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Li, Nikiforov and Schelp [12] conjectured that any 2-edge coloured graph G with

order n and minimum degree δ(G) > 3n/4 contains a monochromatic cycle of length

`, for all ` ∈ [4, dn/2e]. We prove this conjecture for sufficiently large n and also find
all 2-edge coloured graphs with δ(G) = 3n/4 that do not contain all such cycles.

Finally, we show that, for all δ > 0 and n > n0(δ), if G is a 2-edge coloured graph
of order n with δ(G) ≥ 3n/4, then one colour class either contains a monochromatic

cycle of length at least (2/3 + δ/2)n, or contains monochromatic cycles of all lengths

` ∈ [3, (2/3− δ)n].

1. Introduction

A well-known theorem of Dirac [8] states that a graph with order n ≥ 3 and minimum

degree at least n/2 contains a cycle Cn on n vertices.
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Theorem 1.1 (Dirac [8]). Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2, then G is

hamiltonian.

In fact, as noted by Bondy [5], an immediate corollary of the following theorem is that

such a graph will contain cycles of all lengths ` ∈ [3, n]. We call such a graph pancyclic.

Theorem 1.2 (Bondy [5]). If G is a hamiltonian graph of order n such that |E(G)| ≥
n2/4, then either G is pancyclic or n is even and G is isomorphic to Kn/2,n/2.

Corollary 1.3. Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2, then either G is

pancyclic or n is even and G is isomorphic to Kn/2,n/2. In particular, if δ(G) > n/2,

then G is pancyclic.

Given a graph G with edge set E(G), a 2-edge colouring of G is a partition E(G) =

E(R) ∪ E(B), where R and B are spanning subgraphs of G. We define a k-edge colour-

ing of G similarly. In a recent paper [12], Li, Nikiforov and Schelp made the following

conjecture, which would give an analogue of Corollary 1.3 for 2-edge coloured graphs.

Conjecture 1.4 (Li, Nikiforov and Schelp [12]). Let n ≥ 4 and let G be a graph

of order n with δ (G) > 3n/4. If E(G) = E(R) ∪ E(B) is a 2-edge colouring of G, then

for each ` ∈ [4, dn/2e], either C` ⊆ R or C` ⊆ B.

Note that we may only ask for ` in this range. For example, take the 2-colouring of K5

consisting of a red and a blue C5 and blow it up, that is, replace each vertex of K5

with an independent set of p vertices and each edge with the complete monochromatic

bipartite graph Kp,p of the same colour. The resulting graph G has minimum degree

δ(G) = 4|G|/5 but no monochromatic C3. Similarly letting R be the complete bipartite

graph with vertex classes of order bn/2c and dn/2e, and letting B be the complement,

we obtain a 2-colouring of the complete graph Kn with no monochromatic odd cycle C`
with ` > dn/2e. Li, Nikiforov and Schelp [12] proved the following partial result.

Theorem 1.5 (Li, Nikiforov and Schelp [12]). Let ε > 0, let G be a graph of

sufficiently large order n, with δ (G) > 3n/4. If E(G) = E(R)∪E(B) is a 2-edge colouring

of G, then for all ` ∈ [4, b(1/8− ε)nc], either C` ⊆ R or C` ⊆ B.

We will prove Conjecture 1.4 for sufficiently large n, but first we will define a set of

2-edge coloured graphs showing that the degree bound 3n/4 is tight.

Definition. Let n = 4p and let G be a graph isomorphic to Kp,p,p,p. A 2-bipartite

2-edge colouring of G is a 2-edge colouring E(G) = E(R) ∪ E(B) such that both R and

B are bipartite.

If G ∼= Kp,p,p,p and E(G) = E(R) ∪ E(B) is a 2-bipartite 2-edge colouring of G, let

V1 ∪ V2 be the bipartition of R and W1 ∪W2 be the bipartition of B. Let Ui,j = Vi ∩Wj
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for all i, j ∈ {1, 2}. Then the Ui,j are four independent sets of G covering all vertices,

and so must be the four independent sets of order p. So, a 2-bipartite 2-edge colouring

of Kp,p,p,p forces a labelling of the independent sets {Ui,j : i, j ∈ {1, 2}} such that:

• all edges between U1,1 and U1,2 and between U2,1 and U2,2 are blue;

• all edges between U1,1 and U2,1 and between U1,2 and U2,2 are red;

• edges between U1,1 and U2,2 and between U2,1 and U1,2 can be either colour.

If 4 divides n, then the graph Kn/4,n/4,n/4,n/4 with a 2-bipartite 2-edge colouring

has minimal degree 3n/4 and no monochromatic odd cycles. Note that for a fixed la-

belling of this graph, there are 2n
2/8 2-bipartite 2-edge colourings of Kn/4,n/4,n/4,n/4.

However, Kn/4,n/4,n/4,n/4 has 24 ((n/4)!)
4

= 2O(n logn) automorphisms and so there are

2n
2/8+O(n logn) distinct 2-bipartite 2-edge colourings of Kn/4,n/4,n/4,n/4. In fact we will

prove that Kn/4,n/4,n/4,n/4 is the only extremal graph; although any 2-bipartite 2-edge

colouring of Kn/4,n/4,n/4,n/4 is extremal. We state our main result now.

Theorem 1.6. There exists a positive integer n0 with the following property. Let G be

a graph of order n > n0 with δ (G) ≥ 3n/4. Suppose that E(G) = E(RG) ∪ E(BG) is a

2-edge colouring of G. Then either C` ⊆ R or C` ⊆ B for all ` ∈ [4, dn/2e], or n = 4p,

G ∼= Kp,p,p,p and the colouring is a 2-bipartite 2-edge colouring.

We define the monochromatic circumference of a k-edge coloured graph to be the

length of its longest monochromatic cycle. Li, Nikiforov and Schelp [12] also posed the

following question.

Question 1.7. Let 0 < c < 1 and n be sufficiently large integer. If G is a 2-coloured

graph of order n with δ(G) > cn, what is the minimum possible monochromatic circum-

ference of G ?

For graphs G with δ(G) ≥ 3n/4 we show that the monochromatic circumference is at

least (2/3 + o(1))n. In fact, we show the following result.

Theorem 1.8. For every 0 < δ ≤ 1/180, there exists an integer n0 = n0(δ) such that

the following holds. Let G be a graph of order n > n0 with δ(G) ≥ 3n/4. Suppose that

E(G) = E(RG) ∪ E(BG) is a 2-edge colouring of G. Then either G has monochromatic

circumference at least (2/3 + δ/2)n, or one of RG and BG contains cycles of all lengths

` ∈ [3, (2/3− δ)n].

Note that the last statement requires monochromatic cycles of all lengths in some

prescribed set of integers, as in Theorem 1.6. However, here these cycles are required to

be of the same colour. Also, the upper bound on δ is of a technical nature, and we are

only interested in small δ. There are similar technical bounds throughout this paper.

For integers s ≤ t, we define the following 2-edge coloured graph Fs,t, which with

t = 2s shows that Theorem 1.8 is asymptotically sharp.
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Definition. For s ≤ t, let Fs,t be the 2-edge coloured complete graph on s+ t vertices

in which the blue edges form the complete bipartite graph Ks,t and all the other edges

are red.

The longest cycle in the red subgraph of Fs,t has length t. The blue subgraph is bipartite

and has circumference 2s. Thus the monochromatic circumference of Fs,t is max{t, 2s}.
Let n = 3s. Then |Fs,2s| = n, δ(Fs,2s) = n− 1, and Fs,2s has monochromatic circum-

ference 2s = 2n/3. Hence Theorem 1.8 is asymptotically sharp.

We shall show that the linear dependence between the two occurrences of δ in Theo-

rem 1.8 is correct. Fix δ > 0. Suppose that n > 1/2δ, and letG ∼= Fn−d(2/3−δ)ne,d(2/3−δ)ne.

Then the monochromatic circumference of G is 2 b(1/3 + δ)nc ≥ (2/3 + δ)n. However, G

contains no monochromatic cycle of odd length ` ∈ {d(2/3− δ)ne+ 1, d(2/3− δ)ne+ 2}.
In Section 2, we will introduce some theorems that will be used in our proofs. We

will then prove Theorem 1.6 in two parts. Section 3 will deal with short (up to constant

length) cycles and Section 4 will deal with long cycles. This will rely on a number of

lemmas, whose proofs are postponed to Sections 5 and 6. In Section 7 we will look at

the length of the longest monochromatic cycle, and in particular prove Theorem 1.8. We

conclude in Section 8 with some open problems.

2. Results used in the proof

In the proof of Theorem 1.6, we shall use well-known extremal graph theory results

and the regularity method to find long cycles. Before introducing these, we make some

preliminary definitions and notation.

For a graph G, we denote by e(G) its number of edges. Let X and Y be disjoint subsets

of V (G). We denote by G[X] the subgraph of G induced by the vertices of X. We also

denote by E(X,Y ) the set of edges joining X and Y , set e(X,Y ) := |E(X,Y )|, and let

G[X,Y ] be the bipartite subgraph of G with partite sets X and Y and edge set E(X,Y ).

For a set of vertices S, we denote by ΓG(S) the set of all vertices adjacent to some vertex

in S. We drop the subscript when there is no danger of confusion. We also write ΓG(v)

instead of ΓG({v}), and set dG(v) := |ΓG(v)|.

Definition. Let G be a graph and X and Y be disjoint subsets of V (G). The density

of the pair (X,Y ) is the value

d(X,Y ) :=
e(X,Y )

|X||Y |
.

We define a regular pair to be one where the density between not-too-small subsets of X

and Y is close to the density between X and Y .

Definition. Let ε > 0. Let G be a graph and X and Y be disjoint subsets of V (G). We

call (X,Y ) an ε-regular pair for G if, for all X ′ ⊆ X and Y ′ ⊆ Y satisfying |X ′| ≥ ε|X|
and |Y ′| ≥ ε|Y |, we have

|d(X,Y )− d(X ′, Y ′)| < ε.
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The next fact shows that almost all vertices in any regular pair have large degrees.

Fact 2.1. Let G be a graph and let (V1, V2) be an ε-regular pair for G with density

d := d(V1, V2). Then all but at most ε|V1| vertices v ∈ V1 satisfy |Γ(v)∩V2| ≥ (d−ε)|V2|.

This is particularly useful when we want to find paths of prescribed length in a regular

pair, as shown by the next lemma from [1, Lemma 10].

Lemma 2.2. For every 0 < β < 1 there is an m0(β) such that for every m > m0(β)

the following holds: Let G be a graph, and let V1, V2 be disjoint subsets of V (G) such that

|V1|, |V2| ≥ m. Furthermore, suppose that, for some ε satisfying 0 < ε < β/100, the pair

(V1, V2) is ε-regular for G, with density at least β/4.

Then, for every pair of vertices v1 ∈ V1, v2 ∈ V2 satisfying |Γ(v1)∩ V2|, |Γ(v2)∩ V1| ≥
βm/5, and for every i, 1 ≤ i ≤ m− 5εm/β, G contains a v1-v2 path of length 2i+ 1.

Combining Lemma 2.2 with Fact 2.1 yields the following straightforward consequence.

Corollary 2.3. For every 0 < ε < 10−5 there is an m0(ε) such that for every m > m0(ε)

the following holds: Let G be a graph, and let V1, V2, . . . , V` be disjoint subsets of V (G)

such that |V1|, |V2|, . . . , |V`| ≥ m. Suppose that all pairs (V1, V2), (V2, V3), . . . , (V`−1, V`),

(V`, V1) are ε-regular for G, with density at least
√
ε.

Then, Ci ⊂ G for every i, ` ≤ i ≤ (1− 5
√
ε)(`− 1)m, of the same parity as `.

We will use the following 2-coloured version of the Szemerédi Regularity Lemma (see,

for example, the survey paper of Komlós and Simonovits [11]) that is not hard to deduce

from the standard form of the regularity lemma [13].

Theorem 2.4 (Degree form of 2-coloured Regularity Lemma). For every ε > 0

and positive integer k0, there is an M = M (ε, k0) such that if G = (V,E) is any 2-edge

coloured graph and d ∈ [0, 1] is any real number, then there is k0 ≤ k ≤ M , a partition

(Vi)
k
i=0 of the vertex set V and a subgraph G′ ⊆ G with the following properties:

(R1) |V0| ≤ ε|V |,
(R2) all clusters Vi, i ∈ [k] := {1, 2, . . . , k}, are of the same size m ≤ dε|V |e,
(R3) dG′ (v) > dG (v)− (2d+ ε) |V | for all v ∈ V ,

(R4) e (G′ [Vi]) = 0 for all i ∈ [k],

(R5) for all 1 ≤ i < j ≤ k, the pair (Vi, Vj) is ε-regular for RG′ with a density either

0 or greater than d and ε-regular for BG′ with a density either 0 or greater than d,

where E(G′) = E(RG′) ∪ E(BG′) is the induced 2-edge colouring of G′.

Having applied the above form of the Regularity Lemma to a 2-edge coloured graph

G, we make the following definition, based on the clusters {Vi : 1 ≤ i ≤ k}. Note that

this definition depends on the parameters ε and d.

Definition. Given a graph G = (V,E) and a partition (Vi)
k
i=0 of V satisfying conditions
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(R1)–(R5) above, we define the (ε, d)-reduced 2-edge coloured graph H on vertex set

{vi : 1 ≤ i ≤ k} as follows: For 1 ≤ i < j ≤ k,

• let {vi, vj} be a blue edge of H when BG′ [Vi, Vj ] has density at least d;

• let {vi, vj} be a red edge of H when it is not a blue edge and RG′ [Vi, Vj ] has density

at least d.

Remark. Notice that the definition of the (ε, d)-reduced 2-edge coloured graph H is

non-symmetric in the following sense: On one hand, if {vi, vj} is a red edge of H, then

we know that RG′ [Vi, Vj ] has density at least d and BG′ [Vi, Vj ] has density less than d.

On the other hand, if {vi, vj} is a blue edge of H, then we know that RB′ [Vi, Vj ] has

density at least d, but we have no information about the density of RG′ [Vi, Vj ].

This asymmetry will never cause a problem in our arguments because we only use the

facts that a red edge {vi, vj} in H corresponds to RG′ [Vi, Vj ] with density at least d and

a blue edge {vi, vj} in H corresponds to BG′ [Vi, Vj ] with density at least d.

We aim to use matchings in the reduced graph H to find long cycles in G. To do so

we will use the following lemma.

Lemma 2.5. Given 0 < c < 1 and 0 < δ < 1 − c, let ε > 0 and d > 0 be sufficiently

small real numbers such that d ≥ ε1/3. Let G be a 2-edge coloured graph of sufficiently

large order n with a vertex partition (Vi)
k
i=0 satisfying conditions (R1)–(R5), and let H

be the corresponding (ε, d)-reduced 2-edge coloured graph.

Suppose that H has a monochromatic component C that contains a matching on (c+δ)k

vertices. Then

(a) G contains monochromatic cycles of length ` for all even 4k ≤ ` ≤ (c+ δ/2)n.

(b) If C also contains any odd cycle, then G contains monochromatic cycles of length `

for all 4k ≤ ` ≤ (c+ δ/2)n.

Furthermore, all cycles in (a) and (b) have the same colour as C.

Lemma 2.5 has by now a very standard proof using Lemma 2.2, which we omit here. The

interested reader can easily modify the proof given in [1, Section 5, p.696].

In the proof of Theorem 1.6, we shall frequently show that there is a subset S of V on

which one of RG or BG is hamiltonian, and apply Theorem 1.2. To prove hamiltonicity,

it will normally be sufficient to use Dirac’s Theorem (Theorem 1.1). However, we will

also need the following generalisation and one of its consequences.

Theorem 2.6 (Chvátal [7]). Let G be a graph of order n ≥ 3 with degree sequence

d1 ≤ d2 ≤ · · · ≤ dn such that

dk ≤ k <
n

2
⇒ dn−k ≥ n− k.

Then G contains a Hamilton cycle.
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Corollary 2.7. Let G be a graph of order n ≥ 3 with minimum degree δ(G) ≥ n/2 + 2.

Then, for every two vertices u, v, there is a u-v path containing all vertices of G.

In Section 5, we will need to use the following defect version of Tutte’s 1-factor The-

orem [14], due to Berge [2]. Here q(G) denotes the number of components of a graph G

of odd order.

Theorem 2.8 (Berge [2]). A graph G contains a set of independent edges covering

all but at most d of the vertices if, and only if,

q(G− S) ≤ |S|+ d

for all S ⊆ V .

The next result of Bollobás [3, p.150] will be used in Section 3, as will be the three

following results. Note that by the length of a path or a cycle we mean the number of its

edges.

Theorem 2.9 (Bollobás [3]). If G is a graph of order n, with e(G) > n2/4, then G

contains Ck for all k ∈ [3, dn/2e].

Theorem 2.10 (Bondy and Simonovits [6]). Let G be a graph of order n and let

k be an integer. If e(G) > 100kn1+1/k, then G contains a cycle of length 2k.

Theorem 2.11 (Erdős and Gallai [9]). If G is a graph with order n and circumfer-

ence at most L, then e(G) ≤ (n− 1)L/2. If G is a graph with order n and with no paths

of length at least L+ 1, then e(G) ≤ nL/2.

Theorem 2.12 (Györi, Nikiforov and Schelp [10]). Let k,m be positive integers.

There exist n0 = n0 (k,m) and c = c (k,m) > 0 such that for every nonbipartite graph G

on n > n0 vertices with minimum degree

δ(G) >
n

2 (2k + 1)
+ c,

if C2s+1 ⊆ G, for some k ≤ s ≤ 4k + 1, then C2s+2j+1 ⊆ G for every j ∈ [m].

3. Existence of short cycles

In this section we shall prove that unless we are in the extremal case, we have monochro-

matic cycles of all lengths ` ∈ [4,K] for a given integer K. To prove this we shall use the

following claim.

Claim 3.1. Let L be an integer. Let n be sufficiently large and let G be a graph of

order n with δ (G) ≥ 3n/4. Suppose that E(G) = E(R) ∪ E(B) is a 2-edge colouring

of G. If there is a monochromatic C3 or C5, then one of R,B contains C` for all odd

` ∈ [5, 2L+ 1].
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The proof of Claim 3.1 follows exactly the method used in [12] to show the existence of

short odd cycles. Note that we cannot appeal directly to Theorem 1.5, as the assumption

there is that δ(G) > 3n/4, whereas in Theorem 1.6 we assume only that δ(G) ≥ 3n/4.

Proof. Suppose first that ∆ (B) > n/2 + 4L. Let v be a vertex with dB (v) = ∆ (B),

and U = ΓB (v). If B[U ] contains a path of length 2L, then using the vertex v, there is a

blue C` for all ` ∈ [3, 2L+ 1]. Hence B[U ] does not contain a path of length 2L, and by

Theorem 2.11, we have e (B[U ]) ≤ L|U |. However, any vertex u ∈ U has at most n/4− 1

non-neighbours in U and so at least |U | − n/4 neighbours. Therefore,

e (G[U ]) =
1

2

∑
u∈U

dG[U ] (u)

≥ 1

2
|U |
(
|U | − n

4

)
>

1

2
|U |
(
|U |
2

+ 2L

)
.

Hence e (R[U ]) = e(G[U ])− e(B[U ]) > |U |2/4, and, consequently, by Theorem 2.9, R[U ]

has cycles of all lengths from 3 to |U |/2 ≥ 2L+ 1.

So we may assume that ∆ (B) ≤ n/2 + 4L, and hence

δ (R) ≥ n

4
− 4L >

n

6
+ c(1, L),

where c(1, L) is the constant from Theorem 2.12. Similarly we may assume that δ (B) >

n/6 + c(1, L). Suppose that there is a monochromatic C3 or C5 and assume without loss

of generality that it is red. Applying Theorem 2.12 to R with k = 1 and m = L, there is

a red C` for all odd ` ∈ [5, 2L+ 1] as required.

Now we prove the main result of this section.

Lemma 3.2. Let K be an integer. Let n be sufficiently large and let G be a graph of

order n with δ (G) ≥ 3n/4. If E(G) = E(R) ∪ E(B) is a 2-edge colouring of G, then

either C` ⊆ R or C` ⊆ B for all ` ∈ [4,K], or n = 4p, G ∼= Kp,p,p,p and the colouring of

G is a 2-bipartite 2-edge colouring.

Proof. Note that the existence of monochromatic C` for all even ` ∈ [4,K] is immediate

from Theorem 2.10 because one colour class has at least e(G)/2 ≥ 3n2/16 edges. Hence,

by Claim 3.1, it is sufficient to prove that either there is a monochromatic C3 or C5, or

n = 4p, G ∼= Kp,p,p,p and the colouring is a 2-bipartite 2-edge colouring.

Suppose that, in fact, none of these occur. Any 2-edge colouring of K5 contains a

monochromatic C3 or C5. Hence we may assume that K5 * G. Since e(G) ≥ 3n2/8 =

t4(n), by Turán’s Theorem, we must therefore have that G ∼= T4(n). However, δ(G) ≥
3n/4 implies that n = 4p, and hence G ∼= Kp,p,p,p. Let Ui, 1 ≤ i ≤ 4, be the independent

sets of G of order p.

We may assume that R is not bipartite. Let C = v1v2 . . . vr be a shortest odd cycle of
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R; we may assume that r ≥ 7. We may properly 4-vertex colour C by setting c(vi) = j

when vi ∈ Uj . As C is an odd cycle, there must be three consecutive vertices with

different colours under c. Without loss of generality, assume that c(v3) = 1, c(v4) = 2

and c(v5) = 3.

We will aim to show that G[V (C)] contains a triangle or 5-cycle which is edge-disjoint

from C. Then we may assume that an edge of the triangle or 5-cycle is red, else we have

a monochromatic C3 or C5. But this red edge, together with C, will create a shorter red

odd cycle than C, contradicting our assumption that C was minimal. We shall find such

a triangle or 5-cycle by case analysis.

If c(v1) is 2 or 4, then G contains the triangle v1v3v5, as these vertices lie in different

Uj . Hence c(v1) ∈ {1, 3}, and similarly c(v7) ∈ {1, 3}.
If c(v6) = 4, then G contains the triangle v1v4v6. So we may assume that c(v6) 6= 4 and

similarly c(v2) 6= 4. Hence c(v2) ∈ {2, 3} and c(v6) ∈ {1, 2}. If c(v2) = 3 and c(v6) = 1,

then G contains the triangle v2v4v6. Hence, by symmetry, we may assume that c(v2) = 2

and c(v6) ∈ {1, 2}.
If c(v7) = 1, then G contains the triangle v2v5v7. Hence c(v7) = 3.

If |C| = 7, then v1v7 ∈ E(C), and c(v1) = 1 because c is a proper colouring of G. But

then v1v5v2v7v4 is a 5-cycle in G, not containing any edges of C.

So we may assume that |C| > 7. If c(v1) = 1, then v1v4v7 is a triangle in G which is

edge-disjoint from C. Hence c(v1) = c(v7) = 3. But now, if c(v6) = 1, then G contains

the triangle v1v4v6, while if c(v6) = 2, then G contains the triangle v1v3v6, giving a

contradiction.

Hence, in fact, our assumption was false, and one of the cases of the lemma holds.

4. Existence of long cycles

In order to find long monochromatic cycles, we will use the regularity method. Recall

from Section 2 that having applied the Regularity Lemma to the graph G on n vertices,

we define a reduced graph H on k vertices. Note that the Regularity Lemma implies that

the minimum degree of the reduced graph H is not too much smaller than k
n times the

minimum degree of G.

At this point we use the following lemma, proved in Section 5 using extremal argu-

ments, that shows that either there is a monochromatic component of H containing a

large matching, or the reduced graph H has one of two particular forms.

Lemma 4.1. Let 0 < δ < 1/36 and let G be a graph of sufficiently large order n with

δ(G) ≥ (3/4− δ)n. Suppose that we are given a 2-edge colouring E(G) = E(R) ∪E(B).

Then one of the following holds.

(i) There is a component of R or B which contains a matching on at least (2/3 + δ)n

vertices.

(ii) There is a set S of order at least (2/3− δ/2)n such that either ∆(R[S]) ≤ 10δn or

∆(B[S]) ≤ 10δn.

(iii) There is a partition V (G) = U1 ∪ · · · ∪U4 with min
i
|Ui| ≥ (1/4− 3δ)n such that there

are no red edges from U1 ∪U2 to U3 ∪U4 and no blue edges from U1 ∪U3 to U2 ∪U4.
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In the first case, we will need the following lemma, which is also proved in Section 5.

Lemma 4.2. Let 0 < δ < 1/36 and let G be a graph of sufficiently large order n with

δ(G) ≥ (3/4− δ)n. Suppose that we are given a 2-edge colouring E(G) = E(R) ∪E(B).

Suppose that there is a monochromatic component containing a matching on at least

(2/3 + δ)n vertices. Then there is a monochromatic component C containing a matching

on at least (1/2 + δ)n vertices such that either C contains an odd cycle, or |V (C)| ≥
(1− 5δ)n.

To finish our argument in this case we shall use Lemma 2.5 and the next lemma.

Lemma 4.3. Let n be sufficiently large, and let G be a graph of order n with δ (G) ≥
3n/4. Suppose that E(G) = E(R) ∪ E(B) is a 2-edge colouring of G.

(a) If B has an independent set S with |S| > n/2, then C` ⊆ R for all ` ∈ [3, |S|].
(b) If B is bipartite, then either C` ⊆ R for all ` ∈ [4, dn/2e], or n is divisible by four,

G ∼= Kn/4,n/4,n/4,n/4 and the colouring is a 2-bipartite 2-edge colouring.

Both statements remain valid when we interchange B and R.

By analysing the original graph G, we will use the following two lemmas to show that,

in cases (ii) and (iii) of Lemma 4.1, we will have the desired monochromatic cycles.

Lemma 4.4. Given 0 < δ < 1/144, let ε and d be real numbers such that 0 < ε� d�
δ, where, as usual, � means ‘sufficiently smaller than’. Let G be a graph of sufficiently

large order n with δ (G) ≥ 3n/4. Suppose that E(G) = E(RG) ∪ E(BG) is a 2-edge

colouring of G, (Vi)
k
i=0 is a partition of V (G) satisfying conditions (R1)–(R5), and let

H be the corresponding (ε, d)-reduced 2-edge coloured graph.

(a) If there is a set S ⊆ V (H) of order at least (2/3− δ/2) k such that ∆(RH [S]) ≤ 10δk,

then G contains a blue cycle of length ` for all ` ∈ [3, (2/3− δ)n].

(b) If there is a set S ⊆ V (H) of order at least (2/3− δ/2) k such that ∆(BH [S]) ≤ 10δk,

then G contains a red cycle of length ` for all ` ∈ [3, (2/3− δ)n].

Lemma 4.5. Given 0 < δ < 1/144, let ε and d be real numbers such that 0 < ε �
d � δ. Let G be a graph of sufficiently large order n with δ (G) ≥ 3n/4. Suppose that

E(G) = E(RG) ∪ E(BG) is a 2-edge colouring of G, (Vi)
k
i=0 is a partition of V (G)

satisfying conditions (R1)–(R5), and let H be the corresponding (ε, d)-reduced 2-edge

coloured graph.

Suppose that there is a partition V (H) = U1 ∪ · · · ∪ U4 with min
i
|Ui| ≥ (1/4− 3δ) k

such that there are no red edges from U1 ∪U2 to U3 ∪U4 and no blue edges from U1 ∪U3

to U2 ∪ U4. Then G contains a monochromatic cycle of length at least (1− 38δ)n and

monochromatic cycles of length ` for all ` ∈ [4, dn/2e].

Lemmas 4.3–4.5 will be proved in Section 6. We now prove Theorem 1.6 as outlined

above.
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4.1. Proof of Theorem 1.6

Choose 0 < δ < 1/144 and 0 < ε� d� δ. In particular, we may assume that d ≥ ε1/3.

Choose k0 > 1/ε2 so that one can apply Lemmas 4.1 and 4.2 on any graph with at least

k0 vertices. From Theorem 2.4, we obtain M = M(ε, k0) and set K = 6M . We take n

sufficiently large and let G be a graph of order n with δ (G) ≥ 3n/4, with 2-edge colouring

E(G) = E(RG) ∪ E(BG).

By Lemma 3.2, we have that either G ∼= Kn/4,n/4,n/4,n/4 and the colouring is a 2-

bipartite 2-edge colouring, or G contains a monochromatic C` for all ` ∈ [4,K]. Hence it

is sufficient to prove that either G ∼= Kn/4,n/4,n/4,n/4 and the colouring is a 2-bipartite

2-edge colouring, or G contains a monochromatic C` for all ` ∈ [K, dn/2e].
We apply the degree form of the 2-colour Regularity Lemma to G, with parameters d

and ε. Let V0, V1, . . . , Vk be the partition of V (G) satisfying conditions (R1)–(R5), and

G′ be the subgraph of G defined by Theorem 2.4. Finally, let H be the (ε, d)-reduced

graph defined from G′ earlier, with 2-edge colouring E(H) = E(RH) ∪ E(BH).

We first observe that

δ (H) ≥
(

3

4
− δ
)
k. (4.1)

Indeed, by (R3), we have δ (G′) ≥ (3/4− 2d− ε)n. Suppose that δ (H) < (3/4− δ) k.

Then there exists some i ≥ 1 with dH (vi) < (3/4− δ) k. For a vertex v ∈ Vi , its

neighbours in G′ are only in V0, or in Vj for those j such that vivj is an edge of H. Hence

dG′(v) <

(
3

4
− δ
)
km+ |V0| ≤

(
3

4
− δ + ε

)
n,

which is a contradiction, as δ � 2d+ 2ε.

Applying Lemma 4.1 to H, we have one of the following possibilities.

(i) There is a component of RH or BH which contains a matching on at least (2/3 + δ) k

vertices.

(ii) There is a set S of order at least (2/3− δ/2) k such that either ∆(RH [S]) ≤ 10δk

or ∆(BH [S]) ≤ 10δk.

(iii) There is a partition V (H) = U1 ∪ · · · ∪ U4 with min
i
|Ui| ≥ (1/4− 3δ) k such that

there are no blue edges from U1 ∪ U2 to U3 ∪ U4 and no red edges from U1 ∪ U3 to

U2 ∪ U4.

If (ii) or (iii) occurs, then we are done immediately by Lemma 4.4 and Lemma 4.5

respectively. Hence we assume that there is a component of RH or BH which contains

a matching on at least (2/3 + δ) k vertices. By Lemma 4.2, we may assume that there

is a monochromatic component C which contains a matching on at least (1/2 + δ) k

vertices, and that either C contains an odd cycle or |V (C)| ≥ (1− 5δ) k.

Assume first that

C = R′H is a component of RH . (4.2)

If the component R′H of RH contains an odd cycle, then we are done because, by Lemma

2.5(b), G contains red cycles of any length between 4k and (1/2 + δ/2)n and 4k < K.

Suppose now that R′H contains no odd cycles and hence |V (R′H)| ≥ (1− 5δ) k. Then

R′H is bipartite, with classes H1 and H2. Applying Lemma 2.5(a), we deduce that C` ⊆
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RG for all even ` ∈ [4, (1/2 + δ/2)n]. Hence we are done if we can show that G contains

a monochromatic C` for all odd ` ∈ [K, dn/2e]. We start with the following claim.

Claim 4.6. There are disjoint sets of vertices X and Y with |X ∪ Y | ≥ (1− 6δ)n with

the following properties.

(a) Between any vertices u, v ∈ X (or u, v ∈ Y ) there are, in RG[X ∪ Y ], paths of length

` for all even ` ∈ [3k, (1/2 + δ/2)n].

(b) Between any u ∈ X and any v ∈ Y there are, in RG[X ∪ Y ], paths of length ` for all

odd ` ∈ [3k − 1, (1/2 + δ/2)n].

Proof. Take a matching M in R′H with a maximal number of vertices. Let r ≥ (1/2 +

δ)k/2 be the number of edges in the matching. Since R′H is connected, there exists a

spanning tree T that contains all edges of M .

For every vertex vi ∈ V (R′H), fix an edge Di = viv`i in T . Let V ′i be the set of all

vertices in Vi with at least (d − ε)m red neighbours in V`i . By Fact 2.1, we have that

|V ′i | ≥ (1− ε)|Vi|.
Let X be the union of all V ′i such that vi ∈ H1, and Y be the union of all V ′i such that

vi ∈ H2, so that X and Y are subsets of V (G). Notice that

|X ∪ Y | ≥ |H1|(1− ε)m+ |H2|(1− ε)m ≥ (1− 5δ)k(1− ε)2n
k
> (1− 6δ)n.

Now we show that (a) holds. Let u, v ∈ X and suppose that u ∈ V ′i and v ∈ V ′j . We

claim there is a walk in R′H from vi to vj , starting with edge Di, ending with edge Dj ,

containing all edges of M , and whose number of edges is even and at most 3k.

Indeed, one starts at vi, continues to v`i (using Di), then walks around T using each

edge of T twice (including those in M) until coming back to v`i , then continues to v`j
via the unique v`i-v`j path in T , and finally ends in vj (using Dj). This walk has at

most 1 + 2(k − 1) + (k − 1) + 1 < 3k edges. Furthermore, the number of edges in this

walk is even, because R′H is bipartite and both endpoints of the walk are from the same

partition class.

For convenience, denote the vertices of this walk vt1 , vt2 , . . . , vt` , where vt1 = vi, vt2 =

v`i , vt`−1
= v`j , and vt` = vj . Using Fact 2.1 repeatedly, we construct a path P =

w1, w2 . . . , w` in RG such that w1 = u, w` = v, and, for 1 < j < `, wj ∈ Vtj has at least

(d− ε)m red neighbours in both Vtj−1
and Vtj+1

.

Consider the edge wtjwtj+1 . The bipartite graph

Rj = R[(Vtj \ P ) ∪ {wtj}, (Vtj+1
\ P ) ∪ {wtj+1

}]

is (2ε)-regular with density at least d− ε > ε1/3/2, and wtj , wtj+1
have both large degree

in Rj . Using Lemma 2.2 with β = ε1/3, we obtain that Rj contains a wtj -wtj+1 path of

any odd length between 3 and 2(1− 10ε2/3)(m− 3k).

Hence, by replacing edge wtjwtj+1
in P by a wtj -wtj+1

path of appropriate odd length

in Bj for one occurrence vtjvtj+1
of each edge in M , we obtain a red u-v path of any

even length between 3k and 2(1−10ε2/3)(m−3k)r. Using ε� d� δ, a short calculation

shows that 2(1− 10ε2/3)(m− 3k)r > (1/2 + δ/2)n.
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The proof of (b) is straightforward: if u ∈ X and v ∈ Y , take any neighbour w ∈ X of

v and apply part (a) to u,w.

If either X or Y contains an internal red edge uv, then, by Claim 4.6(a), we have red

cycles of all odd lengths between 3k + 1 and (1/2 + δ/2)n. Hence we may assume that

X and Y are independent sets in RG. However, if |X| > n/2 or |Y | > n/2, then we

are done by Lemma 4.3. Hence we may assume that |X|, |Y | ≤ n/2 and, consequently,

min{|X|, |Y |} ≥ (1/2− 6δ)n.

If any vertex w of V (G)\(X∪Y ) has at least one red neighbour in both X and Y , then

using the paths between a red neighbour u of w in X and a red neighbour v of w in Y

(see Claim 4.6(b)), we have cycles of all odd lengths between 3k + 1 and (1/2 + δ/2)n.

Hence all vertices of V (G) \ (X ∪ Y ) have no red neighbours in at least one of X or Y .

Define disjoint sets X ′ and Y ′ by letting X ′ be the set of vertices of V (G) \ (X ∪ Y )

with at least two red neighbours in Y , and Y ′ be the set of vertices of V (G) \ (X ∪ Y )

with at least two red neighbours in X. Then there are no red edges between X ′ and X or

between Y ′ and Y . If there is a red edge u′v′ within X ′, let u and v be distinct vertices

of Y with uu′ and vv′ both red edges. Then uu′v′v is a red path of length three between

vertices of Y , with internal vertices in V \ (X ∪ Y ). Using the u-v paths obtained from

Claim 4.6(a), we have red cycles of all odd lengths between 3k + 3 and (1/2 + δ/2)n.

So we may assume that RG[X ∪X ′ ∪ Y ∪ Y ′] is bipartite with partite sets X ∪X ′ and

Y ∪Y ′. We may assume that both X ∪X ′ and Y ∪Y ′ have order at most n/2, otherwise,

we are done by Lemma 4.3.

A vertex not in X ∪X ′ ∪ Y ∪ Y ′ has at least (3/4− 6δ)n neighbours in X ∪ Y . Let

X ′′ be the set of vertices not in X ∪X ′ ∪ Y ∪ Y ′ with at least (3/8− 3δ)n neighbours

in X, and Y ′′ be the set of vertices not in X ∪ X ′ ∪ Y ∪ Y ′ with at least (3/8− 3δ)n

neighbours in Y . Letting X0 = X ∪X ′ ∪X ′′ and Y0 = Y ∪ Y ′ ∪ Y ′′, we see that V (G) is

the (not necessarily disjoint) union of X0 and Y0.

Without loss of generality, we may assume that |X0| ≥ n/2. By definition, all vertices

in X ′′ have at least (3/8− 3δ)n neighbours in X. However vertices in X ′′ have at most

one red neighbour in X, else they would have been in Y ′. All vertices in X ∪ X ′ have

at most n/4 non-neighbours in G and so at least |X0| − n/4 neighbours in X0. Since

there at most |X ′′| red edges between X ′′ and X, the set X ′′′ of vertices in X with a red

neighbour in X ′′ has order at most |X ′′|. Vertices in X \X ′′′ have no red neighbours in

X0, while vertices in X ′ ∪X ′′′ have no red neighbours in X0 \X ′′. Hence

dB[X0](v) ≥


|X0| − n

4 v ∈ X \X ′′′

|X0| − n
4 − |X

′′| v ∈ X ′′′ ∪X ′(
3
8 − 3δ

)
n− 1 v ∈ X ′′.

(4.3)

Since |X ′ ∪ X ′′ ∪ X ′′′| ≤ |X ′ ∪ X ′′| + |X ′′| ≤ 12δn, the conditions of Theorem 2.6 are

satisfied on the graph BG[X0], and so BG[X0] is hamiltonian.
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Furthermore, using (4.3), we have

e (BG[X0]) ≥ 1

2

(
|X0| −

n

4

)
|X \X ′′′|+

((
3

16
− 3δ

2

)
n− 1

2

)
|X ′′|

+
1

2

(
|X0| −

n

4
− |X ′′|

)
(|X ′′′|+ |X ′|)

=
1

2
|X0|

(
|X0| −

n

4

)
+

((
3

16
− 3δ

2

)
n− 1

2
− 1

2

(
|X0| −

n

4

)
− 1

2
(|X ′′′|+ |X ′|)

)
|X ′′|

≥ 1

4
|X0|2 +

((
1

16
− 15δ

2

)
n− 1

2

)
|X ′′|.

Here we have used

1

2

(
|X0| −

n

4

)
+

1

2
(|X ′′′|+ |X ′|) ≤ 1

2

(
|X| − n

4

)
+ |X ′|+ |X ′′|

≤ n

8
+ |V (G) \ (X ∪ Y ) |

≤
(

1

8
+ 6δ

)
n.

From Theorem 1.2 we deduce that either BG[X0] is pancyclic, in which case C` ⊆ BG
for all ` ∈ [3, |X0|], or BG[X0] ∼= K|X0|/2,|X0|/2 and e(BG[X0]) = |X0|2/4. In the latter

case, this means that X ′′ = ∅. Similarly, if |Y0| ≥ n/2, then either BG[Y0] is pancyclic, or

Y ′′ = ∅. Hence we may assume that X ′′ = Y ′′ = ∅ and, therefore, BG is bipartite. Thus,

by Lemma 4.3, we are done.

Now we only need to discuss what changes if, instead of (4.2), we assume that the

component C is a blue component B′H of BH .

If the component B′H contains an odd cycle, then we are again done by Lemma 2.5(b).

Otherwise, B′H is bipartite and |V (B′H)| ≥ (1− 5δ) k. Applying Lemma 2.5(a), we again

deduce that C` ⊆ BG for all even ` ∈ [4, (1/2 + δ/2)n]. By following the proof of Claim

4.6 with colours red and blue swapped, we realize that the following holds.

Claim 4.7. There are disjoint sets of vertices X and Y with |X ∪ Y | ≥ (1− 6δ)n with

the following properties.

(a) Between any vertices u, v ∈ X (or u, v ∈ Y ) there are, in BG[X ∪ Y ], paths of length

` for all even ` ∈ [3k, (1/2 + δ/2)n].

(b) Between any u ∈ X and any v ∈ Y there are, in BG[X ∪ Y ], paths of length ` for all

odd ` ∈ [3k − 1, (1/2 + δ/2)n].

Notice that the asymmetry in the definition of the colouring of H is not an issue here:

In the proof of Claim 4.6, we only use the fact that the red edges in H correspond to

ε-regular pairs in G′ whose density of red edges is at least d. Hence, in the proof of

Claim 4.7, we only need the fact that the blue edges in H correspond to ε-regular pairs

in G′ whose density of blue edges is at least d.
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Having Claim 4.7, we follow the lines of the proof after Claim 4.6 with colours red and

blue interchanged. This completes the proof of Theorem 1.6.

5. Proof of Lemmas 4.1 and 4.2

In this section and in Section 6 we shall prove the lemmas used in the proof of Theo-

rem 1.6. More precisely, we give the proofs of Lemma 4.1 and Lemma 4.2 here and leave

the proofs of Lemmas 4.3–4.5 to the next section.

Throughout both proofs we shall assume that for a given 2-edge colouring E(G) =

E(R) ∪ E(B) of a graph G, R′ is a largest component of R, and that B′ is a largest

component of B.

We will need the following claim about the component structure.

Lemma 5.1. Let 0 < δ < 1/36 and let G be a graph of sufficiently large order n with

δ(G) ≥ (3/4− δ)n. Suppose that we are given a 2-edge colouring E(G) = E(R) ∪E(B).

Then one of the following holds.

(a) One of R or B is connected.

(b) For a largest component R′ of R, and a largest component B′ of B, we have that

V (G) = V (R′) ∪ V (B′) and both R′ and B′ have order at least (3/4− δ)n.

(c) There is a partition V (G) = U1 ∪ · · · ∪U4 with min
i
|Ui| ≥ (1/4− 3δ)n such that there

are no red edges from U1 ∪U2 to U3 ∪U4 and no blue edges from U1 ∪U3 to U2 ∪U4.

Proof. Assume that (a) does not hold, that is, both R and B are disconnected. Suppose

first that |V (R′)| ≤ (5/12− δ)n. Then ∆(R) < (5/12− δ)n and hence δ(B) ≥ δ(G) −
∆(R) > n/3. Since B is disconnected, we see that B has exactly two components B1 = B′

and B2 with n/3 < |V (B2)| ≤ |V (B1)| < 2n/3. Set Wi = V (Bi) ∩ V (R′), for i ∈ {1, 2}.
Suppose that Wi 6= ∅, for some i ∈ {1, 2}. Let v ∈ Wi. Then v has no neighbours

outside R′ ∪Bi, and so ΓG (v) ⊆ R′ ∪Bi. Hence, as W3−i = V (R′) \ V (Bi),

|W3−i| ≥ |ΓG (v)| − |V (Bi)| >
(

1

12
− δ
)
n.

In particular W3−i 6= ∅, and so W1 is non-empty if and only if W2 is non-empty. As

V (R′) = W1 ∪W2, we see that both W1 and W2 are therefore non-empty. But then

|V (R′)| = |W1|+ |W2| ≥
(

3

4
− δ
)
n− |V (B1)|+

(
3

4
− δ
)
n− |V (B2)|

=

(
1

2
− 2δ

)
n.

This contradicts our assumption that |V (R′)| ≤ (5/12− δ)n.

We may thus assume that |V (R′)| > (5/12− δ)n, and similarly |V (B′)| > (5/12− δ)n.

Let W1 = V (B′) ∩ V (R′), W2 = V (R′) \ V (B′), W3 = V (B′) \ V (R′) and W4 = V (G)−
(W1 ∪W2 ∪W3). Note that there are no edges (of either colour) between W1 and W4 or

between W2 and W3.

If W4 = ∅, then V (G) = V (R′) ∪ V (B′). As neither R nor B is connected, we must
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have that both W2 and W3 are non-empty. Let v ∈ W2. Since ΓG(v) ∩W3 = ∅, we see

that |W3| ≤ (1/4 + δ)n and so |V (R′)| = |W1|+ |W2| = n− |W3| ≥ (3/4− δ)n. We may

similarly show that |V (B′)| ≥ (3/4− δ)n. Hence, (b) holds.

If, however, W4 6= ∅, choose any x ∈ W4. As ΓG(x) ∩ W1 = ∅, we have |W1| ≤
(1/4 + δ)n. However both R′ and B′ have order at least (5/12− δ)n and hence both

W2 and W3 are non-empty. Thus, arguing as for W4, we see that both W2 and W3 have

order at most (1/4 + δ)n and so W1 is also non-empty. This in turn implies that W4 has

order at most (1/4 + δ)n. Hence each Wi has order at least (1/4− 3δ)n. Furthermore,

there is no red edge between W1 ∪W2 = V (R′) and W3 ∪W4 = V (G) \ V (R′) and no

blue edge between W1 ∪W3 = V (B′) and W2 ∪W4 = V (G) \ V (B′). Hence, (c) holds.

5.1. Proof of Lemma 4.1

Let 0 < δ < 1/36. We assume throughout that n is sufficiently large. Suppose that G is

a graph of order n with δ(G) ≥ (3/4− δ)n and that we are given a 2-edge colouring

E(G) = E(R)∪E(B) such that the conclusions (i) and (iii) do not hold. Since (i) is not

true, we assume that

neither R′ nor B′ contains a matching on at least
(
2
3 + δ

)
n vertices. (5.1)

We are aiming to show that (ii) holds, that is, that there is a large set on which one of

the colours has a very low density. We first show that the orders of B′ and R′ cannot

take certain values.

Claim 5.2. Either |V (B′)| < (1/3 + δ/2)n or |V (B′)| > (2/3− δ/2)n.

Proof. Suppose that (1/3 + δ/2)n ≤ |V (B′)| ≤ (2/3− δ/2)n. We apply Lemma 5.1:

(c) cannot be true because (iii) does not hold, (b) fails because |V (B′)| < (3/4 − δ)n,

and so (a) must be true. Since B is disconnected, we conclude that R is connected.

Let V1 be the smaller of V (B′) and V \ V (B′). Let V2 = V \ V1 and F = G[V1, V2] be

the bipartite graph between V1 and V2. There are no blue edges between V1 and V2 and

so all edges of F are red. For a subset S of V1 we shall find a lower bound on |ΓF (S)| by

splitting into the cases that |S| > (1/4 + δ)n and |S| ≤ (1/4 + δ)n.

For S ⊆ V1 with |S| > (1/4 + δ)n, consider a vertex v ∈ V2. Then, as dG (v) ≥
(3/4− δ)n, v must have a neighbour in S. Hence ΓF (S) = V2, and so |ΓF (S)| = |V2| ≥
|V1| ≥ |S|.

If S ⊆ V1 and |S| ≤ (1/4 + δ)n, then every vertex in S has at least |V2| − (1/4 + δ)n

neighbours in V2. Hence

|ΓF (S)| ≥ |V2| −
(

1

4
+ δ

)
n

= |S| −
((

1

4
+ δ

)
n+ |S| − |V2|

)
≥ |S| −

((
1

2
+ 2δ

)
n− |V2|

)
.
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Thus by the defect form of Hall’s Theorem, F contains a matching with at least

|V1| −max

{
0,

(
1

2
+ 2δ

)
n− |V2|

}
= min

{
|V1|, |V1|+ |V2| −

(
1

2
+ 2δ

)
n

}
edges. As |V1| + |V2| = n and |V1| ≥ (1/3 + δ/2)n, this matching contains at least

(2/3 + δ)n vertices. As R is connected, this contradicts (5.1). Hence Claim 5.2 holds.

Let XR = V (G) \ V (R′) and XB = V (G) \ V (B′). We define the following sets when

R′ or B′ is large.

Definition. Suppose that |V (R′)| ≥ (2/3 + δ)n.

• Let SR ⊆ V (R′) be a set such that

q (R [V (R′)− SR]) > |SR|+ |V (R′)| −
(

2

3
+ δ

)
n.

Note that, in view of (5.1), such a set exists by Theorem 2.8 applied with d = |V (R′)|−
(2/3 + δ)n.

• For 1 ≤ i ≤ n, let TR,i be the set of vertices which lie in components of R [V (R′)− SR]

of order i.

• Let TR =
⋃

1≤i≤t TR,i, where t = dδ−1e .

If |V (B′)| ≥ (2/3 + δ)n, we define SB , TB,i and TB similarly.

We shall use the following result throughout. Note that, as with Claim 5.2, we may

exchange the roles of R and B to obtain a symmetrical version of this result.

Claim 5.3. Suppose that |V (R′)| ≥ (2/3 + δ)n. Then |SR| < (1/3 + δ/2)n and

|XR ∪ TR| > |SR|+
(

1

3
− 2δ

)
n.

Further, if CB is a component of B with |V (CB)| ≤ (5/12− 2δ)n, then V (CB) ⊆ SR.

Proof. All vertices of V (R′) lie in SR or some component of R [V (R′)− SR]. Hence

|V (R′)| ≥ |SR|+ q (R [V (R′)− SR])

> 2|SR|+ |V (R′)| −
(

2

3
+ δ

)
n.

This implies that |SR| < (1/3 + δ/2)n.

There are at most |TR| components of R [V (R′)− SR] of order at most t. However,

there are at most n/t ≤ δn components of R [V (R′)− SR] of order at least t. Hence
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|TR| ≥ q (R [V (R′)− SR])− δn. As XR and TR are disjoint, we have

|XR ∪ TR| ≥ n− |V (R′)|+ q (R [V (R′)− SR])− δn

> (1− δ)n− |V (R′)|+ |SR|+ |V (R′)| −
(

2

3
+ δ

)
n

= |SR|+
(

1

3
− 2δ

)
n.

Finally, suppose that CB is a component of B with |V (CB)| ≤ (5/12− 2δ)n. A vertex

in CB has blue degree at most |V (CB)|−1. Hence any vertex in CB must have red degree

at least

δ(G)− |V (CB)|+ 1 ≥
(

3

4
− δ
)
n−

(
5

12
− 2δ

)
n+ 1

=

(
1

3
+ δ

)
n+ 1. (5.2)

A vertex in XR has red degree at most

|XR| − 1 = n− |V (R′)| − 1 ≤
(

1

3
− δ
)
n− 1.

However, a vertex in TR is in a component of R [V (R′)− SR] of order at most t. Hence,

for all v ∈ TR,

dR(v) ≤ t+ |SR|

<

(
1

3
+

1

2
δ

)
n+ t.

Hence (5.2) and n� 1/δ imply that V (CB) ∩ (XR ∪ TR) = ∅.
Suppose that there exists v ∈ V (CB) \SR. All blue neighbours of v lie in CB , and so v

has no blue neighbours in XR ∪TR. However, V (CB) ⊆ V (R′) because V (CB)∩XR = ∅,
and so v has no red neighbours in XR. The only vertices with red neighbours in TR are

those in SR ∪TR, and so we see that v also has no red neighbours in TR. Hence v has no

neighbours in XR ∪ TR, and so

dG(v) ≤ n− |XR ∪ TR| <
(

2

3
+ 2δ

)
n.

This contradicts δ(G) ≥ (3/4− δ)n, and so V (CB) ⊆ SR.

We may thus assume that SR is not much bigger than n/3. The following result shows

that if R′ is very large and SR has order approaching n/3, then S = V (G) \ SR is the

set we are looking for in (ii).

Claim 5.4. Suppose that |V (R′)| ≥ (1− 5δ/2)n and that |SR| ≥ (1/3− 2δ)n. Then

R[V (G) \ SR] is a graph on at least (2/3− δ/2)n vertices with maximum degree at

most 10δn.
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Proof. That R[V (G)\SR] is a graph of order at least (2/3− δ/2)n follows immediately

from Claim 5.3.

For all 1 ≤ i ≤ n, there are exactly |TR,i|/i components of order i in R [V (R′) \ SR].

Hence ∑
i≥1

1

2i− 1
|TR,2i−1| = q (R [V (R′) \ SR])

> |SR|+ |V (R′)| −
(

2

3
+ δ

)
n.

However, ∑
i≥1

1

2i− 1
|TR,2i−1| ≤ |TR,1|+

1

3

∑
i≥2

|TR,2i−1|

≤ |TR,1|+
1

3

(
|V (R′)| − |SR| − |TR,1|

)
.

Combining these inequalities, and using the bounds on |V (R′)| and |SR|, we have

2

3
|TR,1| >

4

3
|SR|+

2

3
|V (R′)| −

(
2

3
+ δ

)
n

≥ 4

3

(
1

3
− 2δ

)
n+

2

3

(
1− 5δ

2

)
n−

(
2

3
+ δ

)
n

=

(
4

9
− 16δ

3

)
n.

Hence |TR,1| > (2/3− 8δ)n.

However, TR,1 is a set of isolated vertices inR[V (G)\SR]. As |V (G)\SR| ≤ (2/3 + 2δ)n,

we see that R[V (G) \ SR] has maximum degree at most 10δn.

We may now complete the proof of Lemma 4.1, using the preceding claims. Since (iii)

does not hold, by Lemma 5.1, we may assume that

either one of R or B is connected, or V (G) = V (R′) ∪ V (B′) and

min{|V (R′)|, |V (B′)|} ≥ (3/4− δ)n.
(5.3)

In either case, there will be a monochromatic component of order at least (3/4− δ)n >
(2/3 + δ)n. We may without loss of generality assume that this component is R′. We

consider several cases depending on the order of B′.

If |V (B′)| < (1/3 + δ/2)n, then every component of B has order at most (1/3 + δ/2)n.

By Claim 5.3, |SR| < (1/3 + δ/2)n and SR contains all blue components of order at most

(5/12− 2δ)n. Since (5/12− 2δ)n > (1/3 + δ/2)n, SR contains all components of B, and

hence has order n, a contradiction.

We cannot have (1/3 + δ/2)n ≤ |V (B′)| ≤ (2/3− δ/2)n by Claim 5.2.

If (2/3− δ/2)n < |V (B′)| < (2/3 + δ)n, then, by (5.3), R is connected. Also, all

components of B other than B′ have order at most (1/3 + δ/2)n. Hence, by Claim 5.3,

SR contains XB = V (G) \ V (B′) and so |SR| > (1/3− δ)n. Thus we are done by

Claim 5.4.
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Finally, suppose that |V (B′)| ≥ (2/3 + δ)n. In this case, sets SB ⊆ V (B′) and TB are

defined, and, in particular, we have that

q (B [V (B′)− SB ]) > |SB |+ |V (B′)| −
(

2

3
+ δ

)
n.

By Claim 5.3, we see that XR ⊆ SB and XB ⊆ SR.

Suppose that there is a vertex v ∈ TR ∩ TB . Then v has at most |SR| + t red neigh-

bours and at most |SB | + t blue neighbours. As |SR| and |SB | both have order at

most (1/3 + δ/2)n and n � 1/δ, this contradicts dG(v) ≥ δ(G) ≥ (3/4 − δ)n. Hence

TR ∩ TB = ∅.
Suppose that TB \ SR is non-empty, and let v ∈ TB \ SR. As XR ⊆ SB , we have TB ⊆

V (R′). Hence v has no red neighbours in XR. Vertices in TR only have red neighbours

in TR ∪ SR. However, TB ∩ TR = ∅ and so v /∈ TR ∪ SR. In particular, v has no red

neighbours in XR ∪ TR.

Hence, v has at least |XR ∪ TR| − (1/4 + δ)n blue neighbours in XR ∪ TR, as v has at

most (1/4 + δ)n non-neighbours. However v ∈ TB and so all but t of its blue neighbours

are in SB . Hence

|SB | ≥ |XR ∪ TR| −
(

1

4
+ δ

)
n− t > |SR|+

(
1

12
− 3δ

)
n− t,

where the second inequality uses Claim 5.3.

Similarly, if TR \ SB is non-empty, then

|SR| > |SB |+
(

1

12
− 3δ

)
n− t.

As these cannot both occur, one of TR \ SB or TB \ SR is empty.

We assume without loss of generality that TB ⊆ SR. Then SR contains the disjoint

sets TB and XB . Hence, using Claim 5.3, again

|SR| ≥ |TB ∪XB | > |SB |+
(

1

3
− 2δ

)
n.

Thus |SR| ≥ (1/3− 2δ)n. As |SR| < (1/3 + δ/2)n, we must have |SB | ≤ 5δn/2. Since

XR ⊆ SB , we see that |V (R′)| ≥ (1− 5δ/2)n. Hence, by Claim 5.4, we are done.

This concludes the proof Lemma 4.1. We now prove Lemma 4.2, using similar methods

to those used in the proof of Lemma 4.1.

5.2. Proof of Lemma 4.2

Let 0 < δ < 1/36. We assume throughout that n is sufficiently large. Suppose that G

is a graph of order n with δ(G) ≥ (3/4− δ)n and that we are given a 2-edge colouring

E(G) = E(R) ∪ E(B).

Suppose that R′ contains a matching on at least (2/3 + δ)n vertices. We may assume

that |V (R′)| < (1− 5δ)n and R′ is bipartite with classes YR and ZR, otherwise we are

done. Without loss of generality, we assume that |ZR| ≥ |YR| and so |YR| ≤ |V (R′)|/2 <
(1/2− 5δ/2)n. As each edge of the matching contains one vertex from ZR and one from
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YR, we have (
1

3
+
δ

2

)
n ≤ |YR| ≤ |ZR| <

(
2

3
− 11δ

2

)
n. (5.4)

As in the proof of Lemma 4.1, we let XR = V (G)\V (R′) and XB = V (G)\V (B′). Note

that 5δn < |XR| ≤ (1/3− δ)n. We apply Lemma 5.1. Since |V (R′)| ≥ (2/3 + δ)n, we are

not in case (c) of this lemma because, in that case, each monochromatic component has at

most (1/2+6δ)n vertices. Hence, either B is connected by (a), or, by (b), both R′ and B′

have order at least (3/4− δ)n. Consequently, |XB | ≤ (1/4 + δ)n and |V (R′) ∩ V (B′)| ≥
(1/2 − 2δ)n. Thus, every vertex in XB ∩XR must have a neighbour in V (R′) ∩ V (B′),

which is a contradiction. So, we must have XB ∩XR = ∅.

Claim 5.5. B′ contains a matching on at least (1/2 + δ)n vertices.

Proof. Suppose not; then by Theorem 2.8 there is a set S ⊆ V (B′) such that

q (B [V (B′)− S]) > |S|+ |V (B′)| −
(

1

2
+ δ

)
n.

We will apply the same arguments as used in Claim 5.3 to the set S. All vertices of V (B′)

lie in S or some component of B [V (B′)− S]. Hence

|V (B′)| ≥ |S|+ q (B [V (B′)− S])

> 2|S|+ |V (B′)| −
(

1

2
+ δ

)
n.

This implies that |S| < (1/4 + δ/2)n.

We let TB be the set of vertices in components of B [V (B′)− S] with order at most

t = dδ−1e. Then, as in the proof of Claim 5.3, |TB | ≥ q (B [V (B′)− S])− δn.

Any vertex in T has blue degree at most

|S|+ t− 1 ≤
(

1

4
+
δ

2

)
n+ t− 1,

and any vertex in XB has blue degree at most

|XB | − 1 ≤
(

1

4
+ δ

)
n− 1.

Also any vertex in XR has red degree at most

|XR| − 1 = n− |V (R′)| − 1 ≤
(

1

3
− δ
)
n− 1,

and any vertex in ZR has red degree at most

|YR| <
(

1

2
− 5δ

2

)
n.

Hence, any vertex in the intersection of TB ∪ XB and ZR ∪ XR has degree at most



22 F. S. Benevides, T.  Luczak, A. Scott, J. Skokan and M. White

(3/4− 3δ/2)n− 1. Since δ(G) ≥ (3/4− δ)n, we deduce that TB ∪XB does not intersect

ZR ∪XR.

Hence TB ∪XB ⊆ YR. However, TB and XB are disjoint sets, and so

|YR| ≥ |TB ∪XB |
≥ q (B [V (B′)− S])− δn+ n− |V (B′)|

> |S|+ |V (B′)| −
(

1

2
+ δ

)
n+ (1− δ)n− |V (B′)|

≥
(

1

2
− 2δ

)
n,

a contradiction with |YR| ≤ (1/2−5δ/2). So B′ contains a matching on at least (1/2 + δ)n

vertices.

We will show that B′ contains all vertices in XR ∪ ZR. All vertices of G have at most

(1/4 + δ)n non-neighbours, and so any two vertices have at least (1/2− 2δ)n common

neighbours. As |YR| ≤ (1/2− 5δ/2)n, every pair of vertices in ZR have a common neigh-

bour in V (G) \ YR. Since all vertices in ZR have no red neighbours in V (G) \ YR, any

two vertices in ZR have a common blue neighbour. Hence all vertices of ZR lie in the

same blue component. Similarly, if |ZR| < (1/2− 2δ)n all vertices of YR lie in a single

blue component.

Every vertex in XR has at most (1/4 + δ)n non-neighbours in both YR and ZR. Thus,

by (5.4), every vertex in XR has at least one neighbour in both ZR and YR, which is

necessarily blue. Hence XR ∪ZR lies within one component of B. If |ZR| < (1/2− 2δ)n,

then B is connected and B′ = B. If B is not connected, then the component of B

containingXR∪ZR has order at least n−|YR| ≥ (1/2 + 5δ/2)n, and hence this component

is B′.

If |V (B′)| ≥ (1− 5δ)n or if B′ is not bipartite, then, in view of Claim 5.5, we are done.

So, suppose now that |V (B′)| < (1− 5δ)n and B′ is bipartite, with classes ZB and YB .

Both ZB ∩ ZR and YB ∩ ZR are independent sets of G, and hence have order at most

(1/4 + δ)n. If |ZR| < (1/2− 2δ)n, then, by the above argument, B is connected – a

contradiction. So we may assume that |ZR| ≥ (1/2− 2δ)n. Hence, as ZR ⊆ V (B′) =

YB ∪ ZB , both ZB ∩ ZR and YB ∩ ZR have order at least (1/4− 3δ)n.

Let v ∈ XR. Since XR∩XB = ∅, we see that v ∈ ZB∪YB . We may assume without loss

of generality that v ∈ ZB . Then v has no blue neighbours in ZB , and no red neighbours in

ZR. In particular, v has no neighbours of either colour in ZB ∩ZR, which is a set of order

at least (1/4− 3δ)n. As v has at most (1/4 + δ)n non-neighbours, it thus has at most

4δn non-neighbours in YR ⊆ V (G)\(ZR ∩ ZB). However, all edges from v to YR are blue.

Thus all but at most 4δn vertices in YR lie in the same blue component as v. However,

v ∈ V (B′), and XR ∪ZR ⊆ V (B′). Hence B′ contains all but 4δn vertices, contradicting

our assumption that |V (B′)| < (1− 5δ)n, and concluding the proof of Lemma 4.2.
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6. Proof of Lemmas 4.3–4.5

We shall now prove Lemmas 4.3–4.5, which deal with particular cases arising from the

reduced graph. In the proof of Lemma 4.5, we shall be using the graph G′ ⊆ G defined

by the Regularity Lemma.

Proof of Lemma 4.3. Suppose that B has an independent set S with |S| ≥ n/2. All

vertices in S have at most n/4− 1 non-neighbours in G, and so

δ(R[S]) ≥ (|S| − 1)−
(n

4
− 1
)
≥ |S|

2
.

By Corollary 1.3, either R[S] is pancyclic, or R[S] ∼= K|S|/2,|S|/2. In the latter case,

δ(R[S]) = |S|/2, and so |S| = n/2. Hence, if |S| > n/2, then C` ⊆ RG for all ` ∈ [3, |S|].
This completes the proof of part (a).

In order to see (b), suppose that B is bipartite with classes S1 and S2, chosen so that

|S1| ≥ |S2|. If |S1| > n/2, then C` ⊆ R for all ` ∈ [3, |S1|] by part (a), and we are done.

Hence we may assume that n is even and |S1| = |S2| = n/2. But by the proof of (a)

above, we must have either that C` ⊆ R for all ` ∈ [3, n/2], or both R[S1] and R[S2] are

isomorphic to Kn/4,n/4. This implies that n is divisible by four. Also, both B[S1] and

B[S2] are isomorphic to the empty graph and so G ∼= Kn/4,n/4,n/4,n/4.

For i ∈ {1, 2}, let Si,1 and Si,2 be the independent sets of G partitioning Si. Then if

R is not bipartite, without loss of generality, there are red edges between S1,1 and both

S2,1 and S2,2. Hence there is a red path of length either two or four between a vertex

of S2,1 and a vertex of S2,2, with all internal vertices in S1. As R is complete between

S2,1 and S2,2, R contains C` for all ` ∈ [4, dn/2e]. If, however, R is bipartite then the

colouring is a 2-bipartite 2-edge colouring.

Proof of Lemma 4.4. We shall prove part (a) first. Suppose that S ⊂ V (H) is such

that |S| ≥ (2/3− δ/2) k and ∆(RH [S]) ≤ 10δk. We know that δ(H) ≥ (3/4− (2d+ ε))k.

Hence,

δ(BH [S]) >

(
3

4
− (2d+ ε)

)
k − 10δk >

k

2
≥ |S|

2
.

By Corollary 1.3, the graph BH [S] is pancyclic. We repeatedly apply Corollary 2.3 with

` = 3, . . . , |S| and conclude that BG contains a monochromatic cycle of every length

between 3 and (1 − 5
√
ε)(|S| − 2)m. As m ≥ (1 − ε)n/k, |S| ≥ (2/3− δ/2) k and δ �

ε� 1/k, we see that

(1− 5
√
ε)(|S| − 2)m > (1− 5

√
ε)(1− ε)2

(
2

3
− δ

2

)
n >

(
2

3
− δ
)
n.

The proof of (b) follows the same lines, with colours red and blue interchanged.

Notice that the asymmetry of H is not a problem in both proofs because we only use

the fact that a red (blue, respectively) edge of H corresponds to an ε-regular pair of

density at least d in RG′ (in BG′ , respectively).
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6.1. Proof of Lemma 4.5

Our main tools to prove the lemma will be the following two claims. The first excludes

a particular structure in a given graph.

Claim 6.1. Let G be a graph on n vertices such that δ(G) ≥ 3n/4. Then there is no

set S of order at most three such that V (G) \ S can be partitioned into non-empty sets

X1, . . . , X4 such that, for i = 1, . . . , 4 G has no edges between Xi and X5−i.

Proof. Suppose that there is such a set S. Then

4∑
i=1

|Xi| ≥ n − 3, and so, for some

1 ≤ i ≤ 4, we have |Xi| ≥ (n − 3)/4. As X5−i 6= ∅, we may consider a vertex v ∈ X5−i.

Then v has no neighbours in X5−i and is also not adjacent to itself. Hence dG(v) ≤
n− (|Xi|+ 1) < 3n/4, contradicting the minimal degree of G.

The second claim gives us long monochromatic paths in bipartite subgraphs with large

minimum degree. We first need one definition.

Definition. Let G be a graph and U and W be two disjoint subsets of vertices. We say

that the bipartite graph G[U,W ] is t-complete if every vertex in U has at least |W | − t
neighbours in W and every vertex in W has at least |U | − t neighbours in U .

Claim 6.2. Let G be a graph and U and W be two disjoint subsets of vertices. If

G[U,W ] is t-complete, then the following holds.

(a) For any two vertices u,w ∈ U , the graph G[U,W ] contains a u-w path of length ` for

all even 2 ≤ ` ≤ 2 min{|U |, |W |−2t}. If G[U ] or G[W ] contains an edge other than uw,

then G also contains a u-w path of length ` for every odd 7 ≤ ` ≤ 2 min{|U |, |W | −
2t} − 1.

(b) For any two vertices u ∈ U and w ∈ W , the graph G[U,W ] contains a u-w path of

length ` for all odd 3 ≤ ` ≤ 2 min{|U |, |W |−2t}−1. If G[U ] or G[W ] contains an edge,

then G also contains a u-w path of length ` for every even 6 ≤ ` ≤ 2 min{|U |, |W | −
2t} − 2.

(c) The graph G contains cycles of all even lengths between 4 and 2 min{|U |, |W | − 2t}.
If G[U ] is non-empty, then G also contains cycles of all odd lengths between 3 and

2 min{|U |, |W | − 2t} − 1.

Proof. Suppose that u,w are two vertices in U , and let 1 ≤ r ≤ min{|U |, |W | − 2t} be

given. Consider any sequence v1, v2, . . . vr, vr+1 of distinct vertices in U such that v1 = u

and vr+1 = w. Clearly, any two vertices in U have at least |W | − 2t common neigbours.

Hence, there are distinct vertices w1, . . . , wr ∈ W such that, for all 1 ≤ i ≤ r, wi is a

common neighbour of vi and vi+1. Hence,

v1w1v2w2 . . . vrwrvr+1

is a u-w path of length 2r.
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Let xy 6= uw be an edge in G[U ] such that {x, y} ∩ {u,w} = ∅. Then in the proof

above for r ≥ 3 we take v1 = u, v2 = x, v3 = y, and vr+1 = w, and find distinct common

neighbours wi of vi and vi+1 for all 1 ≤ i ≤ r, i 6= 2. Hence,

v1w1v2v3w3 . . . vrwrvr+1

is a u-w path of length 2r − 1.

Let xy 6= uw be an edge in G[U ] such that x = u. In this case, we take v1 = u, v2 = y,

and vr+1 = w, and find distinct common neighbours wi of vi and vi+1 for all 2 ≤ i ≤ r.

Hence,

v1v2w2v3w3 . . . vrwrvr+1

is a u-w path of length 2r − 1, r ≥ 3.

Finally, let xy be an edge in G[W ]. Then in the proof above we take v1 = u, v2 to be

any neighbour of w2 = x, v4 to be any neighbour of w3 = y, and vr+1 = w. We again

find distinct common neighbours wi of vi and vi+1 for all 1 ≤ i ≤ r, i 6= 2, 3. Hence,

v1w1v2w2w3v4 . . . vrwrvr+1

is a u-w path of length 2r − 1, r ≥ 4.

To see (b), take any u ∈ U and w ∈ W , and let 2 ≤ r ≤ min{|U |, |W | − 2t}. We

again consider any sequence v1, v2, . . . vr of distinct vertices in U such that v1 = u and

vr 6= u is any neighbour of w. For all 1 ≤ i ≤ r, vi and vi+1 have |W | − 2t− 1 common

neigbours other than w. Hence, there are distinct vertices w1, . . . , wr−1 ∈ W such that,

for all 1 ≤ i ≤ r, wi 6= w is a common neighbour of vi and vi+1. Hence,

v1w1v2w2 . . . vr−1wr−1vrw

is a u-w path of length 2r − 1. The proof of the second part of (b) is similar to (a).

The first part of (c) follows from (b) by taking an edge uw in G[U,W ]. For the second

part, take an edge uw ∈ G[U ] and apply part (a).

Proof of Lemma 4.5. We shall first prove that there exists a partition V (G) =

W0 ∪W1 ∪W2 ∪W3 ∪W4 such that

(i) |W0| ≤ δn and min
i
|Wi| ≥ (1/4− 4δ)n.

(ii) The graphs G′[W1,W4] and G′[W2,W3] are empty.

(iii) There are no blue edges from W1 ∪W3 to W2 ∪W4 in G′.

For 1 ≤ i ≤ 4, let Wi ⊆ V (G) be the union of the clusters in Ui, so that |Wi| ≥
(1/4− 3δ) (1− ε)n. Note that in G′ there are no blue edges from W1 ∪W3 to W2 ∪W4.

Since there are no edges between U1 and U4 and between U2 and U3 in H, it follows

there are no edges in G′[W1,W4] and G′[W2,W3]. Furthermore, as ε� δ, we have that

|Wi| ≥
(

1

4
− 3δ

)
(1− ε)n ≥

(
1

4
− 4δ

)
.

The set W0 contains the vertices from V0, so |W0| ≤ εn < δn. Notice that if we later

move a constant number of vertices to W0, then (i)-(iii) will still hold.
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Recall that δ(G′) ≥ (3/4− δ)n and hence vertices in W1 ∪ · · · ∪ W4 have at most

(1/4 + δ)n non-neighbours in G′. For a vertex in W1, at least (1/4− 4δ)n of these non-

neighbours are in W4. Hence vertices in W1 are adjacent in G′ (and hence in G) to all

but at most 5δn vertices in W1 ∪W2 ∪W3. Similar results hold for W2, W3 and W4.

Hence,

(iv) δ (G[Wi]) ≥ |Wi| − 5δn− 1 for all 1 ≤ i ≤ 4.

(v) The graphs RG[W1,W2] and RG[W3,W4] are 5δn-complete.

If there is a red edge uv in W1 or W3, then, by Claim 6.2, G contains red cycles of

length ` for all ` ∈ [3, (1/2− 19δ)n]. Otherwise, all edges in G[W1] and G[W3] are blue.

Since |W1| > 10δn + 2, we have that δ (G[W1]) > |W1|/2. By Corollary 1.3, G contains

blue cycles of length ` for all ` ∈ [3, |W1|]. But there are also two vertex disjoint blue

edges between W1 and W3 because there was a blue edge between U1 and U3 in H. By

(iv), we can join greedily their endpoints in Wi, i ∈ {1, 3}, by a blue path of any length

between 2 and |Wi| − 10δn− 2. By concatenating these two paths and two edges, we get

a cycle of any length between |W1| and |W1|+ |W3| − 20δ − 4 > (1/2− 29δ)n.

To complete the proof, we need to show that G contains a monochromatic cycle of

length ` for all ` ∈ [(1/2− 29δ)n, dn/2e], and a monochromatic cycle of length at least

(1− 38δ)n. We distinguish two cases.

Case 1: there are two red edges in G[Wi] for some i ∈ {1, 2, 3, 4}.
Without loss of generality assume that G[W1] contain two red edges. Suppose that

there are two disjoint paths P1 and P2 from W1 ∪W2 to W3 ∪W4 in RG. Let P1 have

endpoints u in W1 ∪W2 and u′ in W3 ∪W4 and let P2 have endpoints w in W1 ∪W2

and w′ in W3 ∪W4. By restricting to a smaller path if necessary, we may assume that

all internal vertices of P1 and P2 are in W0. Note that this also includes the case when

there are two vertex disjoint red edges between W1 ∪W2 and W3 ∪W4.

We now use Claim 6.2 to find u-w paths of length ` for all ` ∈ [6, (1/2− 19δ)n] in

R[W1,W2]. However, Claim 6.2 also implies that RG[W3,W4] contains u′-w′ paths of

length ` for all ` ∈ [6, (1/2− 19δ)n] of a given parity. By concatenating these paths with

P1 and P2 we see that in this case we have monochromatic cycles of length ` for all

` ∈ [14, (1− 38δ)n].

So, we may assume that there are no two vertex disjoint red paths from W1 ∪W2 to

W3 ∪ W4 in RG. By a corollary of Menger’s Theorem, there is a vertex vR such that

there are no red paths from W1 ∪ W2 to W3 ∪ W4 in G − {vR}. Hence, the set W0

spilts into sets W12,W34 such that there are no red edges between W1 ∪W2 ∪W12 and

W3∪W4∪W34 in G−{vR}. If there is also a vertex vB such that there are no blue paths

from W1 ∪W3 to W2 ∪W4 in G−{vB}, then we can split W12 into W ′1,W
′
2 and W34 into

W ′3,W
′
4 so that there are no edges between Xi := Wi ∪W ′i and X5−i = W5−i ∪W ′5−i.

Taking S = {vR, vB}, we have a contradiction to Claim 6.1. Hence we may assume that

there are two disjoint blue paths between W1 ∪W3 and W2 ∪W4. Similarly to the above,

applying Claim 6.2 to the ends of these paths in BG[W1,W3] and BG[W2,W4], there is a

blue cycle of length at least (1− 38δ)n. Moreover, if there are two blue edges in G[Wi]

for some i, then we get blue cycles of length ` for all ` ∈ [14, (1− 38δ)n].
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So, by moving at most eight vertices to W0, we may assume that all edges of each

G[Wi] are red. To complete the proof in Case 1, we need to show that G contains a

monochromatic cycle of length ` for all ` ∈ [(1/2− 29δ)n, dn/2e].
Suppose that some vertex v ∈W0 has at least (1/2 + 8δ)n+ 3 blue neighbours. Then

it must have at least two blue neighbours in at least three of the sets Wi. If there is no

blue path P from W1 ∪W3 to W2 ∪W4 in G − {v}, then, as above, we would have a

contradiction with Claim 6.1 applied with S = {v, vR}. Hence, let P be a blue path from

W1 ∪W3 to W2 ∪W4 in G− {v}. Without loss of generality, we may assume that P has

endpoints u1 ∈ W1 and u2 ∈ W2 and all internal vertices of P are in W0. Again, this

includes the case of a single edge between W1 ∪W3 an W2 ∪W4. Suppose that v has at

least two blue neighbours in each of W1, W2 and W3, the other cases being similar. We

may find w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3 with {u1, u2} ∩ {w1, w2, w3} = ∅ such that

each of w1, w2 and w3 are blue neighbours of v.

By Claim 6.2 we have the following paths:

• for all even ` ∈ [6, (1/2− 19δ)n], BG[W2,W4] contains a u2-w2 path P` of length `;

• for all even `′ ∈ [6, (1/2− 19δ)n], BG[W1,W3] contains a u1-w1 path P ′`′ of length `′;

• for all odd `′′ ∈ [7, (1/2− 19δ)n], BG[W1,W3] contains a u1-w3 path P ′′`′′ of length `′′.

Then, for all even `, `′ ∈ [6, (1/2− 19δ)n], the path

u2P`w2vw1P
′
`′u1

is a blue u1-u2 path of length 2 + `+ `′ which is internally disjoint from P . Similarly, for

all even ` ∈ [6, (1/2− 19δ)n] and odd `′′ ∈ [6, (1/2− 19δ)n], the path

u2P`w2vw3P
′′
`′′u1

is a blue u1-u2 path of length 2 + `+ `′′ which is internally disjoint from P .

Hence, for all L ∈ [14, (1− 38δ)n], there is a blue u1-u2 path of length L which is

internally disjoint from P . Since |P | ≤ |W0|+ 2 ≤ 2δn, this gives blue cycles of length L

for all L ∈ [2δn+ 14, (1− 38δ)n]. Since 2δn+ 14 < (1/2− 29δ)n, we are done.

Thus, we may assume that each vertex in W0 has blue degree at most (1/2 + 8δ)n+3,

and so red degree at least (1/4− 8δ)n − 3. Let C1 be the red component of G − {vR}
containing W1 ∪W2 and C2 be the red component of G−{vR} containing W3 ∪W4. We

know that RG[W1 ∪W2] and RG[W3 ∪W4] are connected, and the minimal red degree

condition on W0 ensures that there are at most two components in RG[V −{vR}]. As vR
has red degree at least (1/4− 8δ)n− 3, it has at least (1/8− 5δ)n red neighbours in at

least one of C1 or C2. Let C ′i be the set Ci, with vR added if it has at least (1/8− 5δ)n

red neighbours in Ci.

Then |C ′1|+|C ′2| ≥ n and so we may assume without loss of generality that |C ′1| ≥ dn/2e.
All vertices in C ′1 have degree in RG[C ′1] at least (1/8− 5δ)n. Further, all vertices in

C ′1\|W0| have degree in RG[C ′1] at least |C ′1|−6δn. As |C ′1| ≤ (1/2 + 8δ)n and |W0| ≤ δn,

the condition of Theorem 2.6 holds on RG[C ′1] and so RG[C ′1] is hamiltonian. But we also
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have

e(RG[C ′1]) ≥ 1

2
(|C ′1| − 6δn) (|C ′1| − |V0|)

>
1

4
|C ′1|2.

Hence, by Theorem 1.2, RG[C ′1] is pancyclic and we are done with Case 1.

Case 2: for every i = 1, 2, 3, 4, there is at most one red edge in G[Wi].

By moving at most four vertices attached to a red edge in G[Wi] to W0, we may assume

that all edges of G[Wi] are blue for all i = 1, 2, 3, 4.

By (iv) and Corollary 1.3, G contains blue cycles of length ` for all ` ∈ [3, |W1|]. But

there are also two vertex disjoint blue edges between W1 and W3 because there was

a blue edge between U1 and U3 in H. Using (iv), we can join greedily their endpoints

in Wi, i ∈ {1, 3}, by a blue path of any length between 2 and |Wi| − 10δn − 2. By

concatenating these two paths and two edges, we get a cycle of any length between |W1|
and |W1| + |W3| − 20δ − 4 > (1/2 − 29δ)n. Hence, G contains blue cycles of all lengths

between 3 and |W1| + |W3| − 20δn. Moreover, the same argument gives that for any

two vertices u,w in W1 ∪W3, there are blue u-w paths of every length between 8 and

|W1|+ |W3| − 20δn. The same is true in BG[W2 ∪W4].

Consequently, there are no two internally disjoint paths between W1∪W3 and W2∪W4

in BG. Hence, there exists a vertex vB such that, in G−vB , there are no blue paths from

W1 ∪W3 to W2 ∪W4.

Now we essentially follow the proof in Case 1, with colours red and blue interchanged:

There must exist two internally disjoint red paths from W1∪W2 to W3∪W4, otherwise we

would get a contradiction with Claim 6.1. Consequently, we join their endpoints by red

paths in RG[W1 ∪W2] and RG[W3 ∪W4] to get a red cycle of length at least (1− 38δ)n.

If there is a vertex in W0 with at least (1/2 + 8δ)n + 3 red neighbours, then we

are done as in Case 1. Hence, we may assume that every vertex of W0 has at least

(1/4− 8δ)n − 3 blue neighbours. Hence, we may partition W0 into sets W ′1, . . . ,W
′
4, so

that each vertex in W ′i has at least (1/16 − 3δ)n blue neighbours in Wi. It follows that

either |W1 ∪W ′1 ∪W3 ∪W ′3| ≥ dn/2e or |W2 ∪W ′2 ∪W4 ∪W ′4| ≥ dn/2e.
Without loss of generality, suppose that |W1 ∪W ′1 ∪W3 ∪W ′3| ≥ dn/2e. By removing

vertices, if necessary, we may assume that |W1 ∪W ′1 ∪W3 ∪W ′3| = dn/2e. We construct

a blue cycle on dn/2e vertices as follows. Take two vertex disjoint blue edges u1u3,

v1v3 such that u1, v1 ∈ W1 and u3, v3 ∈ W3. Take any two vertices w1 ∈ W1 and

w3 ∈W3 distinct from u1, v1, u3, v3. By (iv) and by the definition of W ′i , one can greedily

construct blue ui-wi path Pi containing all the vertices of W ′i , avoiding vi, and not having

more than 3δn vertices. Then, by (iv), the induced sub-graph BG[(Wi \ V (Pi)) ∪ {wi}]
satisfies the assumptions of Corollary 2.7, and so it must contain a blue vi-wi path P ′i .

By concatenating paths P1, P
′
1, P3, P

′
3 and edges u1u3, v1v3, we obtain a blue cycle on

dn/2e vertices. Clearly, by omitting some vertices from W ′1,W
′
3 and W1, we can obtain a

blue cycle of any length between (1/2− 29δ)n and dn/2e.
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7. Monochromatic circumference

In this section we shall look at the monochromatic circumference of a graph. We begin

by proving Theorem 1.8.

Proof of Theorem 1.8. As in the proof of Theorem 1.6, we consider the reduced

graph H, which has order k and minimal degree at least (3/4− δ) k. Applying Lemma

4.1 to H, we have one of the following.

(i) There is a component of RH or BH which contains a matching on at least (2/3 + δ) k

vertices.

(ii) There is a set S of order at least (2/3− δ/2) k such that either ∆(RH [S]) ≤ 10δk or

∆(BH [S]) ≤ 10δk.

(iii) There is a partition V (H) = U1∪· · ·∪U4 with min
i
|Ui| ≥ (1/4− 3δ) k such that there

are no blue edges from U1 ∪U2 to U3 ∪U4 and no red edges from U1 ∪U3 to U2 ∪U4.

In the first case, we use Lemma 2.5(a) to find a monochromatic cycle of length at least

(2/3 + δ/2)n. In the second case, assume without loss of generality that ∆(RH [S]) ≤
10δk. Then, by Lemma 4.4, G contains a blue cycle of length ` for all ` ∈ [3, (2/3− δ)n].

In the third case, Lemma 4.5 implies that G contains a monochromatic cycle of length

at least (1− 38δ)n ≥ (2/3 + δ)n.

We will make the following definition.

Definition. For 0 < c < 1, let Φ = Φc be the supremum of values φ such that any graph

G of sufficiently large order n with δ(G) > cn and a 2-colouring E(G) = E(R) ∪ E(B)

has monochromatic circumference at least φn.

For c ≥ 3/4, Theorem 1.8 implies that Φc ≥ 2/3. However, the example given after

Theorem 1.8 shows that Φc ≤ 2/3 for all c. We can also find upper and lower bounds for

Φc when c < 3/4, and we collect them into the following theorem.

Theorem 7.1. For all c ≥ 3/4, we have Φc = 2/3. For all c ∈ (0, 1), we have Φc ≥ c/2.

Also, there are the following upper bounds on Φc.

Φc ≤


1
2 c ∈ [ 35 ,

3
4 )

2
5 c ∈ [ 59 ,

3
5 )

1
r c < 2r−1

r2 for all r ≥ 3.

Note that, as c → 0, we may use the last upper bound to show that Φc/(c/2) → 1.

Hence, asymptotically, as c→ 0, the upper and lower bounds on Φc agree.

Proof of Theorem 7.1. For c ∈ (0, 1), every 2-edge coloured graph with δ(G) > cn

has at least cn2/2 edges. Hence, there are at least cn2/4 edges of one colour. We may

deduce from Theorem 2.11 that, in that colour, there is a cycle of length at least cn/2.

Hence Φc ≥ c/2 for all c ∈ (0, 1). Next, we prove the upper bounds on Φc.
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For c ∈ [5/9, 3/5), let t be an integer such that t > 1/(3 − 5c) and let n = 5t. We

define a graph G′t as follows. Let S1 and S2 be sets of order 2t and T be a set of order t.

Let R be the union of the complete graph on S1 and the complete graph on S2. Then R

has circumference 2t. Let B be the union of the complete graph on T and the complete

bipartite graph between T and S1 ∪ S2. Then, any two consecutive vertices of a cycle in

B must contain a vertex of T and hence B has circumference at most 2t. Let G′t be the

union of R and B. Therefore δ(G) = 3t− 1 > 5tc = c|G′t| and so Φc ≤ 2/5.

A

A

A

A

A

A

A

A

A

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Figure 1. The graph G
(3)
t

Assume now that c ∈ (0, 2r−1r2 ) for a given r ≥ 2. We aim to show that Φc ≤ 1/r. Note

that when r = 2 this gives the bound Φc ≤ 1/2 for c < 3/4. Let t be an integer such that

t > 1/(2r − 1− r2c) and let n = tr2. Define a family {Ai,j : 1 ≤ i ≤ r, 1 ≤ j ≤ r} of sets

of order t. We define the following graphs on vertex set
⋃
i,j Ai,j :

E(B) = {uv : u ∈ Ai,j , v ∈ Ai,j′ for some 1 ≤ i ≤ r and j 6= j′};
E(R) = {uv : u ∈ Ai,j , v ∈ Ai′,j for some 1 ≤ j ≤ r.}

Let G
(r)
t be the union of the graphs R and B, as illustrated in Figure 1, for the case

r = 3. Then δ(G′′r,t) = (2r − 1)t − 1 > ctr2 = c|G(r)
t |. However, as all monochromatic

components have order rt, there are no monochromatic cycles of length greater than n/r.

Hence Φc ≤ 1/r.
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8. Conclusion

Theorem 1.6 is a 2-colour version of the uncoloured (or 1-coloured) result of Bondy that

all graphs with order n ≥ 3 and minimum degree at least n/2 are either pancyclic or

isomorphic to Kn/2,n/2. We may hope to generalise to k colours. In this case, we let

E(G) =

k⋃
i=1

E(Gi) be an edge colouring, where each Gi is a spanning subgraph of G,

representing the edges coloured i. Our extremal graph was found by letting both R and

B be subgraphs of the extremal graph in the uncoloured case, and we again use this

method to find k-coloured graphs with high minimum degree but no odd cycles.

Definition. Let n = 2kp and let G be isomorphic to the 2k-partite graph with classes

all of order p. A k-bipartite k-edge colouring of G is a k-edge colouring E(G) =

k⋃
i=1

E(Gi)

such that each Gi is bipartite.

As in the 2-coloured case, we can deduce that a k-bipartite k-edge colouring of the 2k-

partite graph with classes all of order p induces a labelling Uα, α ∈ {1, 2}k, of the classes

such that, for all i, the graph Gi is bipartite with classes⋃
α:αi=1

Uα

and ⋃
α:αi=2

Uα.

Note that this implies that, if α and β in {1, 2}k differ only in the ith place, then all edges

between Uα and Uβ are coloured with i. As this graph has minimum degree
(
1− 2−k

)
n,

we make the following conjecture.

Conjecture 8.1. Let n ≥ 3, and k be an integer. Let G be a graph of order n with

δ(G) ≥
(
1− 2−k

)
n. If E(G) =

k⋃
i=1

E(Gi) is a k-edge colouring, then either:

• for all ` ∈
[
min{2k, 3},

⌈
n/2k−1

⌉]
there is some 1 ≤ i ≤ k such that C` ⊆ Gi, or;

• n = 2kp, G is the complete 2k-partite graph with classes of order p, and the colouring

is a k-biparitite k-edge colouring.

Note that the case when k = 1 is Bondy’s Theorem, and Theorem 1.6 is the case k = 2

for large n. We pose the following problem about the monochromatic circumference.

Problem 8.2. What is the value of Φc for c < 3/4?

Note that Theorem 7.1 shows that Φc = 2/3 for all c ≥ 3/4. In this case, we make the

following conjecture with an exact bound on the monochromatic circumference.
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Conjecture 8.3. Let G be a graph of order n with δ(G) ≥ 3n/4. Let n = 3t+ r, where

r ∈ {0, 1, 2}. If E(G) = E(RG)∪E(BG) is a 2-edge colouring, then G has monochromatic

circumference at least 2t+ r.

Note that Theorem 1.8 is an asymptotic version of this conjecture. By considering the

graph Ft,2t+r as defined in Section 1, we see that this conjecture is best possible. For the

latest progress on Conjecture 8.3, the reader should consult [4].
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