On graph decompositions modulo k

A.D. Scott

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, England.

Abstract. We prove that, for every integer $k \ge 2$, every graph has an edge-partition into $5k^2 \log k$ sets, each of which is the edge-set of a graph with all degrees congruent to 1 mod k. This answers a question of Pyber.

Pyber [8] proved that every graph G has an edge-partition into four sets, each of which is the edge set of a graph with all degrees odd; if every component of G has even order then three sets will do. This is best possible, as can be seen by considering K_5 with two independent edges removed, which cannot be partitioned into fewer than four subgraphs with all degrees odd; and K_4 with one edge removed, which requires three. Motivated by this result, Pyber [8] asked what happens when we consider residues mod k, rather than mod 2. In particular he asked whether for every integer k there is an integer c(k) such that every graph has an edge-partition into at most c(k) sets, each of which is the edge-set of a

1

graph with all degrees congruent to $1 \mod k$. The following theorem answers this question.

Theorem 1. For every integer $k \ge 2$ and every graph G there is a partition of E(G) into at most $5k^2 \log k$ sets, each of which is the edge set of a graph with all degrees congruent to 1 modulo k.

In order to prove this, we will need to show that if a graph has sufficiently large average degree then it must contain a nonempty subgraph with all degrees divisible by k. The simplest such subgraph would be a k-regular graph, but Pyber, Rödl and Szemerédi [9] have shown that a graph can have as many as $n \log \log n$ edges without containing a k-regular subgraph. We will instead make use of a standard result about subgraphs with all degrees divisible by k (see [1]), which we prove for the sake of completeness. We use the following theorem of van Emde Boas and Kruyswijk ([4]; see also [6], [2], [1]) and Meshulam [5].

Theorem A. Let G be a finite abelian group and let m = m(G) be the maximal order of elements of G. Then for every sequence a_1, \ldots, a_s with

$$s \ge m\left(1 + \log\frac{|G|}{m}\right)$$

there is a nonempty set $T \subset \{1, \ldots, s\}$ such that

$$\sum_{i \in T} a_i = 0.$$

For a graph G and $S \subset V(G)$, we write e(S) for the number of edges in the induced subgraph G[S]. The following lemma is an easy consequence of Theorem A.

2

Lemma 2. Let $k \ge 3$ be an integer and let G be a graph that has no nonempty subgraph with all degrees divisible by k. Then, for every $S \subset V(G)$,

$$e(S) \le |S|k \log k.$$

Proof. Suppose $S \subset V(G)$ and $t := e(S) > |S|k \log k$. Let

$$A = \sum_{v \in S} \mathbb{Z}_k^{(v)}$$

be the direct sum of |S| copies of \mathbb{Z}_k , and let x_1y_1, \ldots, x_ty_t be the edges in G[S]. Now, for $i = 1, \ldots, t$, let $v_i = 1^{(x_i)} + 1^{(y_i)}$, where $1^{(v)}$ denotes the vector in A which is 1 in $\mathbb{Z}_k^{(v)}$ and 0 in the other coordinates. Clearly m(G) = k, so

$$m\left(1 + \log\frac{|A|}{m}\right) = k(1 + \log k^{|S|-1})$$
$$< |S|k \log k.$$

Therefore for some subset $T \subset \{1, \ldots, t\}$ we have $\sum_{t \in T} v_i = 0$, and so $\{e_i : i \in T\}$ is the edge set of a graph with all degrees divisible by k.

Armed with this result, we can prove Theorem 1.

Proof of Theorem 1. We already know that the theorem holds for k = 2; thus we assume $k \ge 3$. We begin by noting that any star, and thus any star-forest (that is, a forest consisting only of stars) has an edge-partition into k or fewer subgraphs with all degrees congruent to 1 modulo k. Now let G be a graph, and let H be a subgraph of maximal size with all degrees congruent to 1 modulo k. It is clearly enough to show that $E(G) \setminus E(H)$ can be covered by fewer than $5k \log k$ star-forests.

Let W = V(H), let $E_1 = E(G[W]) \setminus E(H)$ and let $E_2 = E(W, V(G) \setminus W)$. Thus $E(G) = E(H) \cup E_1 \cup E_2$, since $V(G) \setminus W$ is an independent set by maximality of H. Now every $w \in W$ has at most k - 1 neighbours in $V(G) \setminus W$, or else we could have added to H any k edges from w to $V(G) \setminus W$. Therefore E_2 can be

3

partitioned into k - 1 sets F_1, \ldots, F_{k-1} such that each vertex in W belongs to at most one edge in each F_i . In other words, each F_i is a star-forest.

Now consider the graph $G_0 = (W, E_1)$. By maximality of H, G_0 contains no nontrivial subgraph with all degrees divisible by k. We claim that $E(G_0) = E_1$ can be partitioned into at most $2k \log k$ star-forests. Indeed, it follows from Lemma 2 that every subgraph of G_0 has a vertex of degree at most $2k \log k$, and thus G_0 is $(2k \log k)$ -degenerate. (A graph G is h-degenerate if there is some ordering v_1, \ldots, v_n of V(G) such that $|\Gamma(v_i) \cap \{v_1, \ldots, v_{i-1}\}| \leq h$ for i > 1.) It follows immediately that G can be covered by $2k \log k$ forests, since an h-degenerate graph can be decomposed into h 1-degenerate graphs and a 1-degenerate graph is just a forest. Now any forest is the edge-disjoint union of two star-forests (by the greedy algorithm), so E_1 can be partitioned into $4k \log k$ star-forests.

We have partitioned $E(G) \setminus E(W)$ into $4k \log k + k - 1 < 5k \log k$ star-forests, so G has an edge-partition into $5k^2 \log k$ subgraphs with all degrees congruent to 1 modulo k.

Pyber [8] asked further for the best possible value of c(k), if well-defined. We have shown that we may take $c(k) = O(k^2 \log k)$; it would be interesting to know whether c(k) can be taken linear in k. Pyber also asked whether every graph can be *covered* by at most three subgraphs with all degrees odd. This question can also be asked more generally: for $k \ge 2$, what is the smallest integer d(k)such that the edges of any graph can be covered by at most d(k) graphs with all degrees congruent to 1 mod k? Related results and conjectures involving packing and covering with *induced* subgraphs satisfying degree restrictions mod k can be found in [10]and [3].

4

References

References

- N. Alon, S. Friedland and G. Kalai, Regular subgraphs of almost regular graphs, J. Comb. Theory Ser. B 37 (1984), 79-91.
- [2] R.C. Baker and W.M. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, *J. of Number Theory* **12** (1980), 460-486.
- [3] Y. Caro, I. Krasikov and Y. Roditty, Zero-sum partitions theorem for graphs, Int. J. Math. and Math. Sci. 17 (1994), 697-702.
- [4] P. van Emde Boas and D. Kruyswijk, A Combinatorial Problem on Finite Abelian Groups III, Z.W. 1969-008 (Math. Centrum, Amsterdam).
- [5] R. Meshulam, An uncertainty inequality and zero subsums, *Discrete Math.* 84 (1990), 197-200.
- [6] J. Olson, A Combinatorial Problem on Finite Abelian Groups, I, J. of Number Theory 1 (1969), 8-10.
- [7] L. Pyber, Regular Subgraphs of Dense Graphs, Combinatorica 5 (1985), 347-349.
- [8] L. Pyber, Covering the edges of a graph by..., in Coll Math Soc Janós Bolyai 60: Sets, Graphs and Numbers, Budapest (1991), 583-610.
- [9] L. Pyber, V. Rödl and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Comb. Theory Ser. B 63 (1995), 41-54.
- [10] A.D. Scott, PhD Thesis, University of Cambridge (1994).