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Abstract

Benjamini, Kalifa and Tzalik recently proved that there is an absolute constant
c > 0 such that any graph with at most c · 2d/d edges and no isolated vertices is
a minor of the d-dimensional hypercube Qd, while there is an absolute constant
K > 0 such that Qd is not (K ·2d/

√
d)-minor-universal. We show that Qd does not

contain 3-uniform expander graphs with C · 2d/d edges as minors. This matches
the lower bound up to a constant factor and answers one of their questions.

1 Introduction
A (finite or infinite) graph is universal for a class G of graphs if it contains every
graph from G. Different instances of graph universality arise by specifying the notion
of containment and class of graphs. In the infinite case, the question is often whether
a universal graph exists; in the finite case, there is considerable work on finding small
universal graphs, and such results are significant in extremal graph theory, structural
graph theory, and various algorithmic problems.

Results on universal graphs date back to the early 1960s, when Rado [14] proved
that there exists a countable graph that contains every countable graph as an induced
subgraph. There is now substantial literature with results on many graph classes with
respect to subgraph or induced subgraph universality [1, 2, 3, 4, 7, 8, 11, 12]. There
are also interesting negative results: answering a question of Ulam, a classical theorem
of Pach [13] from 1981 states that there does not exist a countable planar graph that
contains every countable planar graph as a subgraph.

A different picture emerges for minor containment. For graphs H and G, we say that
H is a minor of G if H can be obtained from G by a finite sequence of edge and vertex
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deletions, and edge contractions. In this case, the analogue of Pach’s theorem does not
hold: in 1999, Diestel and Kühn [9] constructed a countable planar graph that contains
every countable planar graph as a minor. The investigation of minor-universality has
been fruitful (see [10] for some recent developments). A notable example is the theorem
of Robertson, Seymour and Thomas [15] that the 2n × 2n grid is minor-universal for
planar graphs on n vertices, which has important consequences for bounding treewidth.

In this paper, we are concerned with minors of hypercubes. Hypercubes are a
natural candidate graph in which to embed other graphs for various computational
reasons (see, for example, [16], which studies universality of hypercubes containing k-
ary trees as subgraphs). Very recently, Benjamini, Kalifa and Tzalik [5] investigated
the minor-universality of hypercubes. They define a graph G to be m-minor-universal
if every graph H with at most m edges and no isolated vertices is contained as a minor
in G. Let Qd denote the d-dimensional hypercube whose vertices are binary strings
of length d where two vertices are adjacent whenever their Hamming distance is one.
Benjamini, Kalifa and Tzalik’s main result is the following.

Theorem 1.1 (Theorem A in [5]). The hypercube Qd is Ω(2
d

d
)-minor-universal. More-

over, there is an absolute constant K > 0 such that Qd is not K·2d√
d

-minor-universal.

The upper and lower bounds differ by a factor of
√
d. Benjamini, Kalifa and Tzalik

went on to ask which (if either) of these two bounds is tight [5, Question 1]. We resolve
this question by exhibiting a graph with C · 2d/d edges which is not a minor of Qd,
which shows that the lower bound is in fact tight. For completeness, we also give a
short version of the lower-bound proof from [5].

2 Lower bound
We present a substantially shorter version of the lower-bound argument from [5]. Given
a permutation σ of X = [n1]× · · · × [nd], we say that σ is one-dimensional in direction
i if, for all x ∈ X, we have that σ(x) and x may differ only in coordinate i. We begin
with a short proof of a key lemma, stating that permutations of a d-dimensional grid
can be decomposed into a linear number of one-dimensional permutations.

Lemma 2.1. Let X = [n1] × · · · × [nd] and let σ be a permutation of X. Then σ can
be written as

σ = σ2d−1 ◦ · · · ◦ σ1,

where each σi is a one-dimensional permutation of X in direction ji = |d− i|+ 1.

Proof. We first sketch the idea. Thinking of the coordinate d direction as ‘vertical’, and
all other directions as ‘horizontal’, we can view X as either n1 · · ·nd−1 one-dimensional
columns, or nd horizontal layers. We construct the one-dimensional permutations in
three steps: first, choose σ1 to permute the entries in each column so that each layer
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consists of vectors whose images under σ are in different columns of X; then, inductively
find permutations σ2, . . . , σ2d−2 that rearrange the vectors in each layer so that every
vector lies in the correct column; finally, choose σ2d−1 to permute each column so that
every vector is in the correct layer.

We proceed by induction on d. Clearly, the statement holds for d = 1, so suppose
that d ⩾ 2 and that the statement holds for d − 1. Let Y = [n1] × · · · × [nd−1], and
denote by πd(x) = (x1, . . . , xd−1) the projection that forgets coordinate d. We construct
a bipartite multigraph G with bipartition V (G) = U∪V where U and V are both copies
of Y , and for each x ∈ X we add an edge ex from πd(x) ∈ U to πd(σ(x)) ∈ V . Note that
G is nd-regular. Therefore, by repeatedly applying Hall’s theorem we can decompose G
into nd perfect matchings M1, . . . ,Mnd

. For x ∈ X, let ℓx ∈ [nd] be such that ex ∈ Mℓx .

Define σ1 : X → X by σ1(x) = (πd(x), ℓx). Observe that σ1 is one-dimensional in
direction d. Also, this is a permutation because if x, y ∈ X are distinct and satisfy
πd(x) = πd(y), then ex and ey are incident in G, so they cannot both belong to the
same matching. This implies that ℓx ̸= ℓy and so σ1(x) ̸= σ1(y). Moreover, if x, y ∈ X
are distinct and satisfy πd(σ(x)) = πd(σ(y)), then ex and ey are again incident in G and
so ℓx ̸= ℓy. Thus, for any ℓ ∈ [nd] and any distinct x, y ∈ Xℓ = {x ∈ X : ℓx = ℓ} we
have πd(x) ̸= πd(y) and πd(σ(x)) ̸= πd(σ(y)). This implies that τℓ : Y → Y defined by
τℓ(πd(x)) = πd(σ(x)) for x ∈ Xℓ is a permutation of Y . By induction, it follows that τℓ
can be written as τℓ,2d−2 ◦ · · · ◦ τℓ,2 where each τℓ,i is one-dimensional in direction ji.

For any 2 ⩽ i ⩽ 2d − 2, let σi(y, ℓ) = (τℓ,i(y), ℓ) which is one-dimensional in
direction ji, and let σ′ = σ2d−2 ◦ · · · ◦ σ2. Note that σ′(y, ℓ) = (τℓ(y), ℓ) which implies
that σ′(σ1(x)) = σ′(πd(x), ℓx) = (τℓx(πd(x)), ℓx) = (πd(σ(x)), ℓx) for all x ∈ X. Now
define σ2d−1 : X → X so that σ2d−1(πd(σ(x)), ℓx) = σ(x). Then σ = σ2d−1 ◦ σ′ ◦ σ1 and
σ2d−1 is one-dimensional in direction d, as required.

Given two graphs F1 and F2, their Cartesian product F1 □ F2 is the graph with
vertices V (F1) × V (F2) and edges between (u, v) and (u′, v′) whenever either u = u′

and vv′ ∈ E(F2) or v = v′ and uu′ ∈ E(F1). We will focus on the cube for simplicity,
but the argument generalises to products of other graphs as shown in [5].

Theorem 2.2. There is an absolute constant c > 0 such that Qd is c·2d
d

-minor-universal.

Proof. We follow the argument of [5] with some small changes for efficiency. Let G
be a graph with at most c · 2d/d edges and no isolated vertices. We need to show
that G is a minor of Qd. Let a = ⌈log2(2|E(G)|)⌉, and consider a copy of Qa □ C2d

in Qd where Qa uses only the first a coordinates of Qd and C2d the next ⌈log2(2d)⌉
coordinates. All vertices of this copy have the same value on all remaining coordinates.
Label the vertices of C2d with elements of {0, 1, . . . , 2d−1} so that consecutive integers
are adjacent. We will refer to this cycle as the temporal dimension.
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To each vertex v ∈ V (G), assign a path P (v) in Qa □ {0} with |N(v)| vertices such
that {P (v) : v ∈ V (G)} is a collection of vertex-disjoint paths. This is possible since
Qa contains a Hamiltonian cycle with 2a ⩾ 2|E(G)| vertices which can be split into
these paths. Index the vertices in P (v) arbitrarily by vertices of N(v), so we can write
V (P (v)) = {vx : x ∈ N(v)}.

It now suffices to find a collection of vertex-disjoint paths joining the vertices xy

and yx for each edge xy ∈ E(G) with internal vertices outside of Qa □ {0}. Let σ be a
permutation of Qa□{0} which satisfies σ(xy) = yx for each xy ∈ E(G). By Lemma 2.1,
we may write σ = σ2d−1 ◦ · · · ◦ σ1 where each σi is one-dimensional.

For an edge xy ∈ E(G), we define a path between x0 = xy and x2d−1 = yx piecewise
as follows. Consider the sequence of vertices (x0, 0), (x1, 1), . . . , (x2d−1, 2d−1), (x2d−1, 0)
where xi = σi(xi−1) for each i > 0. Fix an i > 0. We can go from (xi−1, i− 1) to (xi, i)
by first moving in the temporal dimension, and then in the unique coordinate in which
xi−1 and xi differ (if they differ); call this path Px. Consider an analogously defined
path Pz between (zi−1, i− 1) and (zi, i). If Px and Pz are not already disjoint, it must
be that zi = σi(zi−1) = xi−1, and hence also that xi = σi(xi−1) = zi−1. In this case,
from the last four coordinates of Qd choose any two coordinates which were not used
in time step i − 1, say coordinates d − 1 and d. Starting from the first vertices of the
paths, flip the bits d − 1 and d respectively, then follow Px and Pz respectively, and
finally flip back the bits d− 1 and d (see Figure 1). This ensures that the paths Px and
Pz are traversed in distinct copies of Qa□C2d and therefore do not intersect. Moreover,
the moves in coordinates d − 1 and d do not intersect the existing paths at time step
i− 1 as we chose two coordinates which were not used in that time step.

Since the paths defined above are vertex-disjoint for each time step, they are also
vertex-disjoint in Qd. Thus, stitching them together produces a path between xy and
yx such that these paths for all xy ∈ E(G) are pairwise vertex-disjoint as required.

zi−1 = xi

xi−1 = zidirection d− 1 directi
on d

Time step i− 1

zi−1 = xi

xi−1 = zidirection d− 1 directi
on d

Time step i

Figure 1: Constructing paths (xi−1, i−1)→(xi, i) and (zi−1, i−1)→(zi, i) when zi = xi−1.
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3 Tight upper bound
Benjamini, Kalifa and Tzalik [5] showed that there is an absolute constant K > 0 such
that Qd is not K·2d√

d
-minor-universal. In this section we improve this by a

√
d factor,

to obtain an upper bound that matches the lower bound of Theorem 1.1 to within a
constant factor. As in [5], we work with expander graphs, which are a natural candidate
for graphs that should be ‘difficult’ to embed.

Theorem 3.1. There is an absolute constant C > 0 such that Qd is not C·2d
d

-minor-
universal.

Proof. Let G be a 3-regular graph with 2n vertices, where 2n ∈ [45 · 2d/d, 50 · 2d/d],
that satisfies the following expansion property: for any set S ⊆ V (G) of at most n
vertices, |N(S)| ⩾ 0.18|S|, where N(S) denotes the neighbours of S in V (G) \ S. It
is well-known that such a graph exists (in fact, almost every 3-regular graph satisfies
this property; see [6, Theorem 1], and observe that 0.18 satisfies the condition in the
theorem when r = 3). Note that G has 3n ⩽ 100 · 2d/d edges, and so it suffices to show
that G is not a minor of Qd.

Suppose for a contradiction that Qd contains G as a minor. Since G is 3-regular, it
is easy to see that this implies that Qd contains a subgraph G′ which is a subdivision of
G. We will show that there are not enough vertices in Qd to support such a subdivision.

For every vertex v ∈ V (G), let sv ∈ V (G′) ⊆ {0, 1}d be the corresponding vertex
in the subdivision G′, and let S = {sv : v ∈ V (G)} (so |S| = 2n). For any edge
uv ∈ E(G), the length of the corresponding (su, sv)-path in G′ is at least the Hamming
distance ∥su − sv∥1 between su and sv. Since these paths are edge-disjoint, the sum of
the corresponding Hamming distances over all edges in G counts every edge of G′ at
most once. That is,

|V (G′)| = |E(G′)| − |S|/2 ⩾
∑

uv∈E(G)

∥su − sv∥1 − |S|/2 =
∑

uv∈E(G)

∥su − sv∥1 − n.

For each i ∈ [d], let Si be the smaller set out of {s ∈ S : si = 0} and {s ∈ S : si = 1},
and let Ei denote the set of edges uv ∈ E(G) such that su ∈ Si and sv ∈ S \ Si (i.e.,
such that su and sv differ in bit i). Since |Si| ⩽ |V (G)|/2, the expansion property of
G implies that |Ei| ⩾ 0.18|Si|. Note that for any edge uv ∈ E(G), its contribution to∑

i|Ei| is precisely the Hamming distance between su and sv, and so

∑
uv∈E(G)

∥su − sv∥1 =
d∑

i=1

|Ei| ⩾ 0.18
d∑

i=1

|Si|.

Without loss of generality, we may assume that Si = {s ∈ S : si = 1} for all i ∈ [d].
Then

∑
i|Si| =

∑
s∈S ∥s∥1. When d is sufficiently large, the number of binary strings
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with at most d/4 ones is much less than 2d/d, which is less than |S|/2. Thus S contains
at least |S|/2 elements with more than d/4 ones, and so we have

∑
s∈S ∥s∥1 > d|S|/8.

Therefore, when d is sufficiently large, we have

|V (G′)| ⩾ 0.18
d∑

i=1

|Si| − n >
0.18 · d · 45 · 2d

8d
− 50 · 2d

2d
⩾ 2d = |V (Qd)|.

This contradicts the assumption that Qd contains G′ as a subgraph.
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