
Monochromatic Components in
Edge-Coloured Graphs with Large

Minimum Degree

Hannah Guggiari* and Alex Scott*�

Abstract

For every n ∈ N and k ≥ 2, Gyárfás showed that every k-edge-
colouring of the complete graph on n vertices contains a monochro-
matic connected component of order at least n

k−1 . For k ≥ 3, Gyárfás
and Sárközy proved that the complete graph can be replaced by a
graph G with δ(G) ≥ (1 − εk)n for some constant εk. In this paper,
we show that the maximum possible value of ε3 is 1

6 . We will also

show that εk ≤ k−2
k(k−1) for infinitely many k ≥ 3. This disproves a

conjecture of Gyárfas and Sárközy.

1 Introduction

Erdős and Rado noted that, for any graph G, either G or its complement is
connected. This is equivalent to the statement that every 2-edge-colouring
of a complete graph contains a monochromatic spanning tree. Gyárfás [4]
extended this result to k ≥ 3 colours. He proved the following theorem.

Theorem 1.1 (Gyárfás [4]). Fix k ≥ 2. In every k-edge-colouring of the
complete graph on n vertices, there exists a monochromatic component of
order at least n

k−1 .

*Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
Email:{guggiari,scott}@maths.ox.ac.uk

�Supported by a Leverhulme Trust Research Fellowship.

1

It should be noted that Mubayi and, independently, Liu, Morris and Prince
found a short and elegant proof of this theorem (see [5], Corollary 3.3).

The bound in Theorem 1.1 is sharp if k − 1 is a prime power and n is
divisible by (k − 1)2. Consider the affine plane of order k − 1 and colour
the edges in the ith parallel class with colour i for each i ∈ [k]. Every
monochromatic component contains exactly n

k−1 vertices.
For k = 2, it is easy to see that the conclusion of Theorem 1.1 does not

hold for 2-colourings of the edges of a non-complete graph: if xy is not an
edge, then colour edges red if they are incident with x and blue otherwise.
However, Gyárfás and Sárközy [6] proved the following theorem.

Theorem 1.2 (Gyárfás and Sárközy [6]). Let G be a graph of order n with
δ(G) ≥ 3

4
n. If the edges of G are 2-coloured, then there exists a monochro-

matic component of order at least δ(G) + 1.

Gyárfás and Sárközy also showed that the bounds in this theorem are best
possible in the following two senses.

Firstly, we cannot reduce δ(G) below 3
4
n. Suppose that n is divisible by

4 and partition the vertices into 4 sets V1, V2, V3 and V4, each of order n
4
.

Colour the following edges red: the edges within each Vi, those between V1
and V2 and those between V3 and V4. Colour the edges between V1 and V3
blue and the edges between V2 and V4 blue. All monochromatic components
have order n

2
and δ(G) = 3

4
n− 1.

Secondly, the largest monochromatic component we can guarantee has
order δ(G) + 1. Take the complete graph Kn and let X, Y ⊂ V (Kn) be
disjoint vertex sets with |X| = |Y | = n− δ − 1 where n

2
− 1 ≤ δ ≤ n− 1 (so

0 ≤ n − δ − 1 ≤ n
2
). Form the graph G by removing all edges between X

and Y . Colour the edges incident to X red, the edges incident to Y blue and
all other edges arbitrarily. Each vertex in X ∪ Y has degree exactly δ and
all other vertices have degree n − 1 so the minimum degree of G is δ. The
largest monochromatic component in G in either colour has order δ + 1.

For k ≥ 3, the situation is different. In this case, it is possible to remove
some edges from a complete graph and still obtain a monochromatic com-
ponent of order n

k−1 in every k-edge-colouring. Indeed, Gyárfás and Sárközy
[7] showed that the complete graph can be replaced by any graph G with
δ(G) ≥ (1− εk)n for some constant εk > 0. They made the following conjec-
ture.

Conjecture 1.3 (Gyárfás and Sárközy [7]). Fix k ≥ 3. Let G be any graph
with n vertices and δ(G) ≥

(
1− k−1

k2

)
n. If the edges of G are k-coloured,

then there exists a monochromatic component of order at least n
k−1 .

2

Recently, there has been some progress towards Conjecture 1.3. The best
current general result was proved by DeBiasio, Krueger and Sárközy [3].

Theorem 1.4 (DeBiasio, Krueger and Sárközy [3]). Fix an integer k ≥ 3

and let G be any graph of order n with δ(G) ≥
(

1− 1
3072(k−1)5

)
n. If the

edges of G are k-coloured, then there exists a monochromatic component of
order at least n

k−1 .

For 3 colours, DeBiasio, Krueger and Sárközy [3] proved a stronger result.

Theorem 1.5 (DeBiasio, Krueger and Sárközy [3]). Let G be a graph of
order n with δ(G) ≥ 7

8
n. In every 3-colouring of the edges of G, there exists

a monochromatic component of order at least n
2
.

We will improve upon this result by proving the following theorem.

Theorem 1.6. Let G be a graph of order n with δ(G) ≥ 5
6
n where the edges

of G have been 3-coloured. Then G has a monochromatic component with
order at least n

2
.

We will then show that 1
6

is the largest possible value for ε3 by proving the
following theorem.

Theorem 1.7. For every n ∈ N, there exists a graph G of order n with
δ(G) ≥

⌊
5
6
n
⌋
−2 and a 3-colouring of the edges of G such that every monochro-

matic component has order strictly less than n
2
.

This proves that Conjecture 1.3 is in fact false for every n ∈ N and k = 3.
We provide further counter-examples to the conjecture for infinitely many k
(and infinitely many n for each such k) by proving the following theorem.

Theorem 1.8. Let k ≥ 3 be a prime power. For infinitely many n ∈ N, there

is a graph G of order n with δ(G) ≥
(

1− k−2
k(k−1)

)
n− 2 and a k-colouring of

the edges of G such that every monochromatic component has order strictly
less than n

k−1 .

The paper is organised in the following way. In Sections 2 and 3, we will
prove Theorem 1.6. First we will reduce the problem to two specific cases in
Section 2. We will then explain how these two cases can be formulated as
collections of linear programs and solved in Section 3. Then, in Section 4, we
will prove Theorem 1.7. Together these results show that ε3 = 1

6
. Finally, in

Section 5, we will prove Theorem 1.8, which shows that, for infinitely many
k ≥ 3, we must have εk ≤ k−2

k(k−1) . This disproves Conjecture 1.3.

3

2 Reducing the upper bound to special cases

To prove Theorem 1.6, we will reduce the problem to one which can be
written as a series of linear programs. We solve these linear programs by
computer to show that the theorem is true.

We begin by proving a series of lemmas. Throughout this section, we will
assume that the 3 colours used to colour the edges are red, blue and green.
If a vertex has no edges of a particular colour, then we do not regard it as
being a component of that colour.

Lemma 2.1. Let G be a graph of order n with δ(G) ≥ 5
6
n. Suppose that the

edges of G are 3-coloured. If there exists a vertex v which is not incident to
edges of all 3 colours, then there exists a monochromatic component of order
at least n

2
.

Proof. Colour the edges of G red, blue and green. First consider the case
where the vertex v is only incident to edges of one colour, say red. As
δ(G) ≥ 5

6
n, the red component containing v covers at least 5

6
n+ 1 > n

2
of the

vertices of G.
Now consider the case where v is only incident to edges of two colours, say

red and blue. Let R ⊆ V (G) be the vertices of the red component containing
v and B ⊆ V (G) be the vertices of the blue component containing v. We
may assume that |R| < n

2
and |B| < n

2
.

R B
v

Figure 1: The vertices of the red and blue components containing v.

Let x = |R ∩B|, r = |R \B| and b = |B \R|. Without loss of generality,
we will assume that r ≥ b. As v ∈ R∩B and δ(G) ≥ 5

6
n, we find that x > 0,

5
12
n < r + x < n

2
and 1

3
n < b+ x ≤ r + x.

Suppose that x < 1
6
n. As r + x + b ≥ 5

6
n and r ≥ b, we must have

2r ≥ 5
6
n − x giving r > 1

3
n. It follows from b + x > 1

3
n that b > 1

6
n. Any

edges that are incident to both R\B and B\R must be green. As δ(G) ≥ 5
6
n

and r > 1
3
n, every pair of vertices in B \ R must have a green neighbour in

common in R \B. As b > 1
6
n, every vertex in R \B has a green neighbour in

B \ R. Hence there is a green component covering all of (R ∪ B) \ (R ∩ B).
This green component has order at least 1

6
n+ 1

3
n ≥ n

2
.

4

Now suppose that x ≥ 1
6
n. As r + x + b ≥ 5

6
n and r ≥ b, it follows that

r ≥ 5
12
n− 1

2
x and hence |R| = r+ x ≥ 5

12
n+ 1

2
x ≥ n

2
giving a red component

covering half of the vertices. �

Given a graph G, the t-blow-up G′ is the graph formed from G by replacing
each vertex with a copy of Kt and each edge with a copy of Kt,t. If the edges
of G have been coloured, then the edges of G′ are coloured as follows:

� edges between two Kt are coloured according to the 3-edge-colouring
on G

� edges within a Kt are coloured arbitrarily

The graph G′ behaves like a larger version of G.

Lemma 2.2. Fix n > 2 and t > 1. Let G be a graph of order n. Colour
the edges of G so there is no monochromatic component covering half of
the vertices. Let G′ be the t-blow-up of G. Then G′ has no monochromatic
component covering half of its vertices and further δ(G′) = tδ(G) + t− 1.

Proof. Let v1, . . . , vn be the vertices of G and let V1, . . . , Vn be the corre-
sponding copies of Kt in G′. Fix a colour, say red. If vi has no red edges
in G, then any red component containing a vertex of Vi lies entirely within
Vi in G′. If instead vi is incident with a red edge in G, then the set Vi is
contained in some red component of G′. Furthermore Vi and Vj lie in the
same red component if and only if vi and vj do. The remaining assertions
are immediate. �

Lemma 2.3. Let G be a graph of order n with δ(G) ≥ 5
6
n. Suppose that the

edges of G are 3-coloured and there are exactly 2 red components. Then there
exists a monochromatic component of order at least n

2
.

Proof. By Lemma 2.1, we are done unless every vertex is incident to edges
of all three colours. Therefore every vertex is in a red component. As there
are only two red components, one of them must cover at least n

2
of the

vertices. �

Lemma 2.4. Let G be a graph of order n where the edges are 3-coloured
and there is no monochromatic component of order at least n

2
. Suppose that

G has r red, b blue and g green components and there exist red components
R1 and R2 such that |R1| + |R2| < n

2
. Then there is a graph G′ together

with a 3-edge-colouring such that there are (r − 1) red, b blue and g green

components, δ(G′)
|G′| ≥

δ(G)
|G| and there is no monochromatic component in G′

covering at least half of the vertices.

5

Proof. Note that, by Lemma 2.1, we may assume that every vertex is incident
to all three colours.

Suppose first that there exists v1 ∈ R1 and v2 ∈ R2 such that v1v2 /∈ E(G).
Let G′ be a copy of G with the additional red edge v1v2. Then δ(G′) ≥ δ(G)
and all components in G′ have the same number of vertices as they do in G
with the exception of R1 and R2 which form a single component in G′. As
|R1|+ |R2| < n

2
, G′ contains no monochromatic component covering at least

half of the vertices.
Now suppose that every vertex in R1 is connected to every vertex in R2.

Fix u ∈ R1 and v ∈ R2 and, without loss of generality, assume that the edge
uv is blue. Let G′ be a 2-blow-up of G with same 3-edge-colouring. The
vertex u in G corresponds to vertices u1 and u2 in G′ and v corresponds to
v1 and v2. Change the colour of the edge u1v1 from blue to red.

The red components corresponding to R1 and R2 in G′ now form a single
component of order 2(|R1|+ |R2|) < n = 1

2
|G′|. The vertices u1 and v1 still lie

in the same blue component via the blue path u1v2u2v1 and so changing the
colour of the edge u1v1 does not change the orders of the other components
in G′. By Lemma 2.2, we have δ(G′) = 2δ(G) + 1 and G′ does not contain a
monochromatic component of order at least 1

2
|G′|. As |G′| = 2|G|, it follows

that δ(G′)
|G′| >

δ(G)
|G| . �

Lemma 2.3 and Lemma 2.4 allow us to make the following assumption: in
each colour, G either has 3 components or 4 components each of order exactly
n
4
.

Lemma 2.5. Let G be a graph of order n where the edges of G are 3-coloured.
Suppose that G has no monochromatic component of order at least n

2
. If, in

two colours, there are 4 components of order exactly n
4

in that colour, then
δ(G) < 5

6
n.

Proof. Without loss of generality, suppose G has 4 red components and 4
blue components, each with order exactly n

4
. By Lemma 2.1, every vertex

lies in components of all three colours. Lemma 2.3 tells us that there must
be at least 3 green components. The smallest green component has order at
most n

3
. Choose a vertex v in the smallest green component. Then we find

that d(v) ≤ (n
3
− 1) + 2(n

4
− 1) < 5

6
n. �

The above lemmas allow us to make the following assumptions about G:

� G is a graph with n vertices, minimum degree at least 5
6
n and no

monochromatic component of order at least n
2
.

� Every vertex is incident to an edge of every colour (Lemma 2.1).

6

� There are either 3 components in each colour or there are 3 components
in two colours and 4 components of order n

4
in the third colour (Lemmas

2.3, 2.4 and 2.5).

3 Linear programs for the upper bound

In Section 2, we reduced the proof of Theorem 1.6 to the following two cases:

1. Every vertex is incident to an edge of every colour. There are 3 com-
ponents of each colour.

2. Every vertex is incident to an edge of every colour. There are 3 com-
ponents in two of the colours (without loss of generality, red and blue)
and 4 components of order exactly n

4
in the third colour (without loss

of generality, green).

We now formulate these cases as collections of linear programs. More details
about the code used to implement these linear programs may be found in
Appendix A.

3.1 Three components in each colour

We begin by considering the first case where there are 3 components in each
of the three colours. Let the vertex sets of the red components be Ri, the
blue components be Bj and the green components be Gk for i, j, k ∈ [3]. We
know that every vertex v of G lies in the intersection Ri ∩Bj ∩Gk for some
i, j, k ∈ [3] and so d(v) ≤ |Ri ∪ Bj ∪ Gk| − 1 with equality if v is adjacent
to every vertex in Ri ∪ Bj ∪ Gk. Proving Theorem 1.6 for the first case is
equivalent to showing that Question 3.1 has an answer of α < 5

6
.

Question 3.1. What is the maximum value of α such that the following
conditions can hold simultaneously?

1. |Ri|, |Bj|, |Gk| < n
2

∀i, j, k ∈ [3]

2. d(v) ≥ αn ∀v ∈ V (G)

For any v ∈ Ri ∩ Bj ∩Gk, the addition of any missing edges between v and
Ri ∪Bj ∪Gk will not change the number of vertices in each monochromatic
component but may increase δ(G) and hence α. Therefore we may assume
that d(v) = |Ri ∪ Bj ∪ Gk| − 1 for every vertex v ∈ Ri ∩ Bj ∩ Gk (although
it is important to note that Ri ∩Bj ∩Gk may be empty).

7

We can avoid dependence on n by rescaling. Let xijk = 1
n
|Ri ∩ Bj ∩ Gk|

for each i, j, k ∈ [3]. For fixed i ∈ [3], we find that |Ri| = n
∑3

j=1

∑3
k=1 xijk

(and similarly for |Bj| and |Gk|) and, for fixed i, j, k ∈ [3], we have

1

n
|Ri ∪Bj ∪Gk| =

∑
i′, j′, k′

i′=i or j′=j or k′=k

xi′j′k′ .

Using this notation and dividing through by n, the first condition in Question
3.1 becomes:

3∑
j=1

3∑
k=1

xijk <
1

2
∀i ∈ [3]

3∑
i=1

3∑
k=1

xijk <
1

2
∀j ∈ [3]

3∑
i=1

3∑
j=1

xijk <
1

2
∀k ∈ [3]

In linear programs, the condition statements must consist of weak, rather
than strict, inequalities in order to guarantee that the space of feasible solu-
tions is closed and, if this space is non-empty, that an optimal solution exists.
Relaxing the above conditions to allow equality will increase the space of fea-
sible solutions. As the maximum value of α for our original problem will be
at most the maximum value of α for the relaxed problem, showing that α < 5

6

for the relaxed problem is sufficient to prove Theorem 1.6.
The second condition holds whenever Ri ∩ Bj ∩ Gk is non-empty. We

obtain: 
∑

i′, j′, k′

i′=i or j′=j or k′=k

xi′j′k′ ≥ α +
1

n
if Ri ∩Bj ∩Gk 6= ∅

xijk = 0 otherwise.

We would like to remove the dependence on n completely. We therefore relax
the second condition by removing the 1

n
; we will obtain an upper bound of

α ≤ 5
6

which is sufficient to prove Theorem 1.6.
We encode whether Ri∩Bj ∩Gk is empty with an additional variable yijk

by setting:

yijk =

{
1 if Ri ∩Bj ∩Gk 6= ∅
0 otherwise.

8

The variables yijk represent the pattern of intersections. For a fixed intersec-
tion pattern, an upper bound on α in Question 3.1 can be found by solving
Linear Program 1.

maximise α

subject to
3∑
i=1

3∑
j=1

3∑
k=1

xijk = 1

3∑
j=1

3∑
k=1

xijk ≤
1

2
∀i ∈ [3]

3∑
i=1

3∑
k=1

xijk ≤
1

2
∀j ∈ [3]

3∑
i=1

3∑
j=1

xijk ≤
1

2
∀k ∈ [3]∑

i′, j′, k′

i′=i or j′=j or k′=k

xi′j′k′ − α ≥ 0 ∀i, j, k ∈ [3] such that yijk = 1

xijk = 0 ∀i, j, k ∈ [3] such that yijk = 0

xijk ≥ 0 ∀i, j, k ∈ [3]

Linear Program 1: 3 red, 3 blue and 3 green components.

We have already assumed that there are 3 components of each colour or
else we would be done by Lemma 2.3. Therefore, we only need to consider
intersection patterns that satisfy the following condition: for each i ∈ [3],
there exists j, k ∈ [3] such that yijk 6= 0 (and similarly for j and k).

Using a computer, we ran the linear program for all valid intersection
patterns (roughly 227 linear programs were run) and found the maximum
overall value of α and the optimal solutions corresponding to this value of α.
The maximum value was α = 5

6
.

All of the optimal solutions were subgraphs of the following graph: the
vertices are divided equally into six vertex sets. The edges within vertex sets
are coloured arbitrarily and the edges between vertex classes are coloured:

� Red: edges between V1 and V5 and edges between V2 and V4

� Blue: edges between V2 and V6 and edges between V3 and V5

9

� Green: edges between V1 and V3 and edges between V4 and V6

� Red or blue: edges between V1 and V6 and edges between V3 and V4

� Red or green: edges between V2 and V3 and edges between V5 and V6

� Blue or green: edges between V1 and V2 and edges between V4 and V5.

This graph is shown in Figure 2. In the figure, each circle represents
a vertex set, each containing approximately the same number of vertices.
The lines show the colours of the edges between vertex sets. Where the line
between two circles is striped, the edges between these two vertex sets may
be either of the two colours indicated (or a mixture of the two).

V1

V2V3

V4

V5 V6

Figure 2: Optimal solutions of Linear Program 1 are subgraphs of this graph.

3.2 Three components in two colours; four in the third

Now we consider the case where there are 3 red, 3 blue and 4 green com-
ponents and each green component has order exactly n

4
. The set-up is very

similar to the case above. For a given intersection pattern yijk, the only
difference in the linear program is the condition that each green component
has size exactly 1

4
(rather than just being at most 1

2
).

10

maximise α

subject to
3∑
i=1

3∑
j=1

4∑
k=1

xijk = 1

3∑
j=1

4∑
k=1

xijk ≤
1

2
∀i ∈ [3]

3∑
i=1

4∑
k=1

xijk ≤
1

2
∀j ∈ [3]

3∑
i=1

3∑
j=1

xijk =
1

4
∀k ∈ [4]∑

i′, j′, k′

i′=i or j′=j or k′=k

xi′j′k′ − α ≥ 0 ∀i, j ∈ [3], k ∈ [4] such that yijk = 1

xijk = 0 ∀i, j ∈ [3], k ∈ [4] such that yijk = 0

xijk ≥ 0 ∀i, j ∈ [3], k ∈ [4]

Linear Program 2: 3 red, 3 blue and 4 green components.

As above, we only considered intersection patterns where, for each i ∈ [3],
there exists j ∈ [3], k ∈ [4] such that yijk 6= 0 (and similarly for j and
k). Using a computer, we ran the linear program for all valid intersection
patterns (≈ 230 linear programs were run) and found that the maximum
overall value of α was 3

4
. As 3

4
is strictly smaller than 5

6
, we may conclude

that Theorem 1.6 holds in the case where there are four components in one
colour and three components in the other two colours.

4 Proof of lower bound

In this section, we give constructions to prove the lower bound given in
Theorem 1.7.

Proof of Theorem 1.7. We will give a separate construction for each residue
class modulo 6, beginning with the case where n = 6q for some q ∈ N. In
each construction, the edges inside vertex classes can be coloured arbitrarily
and so we will only specify the colours of edges between vertex classes.

11

Case: n = 6q. We will construct a graph G of order n with δ(G) =
⌊
5
6
n
⌋
−2.

We will also show that there is a 3-colouring of the edges of G such that
every monochromatic component has order strictly less than n

2
. The colours

will be red, blue and green.
Partition the vertices into 6 sets V1, . . . , V6 with the following sizes:

� |V1| = |V3| = |V5| = q − 1

� |V2| = |V4| = |V6| = q + 1.

Observe that |V1|+ · · ·+ |V6| = 6q = n. There are no edges between:

� V1 and V4

� V2 and V5

� V3 and V6.

All other edges are present (including all edges inside vertex classes). This
means that each vertex in V1 ∪ V3 ∪ V5 has degree 5q − 2 and each vertex in
V2 ∪ V4 ∪ V6 has degree 5q. Therefore δ(G) = 5q − 2 =

⌊
5
6
n
⌋
− 2 as required.

It remains to construct a 3-colouring of the edges in which every monochro-
matic component has order strictly less than n

2
. We colour edges between

vertex classes as follows:

� Red: edges between V2 and V6 and edges between V3, V4 and V5

� Blue: edges between V2 and V4 and edges between V1, V5 and V6

� Green: edges between V4 and V6 and edges between V1, V2 and V3.

G is the graph defined by this colouring (see Figure 3).
In this colouring, the two largest red components (the components which

contain contain vertices from at least two vertex classes) have orders 2q + 2
and 3q−1. Similarly, the two largest blue components have orders 2q+2 and
3q − 1 and the two largest green components have orders 2q + 2 and 3q − 1.
As n

2
= 3q, all monochromatic components have order strictly less than n

2
as

required.
For the remaining residue classes modulo 6, we construct similar graphs

with δ(G) =
⌊
5
6
n
⌋
− c for some constant c ∈ {1, 2} that depends on the

residue class.

Case: n = 6q + 1. Partition the vertices into 6 sets.

� |V1| = |V2| = |V3| = q + 1

12

V1

V2V3

V4

V5 V6

Figure 3: The graph G for n = 6q.

� |V4| = q

� |V5| = |V6| = q − 1.

We colour edges in the same way as in Figure 3 to get the graph G. (Note
that the number of vertices in each set is different from the case where
n ≡ 0 mod 6.) The largest monochromatic component has order 3q < n

2

and δ(G) = 5q − 1 =
⌊
5
6
n
⌋
− 1.

Case: n = 6q + 2. Partition the vertices into 8 sets.

� |V1| = q − 4

� |V2| = |V3| = |V5| = |V6| = q+ 1

� |V4| = q − 2

� |V7| = |V8| = 2.

We colour edges between vertex classes as follows to get the graph G (see
Figure 4):

� Red: edges between V2 and V6, edges between V3, V4 and V5 and edges
between V7 and V1 ∪ V2 ∪ V6

� Blue: edges between V2 and V4, edges between V3 and V7 and edges
between V1, V5, V6 and V8

� Green: edges between V1, V2 and V3, edges between V8 and V2 ∪ V3,
edges between V4 and V6 and edges between V5 and V7.

13

Note that this example still holds if the colours of some or all of the edges
between certain vertex classes are changed - edges between V1 and V8 may
also be green and edges between V1 and V2 ∪ V6 may also be red.

V1

V2V3

V4

V5 V6

V7 V8

Figure 4: The graph G for n = 6q + 2.

We see that the largest monochromatic component has order 3q = n
2
− 1

and δ(G) = 5q =
⌊
5
6
n
⌋
− 1.

Case: n = 6q + 3. Partition the vertices into 6 sets.

� |V1| = |V2| = |V3| = q + 1

� |V4| = |V5| = |V6| = q.

We colour edges between the vertex classes as in Figure 3 to get the graph
G. We see that the largest monochromatic component has order 3q + 1 < n

2

and δ(G) = 5q + 1 =
⌊
5
6
n
⌋
− 1.

Case: n = 6q + 4 Partition the vertices into 8 sets.

� |V1| = q − 3

� |V2| = |V3| = |V5| = |V6| = q+ 1

� |V4| = q − 1

� |V7| = |V8| = 2.

14

We colour the edges between the vertex classes as in Figure 4 to get
the graph G. We see that the largest monochromatic component has order
3q + 1 < n

2
and δ(G) = 5q + 2 =

⌊
5
6
n
⌋
− 1.

Case: n = 6q + 5. Partition the vertices into 8 sets.

� |V1| = q − 1

� |V2| = |V3| = |V5| = |V6| = q+ 1

� |V4| = q

� |V7| = 1

� |V8| = 1

We colour the edges between vertex classes as in Figure 4 to get the graph
G. We see that the largest monochromatic component has order 3q + 2 < n

2

and δ(G) = 5q + 3 =
⌊
5
6
n
⌋
− 1. �

It is worth noting that, as n→∞, the graphs shown in Figure 3 (correspond-
ing to the cases where n ≡ 0, 1, 3 mod 6) and Figure 4 (where n ≡ 2, 4, 5
mod 6) are close to the graph in Figure 5. This graph has six vertex classes

V1

V2V3

V4

V5 V6

Figure 5: The limit graph of G for for all residue classes modulo 6.

of equal size with the edges are coloured as stated below and is one of the
optimal cases found in Section 3.

� Red: edges between V2 and V6 and edges between V3, V4 and V5.

� Blue: edges between V2 and V4 and edges between V1, V5 and V6.

15

� Green: edges between V4 and V6 and edges between V1, V2 and V3.

� Red, blue or green: edges within vertex classes.

The graphs given in the proof of Theorem 1.7 are by no means unique.
For each residue class, we can find other graphs G′ with δ(G′) =

⌊
5
6
n
⌋
− c

for some small c that have no monochromatic component covering half of
the vertices. Indeed, for each of the optimal graphs found in Section 3, it is
possible to find some such G′ which is close to it as n→∞.

It is also worth remarking that the constructions used in the proof of
Theorem 1.7 are sharp in some cases. Suppose that there is a graph G on n
vertices with no monochromatic component of order n

2
and δ(G) = 5

6
n − a

for some a. Theorem 1.6 tells us that a > 0. If G′ is a t-blow-up of G, then
G′ has no monochromatic component of order tn

2
. By Lemma 2.2, we find

δ(G′) = tδ(G) + (t− 1)

=
5

6
nt− at+ (t− 1)

and Theorem 1.6 tells us that δ(G′) < 5
6
tn. Combining these inequalities

gives a > 1 − 1
t

for every t ∈ N and so a ≥ 1. Hence it follows that
δ(G) ≤

⌊
5
6
n− 1

⌋
=
⌊
5
6
n
⌋
− 1. In the proof of Theorem 1.7, the graphs given

for n ≡ 1, 2, 3, 4, 5 mod 6 each had minimum degree
⌊
5
6
n
⌋
− 1.

5 Counterexamples for infinitely many k

In this section, we will disprove Conjecture 1.3 for all prime powers k ≥ 3.
(We initially constructed a counterexample only for k = 3. Building on an
idea of DeBiasio [1], we subsequently extended the construction to infinitely
many k1.)

The affine plane of order k is the decomposition of the edges of Kk2 into
k + 1 families of k vertex-disjoint Kk. Affine planes exist whenever k is a
prime power. Given an affine plane, we may colour the edges of each family
with a different colour. Figure 6 shows the affine plane for k = 3, with the
vertex families being:

� Red: {v1, v2, v3}, {v4, v5, v6} and {v7, v8, v9}

� Blue: {v1, v4, v7}, {v2, v5, v8} and {v3, v6, v9}

� Green: {v1, v6, v8}, {v2, v4, v9} and {v3, v5, v7}
1DeBiasio and Krueger independently went on to produce a set of counterexamples [2].

16

� Yellow: {v1, v5, v9}, {v2, v6, v7} and {v3, v4, v8}.

Note that, for clarity, not all edges between vertices in the same vertex set
are shown. For instance, the red edges between v1 and v3 are missing from
Figure 6.

v1 v3

v4 v6

v7 v9

v2

v5

v8

Figure 6: Affine plane when k = 3.

Let F be one of these families of edges. If we delete the edges of F ,
then each of the vertices has k2 − k neighbours and the edges are coloured
using exactly k different colours. Let H be this graph together with the
edge-colouring. For example, in Figure 7 for k = 3, F is the yellow family.

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 7: The graph H when k = 3 and F is the yellow family.

We will construct the graph G from H by deleting a set S of k carefully
chosen vertices and then blowing up the remaining vertices into vertex sets.

17

Pick any monochromatic component C in H. The vertices of C are
{u1, . . . , uk}. We formed H by deleting the edges of F , a family of k disjoint
Kk, from Kk2 . Each ui ∈ C is in a different Kk of F . Let w be another
vertex in the same Kk of F as u1. We take S to be the set {w, u2, . . . , uk}.

If we delete the vertices of S from H, then there are k2 − k vertices left
and each of these has (k− 1)2 neighbours. We form the graph G by blowing
up this graph so each vertex set contains n

k2−k where n is some multiple of
k2 − k. We may colour the edges of G as follows: the edges between vertex
sets inherit their colour from the edges of H and the edges within vertex sets
are coloured arbitrarily.

Figure 8 shows the case where k = 3 and F is the yellow family. We
choose the green component consisting of v1, v6 and v8 as the basis for the
set S and choose v6 to be u1. As v2 lies in the same yellow component of the
affine plane as v6, we choose v2 to be w. Then S = {v1, v2, v8} and these are
the vertices we remove from H before blowing up the remaining vertices into
vertex sets. All edges between vertex sets are present in Figure 8.

V3

V4 V5 V6

V7 V9

Figure 8: The graph G when k = 3.

Each vertex in G has degree n(1− k−2
k2−k)−1. Note that, if n is sufficiently

large, then n(1− k−2
k2−k)−1 ≥ n(1− k−1

k2
). Currently, the largest monochromatic

component of G has order exactly n
k−1 . However, by slightly perturbing

the sizes of the vertex sets, we can ensure that the largest monochromatic
component of G has strictly fewer than n

k−1 vertices.
Let n = k(k− 1)x+ 1 where x ≥ 2k. In the graph G described above, let

the vertex sets have orders as follows:

� The vertex set corresponding to u1 has order x− (k − 2)

� The k− 1 vertex sets which correspond to the k− 1 vertices that were
in the same component of colour k as w have order x+ 1

18

� All other vertex sets have order x.

Figure 9 shows the perturbed graph G for the case where k = 3.

x

x+ 1 x x− 1

x x+ 1

Figure 9: The perturbed graph G when k = 3.

Each of the k − 1 vertex sets of order x + 1 was in a different clique of
colour k + 1 in the affine plane. Therefore, each monochromatic component
of G contains at most one of them, with the exception of the colour k clique
that contains all of them. This clique has order (k − 1)(x + 1) ≤ kx if
x ≥ k − 1.

The only monochromatic cliques that contain k vertex sets and a vertex
set of order x+1 must also contain the vertex set of size x−(k−2) and hence
have order kx− k − 3 ≤ kx. This is because the monochromatic component
is not colour k and so has to intersect with each of the cliques of colour k in
the affine plane. The only vertex set left in its colour k clique is the one of
order x− (k− 2). Hence every monochromatic component of G has order at
most kx < n

k−1 .
The minimum degree of the graph G is (k − 1)2x + x − 1 because every

vertex set is missing exactly k− 2 other vertex sets and at most one of these

has order x+1. We further have δ(G) ≥ (k2−2k+2)x−1 ≥
(

1− k−2
k(k−1)

)
n−2

as required.

6 Conclusion

For any n ∈ N and k ≥ 3, let fk(n) be the maximum value such that there
exists a graph G on n vertices with δ(G) = fk(n) and a k-edge-colouring of
G where every monochromatic component has order strictly less than n

k−1 .

Theorem 1.6 implies that f3(n) <
⌊
5
6
n
⌋
. In the proof of Theorem 1.7, we

19

found

f3(n) =

⌊
5

6
n

⌋
− 1 if n ≡ 1, 2, 3, 4, 5 mod 6

f3(n) ∈
{⌊

5

6
n

⌋
− 2,

⌊
5

6
n

⌋
− 1

}
if n ≡ 0 mod 6.

We believe that f3(n) =
⌊
5
6
n
⌋
− 1 for all residue classes but we were unable

to find an example when n ≡ 0 mod 6.
Theorems 1.6 and 1.7 prove that Conjecture 1.3 is false for k = 3 and

that the correct constant is 5
6
. It is natural to ask what the correct bound is

for other values of k. From the proof of Theorem 1.8, we find that

fk(n) ≥ n

(
1− k − 2

k(k − 1)

)
− 2 +

k − 2

k(k − 1)
if n ≡ 1 mod k(k − 1)

for infinitely many values of k.
We believe that the graphs constructed in the proof of Theorem 1.8 are

close to optimal and hence we make the following conjecture.

Conjecture 6.1. Fix k ≥ 3. Let G be any graph with n vertices and

δ(G) ≥
(

1− k−2
k(k−1)

)
n. If the edges of G are k-coloured, then there exists

a monochromatic component of order at least n
k−1 .

Although our methods for proving the upper bound extend in principle to
4 or more colours, the computational time needed to run all of the required
linear programs makes it infeasible to do so. For example, when k = 4, a
naive implementation of our approach would entail solving around 2240 linear
programs. It would be nice to see whether Conjecture 6.1 is correct.

Note: After submitting the paper, we discovered that Rahimi [8] had
independently proved Theorem 1.6.

Acknowledgements

We would like to thank Louis DeBiasio for his suggestions as to how a general
counterexample to Conjecture 1.3 might be constructed. We would also like
to thank the two anonymous referees for their helpful comments.

References

[1] L. DeBiasio, personal communication, September 2019.

20

[2] L. DeBiasio and R. Krueger, A note about monochromatic components
in graphs of large minimum degree, https://arxiv.org/abs/2006.08775
(2020).

[3] L. DeBiasio, R. Krueger and G. Sárközy, Large monochromatic compo-
nents in multicolored bipartite graphs, http://arxiv.org/abs/1806.05271
(2018).

[4] A. Gyárfás, Partition covers and blocking sets in hypergraphs (in
Hungarian), PhD Thesis, Commun. Comput. Autom. Inst. Hungarian
Academy of Sciences 71 (1977).

[5] A. Gyárfás, Large monochromatic components in edge colorings of
graphs: a survey, Ramsey theory, Progress in Mathematics 285,
Birkhäuser/Springer, New York (2011), 77–96.

[6] A. Gyárfás and G. Sárközy, Star versus two stripes Ramsey numbers
and a conjecture of Schelp, Combinatorics, Probability and Computing
21 (2012), 179–186.

[7] A. Gyárfás and G. Sárközy, Large monochromatic components in edge
colored graphs with a minimum degree condition, The Electronic Journal
of Combinatorics 24 (2017), P3.54.

[8] Z. Rahimi, Large monochromatic components in 3-colored non-complete
graphs, Journal of Combinatorial Theory, Series A 175 (2020).

A Implementing the linear programs

The main obstacle in implementing Linear Programs 1 and 2 was the large
number of possible intersection patterns (227 and 236 respectively) that needed
to be checked. We therefore used the implicit symmetry of the problem to
reduce the number of linear programs which needed to be run.

Recall that the intersection pattern is given by the variables (yijk) where

yijk =

{
1 if Ri ∩Bj ∩Gk 6= ∅
0 otherwise.

We may assume that there are at least 3 components of each colour (Lemma
2.3) and that each component intersects at least one component in each of
the other colours (Lemma 2.1).

21

Given an intersection pattern (yijk), if there exists i such that yijk = 0 for
all j and all k, then this corresponds to the red component Ri being empty
(i.e there are at most two red components). It is therefore not necessary
to run the linear program for this intersection pattern. (Indeed, the linear
program has a value of α = 7

8
which is optimal if we do not specify that there

must be at least three components of each colour.)
We therefore excluded intersection patterns which corresponded to one of

the components being empty. As this check only requires knowledge of the
current intersection pattern, it is straightforward to do it when the intersec-
tion pattern has been generated.

There are two sources of symmetry in the problem: between components
of the same colour and between components of different colours. Let us
consider both.

Firstly, suppose we are given two intersection patterns, (yijk) and (y′ijk).
Suppose that, for some t ∈ [2] and every j and k, we have yijk = y′(i+t)jk where

i + t is calculated modulo 3. Any optimal solution for (yijk) will also be an
optimal solution for (y′ijk) but with the red components relabelled. Therefore
we only need to run the linear program for one of these intersection patterns
to obtain the optimal solution for both. We can extend this idea to any
intersection patterns which are the same up to relabelling of the components.

Secondly, if we have two intersection patterns (yijk) and (y′ijk) such that,
for every k, we have yijk = y′jik, then any optimal solution for (yijk) will
also be an optimal solution for (y′ijk) but with the red and blue components
swapped. Again we would only need to run the linear program for one of
these intersection patterns to obtain the optimal solution for both. In the
case where all three colours have exactly three components, all three colours
are interchangeable; in the case where there are three red, three blue and
four green components, only the red and blue components may be switched.

Unlike checking whether an intersection pattern corresponds to one of the
components being empty, finding intersection patterns which are the same up
to symmetry requires knowledge of both the current intersection pattern and
other possible intersection patterns. Memory constraints make it impractical
to generate all non-equivalent intersection patterns before running the linear
programs. Instead, we consider only a subset of symmetries that we can
handle efficiently using a version of lexicographic ordering.

First, for simplicity, suppose that we only have two colours, red and blue,
and that the intersection matrix is given by Z = (zij) where zij represents
whether or not Ri ∩ Bj is empty. Swapping two rows in Z corresponds to
swapping the labels of two red components and similarly for columns and

22

blue components. We define the lex value of Z to be

lex(Z) =
2∑
i=0

2∑
j=0

zij100−i−j.

Swapping pairs of rows and/or pairs of columns in Z can change its lex
value. Configurations with more entries that are 1 in the top left corner of
the matrix will give higher lex values that those where the top left corner
contains many 0s.

By only swapping pairs of rows or pairs of columns that strictly increase
the value of lex(Z), we will eventually reach Z ′, a configuration of Z where
the lex value is maxlex(Z), the unique maximum possible lex value of Z.
Both Z and Z ′ are possible intersection patterns and, because we obtained
Z ′ from Z through a series of row and column swaps, Z and Z ′ are equivalent
intersection patterns.

We only run a linear program on Z if lex(Z) = maxlex(Z). This signifi-
cantly reduces the number of linear programs that need to be run whilst still
ensuring that at least one linear program is run for each class of equivalent
intersection patterns.

Now consider the situation we actually have where the intersection pat-
tern is given by Y = (yijk). Whilst we could extend the definition of lex
value to a three-dimensional matrix, it proved cumbersome to calculate the
maximum lex. Instead, we calculated lex(Y (k)) where Y (k) is the 3 × 3 ma-
trix obtained by restricting to a fixed value of k. We ran the linear program
on Y if lex(Y (k)) ≥ lex(Y (k+1)) for every k and lex(Y (1)) = maxlex(Y (1)).
This method eliminated sufficiently many intersection patterns to make the
computation tractable.

23

