modulo 6;

- one cluster of size 2, when n ≡ 2 modulo 6;

- a single cluster of size 4, when n ≡ 4 modulo 6; and

- either two clusters of size 4 or four clusters of size 2, when n ≡ 5 modulo 6.

It remains to determine whether there are edges within the clusters, the relative positions of
the clusters in the cyclic braid (in the cases where more than one cluster does not have size
3) and, in the case n ≡ 5 modulo 6, to determine the precise cluster sizes. Using arguments
of a similar nature to those in Lemma 3.15 and Lemma 3.16, it can be checked that G ∼= Gn

for every value of n ≥ n0.

Theorem 1.6 determines which n-vertex graphs contain the maximum number of odd
cycles. Following essentially the same argument we prove Theorem 1.7 and Theorem 1.8,
which determine the family of n-vertex graphs that contain the maximum number of odd
holes or even holes respectively.

Sketch proof of Theorem 1.7 and Theorem 1.8. We use the same argument as in the proof
of Theorem 1.6. In the case of Theorem 1.8, the argument can be modified to consider even
induced cycles rather than odd. The main difference is at the final stage, where we know
G is a cyclic braid and the possible cluster sizes in G. Changing the positions of clusters
and edges within clusters can only affect the holes that do not contain a vertex from every
cluster. Thus any hole that can be affected has size 3 or 4.

For the odd hole case, the positions of the clusters and the existence of edges within
clusters will not alter the number of odd holes (as any induced cycle with size 3 or 4 is not
an odd hole). In the even case, a simple check shows the number of holes of size 4 (given
the cluster sizes) is maximised when G is isomorphic to En.

6 Conclusion

For sufficiently large n, we have determined precisely which graphs on n vertices contain the
maximum number of induced cycles, the maximum number of odd or even induced cycles,
and the maximum number of holes. However, there are a number of interesting related
questions.

In our proofs above we make no attempts to optimise the value of n0. We know that in
some small cases, Hn does not contain the maximum number of induced cycles [10, 13]. We
believe Theorem 1.2 ought to be true for n0 = 30, but our proof gives a much larger number.
There are several places where we could improve the bound, most notably by choosing a
more careful strategy in Lemma 3.9. However we omit the details as the bound would still
be extremely large.
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It is natural to consider induced cycles of some length that depends on n. Let c(n, l)
be the maximum number of length l induced cycles that can be contained in a graph on n
vertices. Let C(n, l) be the set of graphs containing c(n, l) induced cycles of length l.

Question 6.1. For l = l(n), what is C(n, l)?

When l is linear we believe the following should hold.

Conjecture 6.2. Fix c ∈ (0, 1). If l(n) = dcne, then for sufficiently large n the only graphs
in C(n, l) are cyclic braids of length l.

Perhaps a similar result holds down to cycles of length Ω(
√
n).

Question 6.3. Suppose l(n) >
√
n. For sufficiently large n, are all graphs in C(n, l) cyclic

braids?

Another related question is to ask about induced subgraphs which are subdivisions of
some fixed graph H.

Question 6.4. Given a fixed finite graph H, what is the maximum number of induced
subdivisions of H that can be contained in a graph on n vertices (and which graphs realise
this maximum)?

Theorem 1.2 answers this question for H = C3, but what happens for other graphs? For
instance, which graphs maximise the number of induced subdivisions of K1,3? For large n,
are the extremal graphs always blowups of some subdivision of H? The rooted version of the
question is also interesting, where we consider induced subdivisions of H where the branch
vertices are fixed (for instance Theorem 2.1 is a result of this form for H = K2).

Finally, we remark that the related problem of finding the graph on n vertices that
contains the most cycles (not necessarily induced) is trivial as Kn is the extremal graph.
However, the problem becomes interesting when we forbid certain subgraphs (see Arman,
Gunderson and Tsaturian [1] and Morrison, Roberts and Scott [11]).
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